Pressure-enhanced fractional Chern insulators along a magic line in moiré transition metal dichalcogenides

Nicolás Morales-Durán, Jie Wang, Gabriel R. Schleder, Mattia Angeli, Ziyun Zhu, Efthimios Kaxiras, Cécile Repellin, and Jennifer Cano

Introduction. Moiré materials provide a highly tunable platform where many quantum phases of matter can be predicted, simulated, and explored. Of particular interest is the potential to realize a fractional Chern insulator (FCI), the zero field analog of the fractional quantum Hall (FQH) effect [1]. FCIs appear in a number of lattice models with fractionally filled flat Chern bands [2–9]. While these early models lacked a clear electronic realization, the unique interplay between topology and interactions in moiré materials brings the experimental realization of FCIs within reach: recently FQH-like states at filling $\nu = 1/3$ have been observed under reasonably small magnetic fields ($B \sim 5T$) in twisted MoTe$_2$ [24] and WSe$_2$ [25].

In this work, we show that pressure applied to twisted WSe$_2$ provides a new tuning knob to enhance the stability of the FCI phase. Specifically, we introduce a region in the pressure-vs-twist angle phase diagram where the FCI indicators [14,26–33]—namely bandwidth, Berry curvature fluctuations, and trace of the quantum metric—are near simultaneously optimized. We then use exact diagonalization to demonstrate an FCI ground state at $\nu = 1/3$ stabilized in the region of near-ideal band geometry, whose many-body gap increases with pressure. We further address the competition between this FCI state and a CDW. Though our calculations are specific to twisted WSe$_2$, we expect similar features to appear in other twisted TMDs, such as MoTe$_2$, where flat topological bands emerge.

Moiré TMD topological bands under pressure. The low-energy physics of twisted homobilayers such as WSe$_2$ or MoTe$_2$ can be accurately described by a continuum model. The most general valley-projected Hamiltonian is given, in layer space, by [17,34]

$$H^K = \left(\frac{1}{h^b(k)} T(r) \right) \left(T^+(r) h^b(k) - E_{\text{off}} \right).$$

Due to spin-valley locking, carriers have only one pseudospin degree of freedom. The Hamiltonian describing the other
valley is related by time-reversal symmetry. The diagonal terms of Eq. (1) describe carriers populating the topmost valence band of either the bottom (b) or top (t) layer. They consist of the quadratic dispersion of a single TMD layer folded into the moiré Brillouin zone, plus the moiré potential \(\Delta_{h/b}(r) \) due to the presence of the other layer, i.e.,

\[
h^{h/b}(k) = -\frac{\hbar^2}{2m}(k - k_{h/b})^2 + \Delta^{h/b}(r),
\]

\[
\Delta^{h/b}(r) = 2V_m \sum_{j=1,3,5} \cos(b_j \cdot r \pm \psi),
\]

where \(k_{h/b} = 4\pi / \sqrt{3}a_M(-1/2, \pm 1/2\sqrt{3}) \) are momentum shifts, the vectors \(b_j = 4\pi / \sqrt{3}a_M(\cos(\pi j/3), \sin(\pi j/3)) \) belong to the first shell of reciprocal lattice vectors, with \(a_M \) the moiré length, \(m^* \) is the effective carrier mass, and \(V_m \) and \(\psi \) are parameters that determine the strength and spatial pattern of the moiré potential, respectively. The interlayer tunneling in Eq. (1) is given by

\[
T(r) = \omega(1 + e^{i\psi/2}e^{b_0 \cdot r} + e^{i\psi/2}2ae^{b_0 \cdot r}),
\]

where \(\omega \) is the tunneling amplitude, \(\alpha = 0 \) for AA stacking (0° rotation between layers, as considered in this paper) and \(\alpha = 1 \) for AB stacking (180° rotation between layers) [35]. Finally, \(E_{\text{off}} \) describes the offset between the two topmost bands from each layer, which vanishes for homobilayers in the absence of a displacement field, i.e., an interlayer potential difference. The effect of displacement field has been studied [25,36] and tends to make bands more dispersive, disfavoring FCI stabilization [19,20]; henceforth we set \(E_{\text{off}} = 0 \).

