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Low-energy moiré phonons in twisted bilayer van der Waals heterostructures
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We develop a low-energy continuum model for phonons in twisted moiré bilayers, based on a configuration
space approach. In this approach, interatomic force constants are obtained from density functional theory (DFT)
calculations of untwisted bilayers with various in-plane shifts. This allows for efficient computation of phonon
properties for any small twist angle, while maintaining DFT-level accuracy. Based on this framework, we show
how the low-energy phonon modes, including interlayer shearing and layer breathing modes, vary with the