We focus on twisted AA-stacked WSe\(_2\). Using \textit{ab initio} calculations [37], we obtain an effective mass \(m^* = 0.337 m_0 \) and compute the continuum model parameters \(V_m, \psi, \omega \) over a range of experimentally achievable pressures \(P \) or equivalently, sample compression percentages. The behaviors of \(V_m \) and \(\omega \) as a function of sample compression and pressure are shown in Fig. 1(a), while the corresponding evolution of the phase \(\psi \) is shown in Fig. 1(b). Both the tunneling amplitude \(\omega \) and moiré strength \(V_m \) increase quadratically with compression percentage, supporting the intuition that applied pressure pushes the layers closer together, increasing both the interlayer tunneling and the moiré potential. A similar trend was predicted in TBG [38], followed by experimental realization [39,40]. Thus, we expect the same tendency to hold for other twisted TMD homobilayers like MoTe\(_2\) [37]. Figure 1(c) shows an example of the obtained bandstructure at \(P = 2 \) GPa. For the parameter range considered in this work, the topmost moiré valence band is always topological with Chern number \(C_{K/K'} = \pm 1 \), consistent with previous calculations at \(P = 0 \) [17,35]. Time-reversal symmetry enforces that the Chern numbers at valley \(K \) and \(K' \) are opposite.

\textbf{FCI indicators.} Comparing a Chern band to the lowest Landau level (LLL) yields single-particle indicators of the stability of a putative FCI phase when the Chern band is partially filled [7,8]. Specifically, the LLL has vanishing bandwidth, homogeneous Berry curvature, and an ideal quantum geometry [9,14,26–28,41–43]. Though the quantum geometry has been an intense subject of recent study, particularly in relation to TBG, it has not been studied in moiré TMDs.
where

$$D_{k}^{ab} = \{D_{k}^{a} u_{k} | D_{k}^{b} u_{k} \} \equiv g_{k}^{ab} + i/2 \epsilon^{ab} \Omega_{k},$$

(5)

where

$$A_{k}^{ab} = -i(\omega_{k} | D_{k}^{ab} u_{k})$$

is the Berry connection and u_{k} is the periodic part of the Bloch function. The right-hand side of Eq. (5) expresses the quantum geometric tensor in terms of the Fubini-Study metric g_{k}^{ab} and the Berry curvature Ω_{k}, which satisfy the inequality $\omega_{k,ab} g_{k}^{ab} \geq |\Omega_{k}|$ [26], for each momentum k and unit-determinant matrix $\omega_{k,ab}$. A band for which a k–independent matrix ω_{ab} exists that saturates the previous inequality, i.e., $\omega_{ab} g_{ab} = \Omega_{k}$, is said to satisfy the generalized trace condition; a dispersionless band satisfying this condition is called an ideal flat band [28]. The Bloch functions of an ideal flat band admit a universal analytical form closely related to the LLL wave functions [28,44–47]. As a consequence, FQH–like ground states are stable under short-ranged interactions in ideal flat bands.

Beyond the LLL, models satisfying the ideal band condition include the chiral model of TBG [14,48–51], Dirac fermions in a nonuniform magnetic field [16], the Kapit-Mueller model [52,53], and periodically strained quadratic band materials [54]. Engineering realistic systems with bands close to the ideal limit [55–58] is a promising direction in the search for FCIs. We now show that moiré TMDs host near-ideal flat bands.

We quantify the deviation of moiré TMD bands from the generalized trace condition by [14,15,26–28,41–43]

$$T = \int_{\text{BZ}} \frac{d^{2}k}{A_{\text{BZ}}} (\omega_{ab} g_{k}^{ab} - \Omega_{k}),$$

(6)

where A_{BZ} is the area of the Brillouin zone and $\omega_{ab} \equiv \omega_{k,ab} + \omega_{k,ba}$ is obtained from the eigenvector ω_{k} of \tilde{Q}_{ab} with the smallest eigenvalue; \tilde{Q}_{ab} indicates the Brillouin-zone averaged quantum geometric tensor. The behavior of T with pressure and twist angle is shown in Fig. 2(b), which reveals that the line of minimum T nearly coincides with the magic line defined by minimum bandwidth.

Finally, the LLL also exhibits k–independent Berry curvatures. Figure 2(c) shows the Berry curvature fluctuations

$$F = \left[\int_{\text{BZ}} \frac{d^{2}k}{A_{\text{BZ}}} (\Omega_{k} - C) \right]^{1/2},$$

(7)

where C is the Chern number, as a function of twist angle and pressure. Notably, while the lines of minimum bandwidth and trace deviations almost coincide, the line of minimum Berry curvature fluctuations is distinct. In an ideal band, such as those of chiral TBG, W, \overline{T}, and F all vanish simultaneously.

Pressure-twist angle phase diagram. Motivated by the existence of the region in Fig. 2 where W, \overline{T}, and F are simultaneously small, we proceed to study many-body ground states in the pressure-vs-twist angle phase space at fractional band filling. Our approach is to write the fully interacting Hamiltonian in momentum space, where the single-particle term comes from the band energies of the continuum model and interactions are projected onto the topmost moiré band. This projection reduces the Hilbert space, allowing for exact diagonalization to obtain the ground state and excited states. Labeling the single-particle energies and eigenstates from the topmost moiré band of Eq. (1) as ϵ_{k} and $|u_{k}\rangle$, respectively, the interacting Hamiltonian reads

$$H = \sum_{k} \epsilon_{k} c_{k,\sigma}^{\dagger} c_{k,\sigma} + \frac{1}{2} \sum_{q,k,k',q'} V_{q,k,q',k'} c_{k,\sigma}^{\dagger} c_{k',\sigma}^{\dagger} c_{k'-q',\sigma} c_{k+q+q'}.$$

(8)

Here σ,σ' are valley indices and $c_{k,\sigma}^{\dagger}$ creates a hole with momentum k in valley σ. The gate-screened Coulomb interaction elements projected to the topmost band are

$$V_{q,k,q',k'} = \frac{1}{A} \sum_{G} A_{G}^{q+G} A_{G}^{q-g} \frac{2\pi e^{2}}{\epsilon d} \tanh (\tilde{q} d).$$

(9)

where $\tilde{q} = |q + G|$, ϵ is the momentum transfer, A is the system area, $A_{G}^{q+G} = (u_{k+q+G} | u_{k+q} \rangle)$ are the form factors, ϵ is the dielectric constant, and d denotes the distance from the sample to metallic gates; to be concrete, we fix $d = 10$ nm. The projection to the topmost band is justified as long as the interaction scale is smaller than the gap to remote bands. To ensure this condition is met, we fix $\epsilon = 30$, well within the validity of our band projection. In the Supplemental Material [37], we show results for $\epsilon = 10$, which we expect is closer to the experimental value. While the phase diagram displays the same qualitative features, the single band projection is not as well justified in that case: a more reliable result requires projecting to the top two bands, which we do not consider in this work.

We diagonalize the Hamiltonian in Eq. (8) at band filling factor $\nu = N/N_{z} = 1/3$, where N is the number of holes and N_{z} the number of moiré unit cells, for different finite system sizes N_{z}. The resulting phase diagram as a function of twist angle and pressure is shown in Fig. 3(a). The colored area between the solid black lines indicates the region where Coulomb interactions induce a fully valley-polarized ground state.

Within the valley-polarized regime, the blue region indicates a ground state in the same universality class as the Laughlin state, i.e., an FCI, which extends over approximately half a degree. The FCI is identified by the many-body spectrum in Fig. 3(b), showing a threefold-degenerate ground state with a clear gap to excited states. Upon flux insertion, the three degenerate ground states evolve into each other state with a clear gap to excited states. Upon flux insertion, the three degenerate ground states evolve into each other state with a clear gap to excited states.
degeneracy consisting of states with many-body momentum \(\gamma, k, k'\).

To further characterize the FCI and CDW phases, Fig. 4 shows the occupation \(n(q)\), static structure factor \(S(q)\), and Berry curvature \(\Omega(q)\) for representative points within each phase. In the FCI phase, the charge occupation and structure factor are nearly constant, characteristic of a Laughlin-like state. In contrast, in the CDW phase, the occupation increases towards the edge of the Brillouin zone, while the structure factor shows peaks at the \(k/k'\) points, indicatingmoire translation symmetry breaking to a \(\sqrt{3} \times \sqrt{3}\) state. The Berry curvature in the CDW phase is peaked around \(\gamma\), where the ground state occupation number vanishes. Thus, the charge carriers do not strongly feel the effective magnetic field, consistent with its trivial topology. In contrast, the ground state occupation in the FCI phase is more uniformly distributed, so that charge carriers feel the Berry curvature throughout the Brillouin zone, resulting in topological order. A similar trend was found in TBG [11,14,59]. However, one difference is that in TBG the Berry curvature is always peaked at \(\gamma\), while for TMD homobilayers the peak in Berry curvature moves as the model parameters vary, as seen in Fig. 4.

Discussion. We have proposed semiconductor moiré materials as systems with rich quantum geometry that can be tuned experimentally via applied pressure to stabilize topologically-ordered phases. Specifically, in twisted WSe\(_2\) the “magic angle” where the bandwidth is minimized at zero pressure turns into a magic line with similarly small bandwidth at finite pressures. The magic line extends the range of angles over which the FCI phase is stable. Further, the quantum geometry of the band in the region around the magic line is nearly ideal for realizing an FCI.

We provide numerical results that support an FCI ground state, extending previous studies [24,25] to finite pressure. Further, the FCI phase realized at finite pressure has a larger many-body gap than that at zero pressure. Experimentally, we predict that at small twist angles, if an incompressible CDW phase is measured in a moiré TMD homobilayer, applying pressure could drive a transition into an FCI phase. The pressure needed is within experimental reach. Specifically, applied pressures of up to \(P \sim 2\) GPa, or equivalently 5% compression, have been realized in TBG [39,40]. In TMDs, pressures up to \(P \sim 5\) GPa have been realized at room temperature, and \(P \sim 1.4\) GPa [60] at cryogenic temperatures.

As in TBG, the intertwined effects of band dispersion, quantum geometry, and long-range electronic interactions in our model combine to ultimately determine the ground state properties. Despite these complex factors, in TBG the chiral model has provided powerful analytical insight [28,48]. The proximity of our model to the ideal condition motivates a future search for a chiral model of moiré TMDs in a suitable limit. More generally, the question of how perturbations from the ideal limit affect an FCI ground state and its excitations is an open one. The near-ideal Chern bands we have described in moiré TMDs suggest that approximating the ground state wavefunctions by modified Landau level wavefunctions is a reasonable approximation [14,28] upon which to build a perturbative study of nonideal Chern bands.

Note added. Soon after our original submission, two independent preprints appeared showing experimental evidence for FCI ground states in twisted MoTe\(_2\) [61,62]. Since MoTe\(_2\) is described by the same continuum model as WSe\(_2\), i.e., Eq. (1), albeit with different material parameters, we expect that pressure will also stabilize the FCI phase in MoTe\(_2\).

Acknowledgments. We thank Valentin Crépel, Allan H. MacDonald, Kin Fai Mak, Andrew J. Millis, and Daniel Parker for insightful discussions. We acknowledge financial
support and computing resources from the Flatiron Institute, a division of Simons Foundation. N.M.D. was supported by the CCO Pre-Doctoral program. G.R.S. and E.K. acknowledge funding from the Army Research Office under Award No. W911NF-21-2-0147 and from the Simons Foundation Award No. 896626. Z.Z. acknowledges support from a Stanford Science Fellowship. C.R. acknowledges support by the Flatiron Institute IDEA Scholar Program. J.C. acknowledges the Air Force Office of Scientific Research under Grant No. FA9550-20-1-0260 and the Alfred P. Sloan Foundation through a Sloan Research Fellowship. This work was performed in part at Aspen Center for Physics, which is supported by National Science Foundation Grant No. PHY-2210452, and in part at the Kavli Institute for Theoretical Physics, supported by the National Science Foundation under Grant No. NSF PHY-1748958.

[37] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevResearch.5.L032022 for: (a) Details on \textit{ab initio} calculations of continuum model parameters as a function of pressure. (b) A discussion on the choosing of parameters ε and d for obtaining the phase diagram. (c) Additional exact diagonalization results, including spectral flow and scaling of many-body gaps in the thermodynamic limit. (d) Details on the different finite geometries used in this study.

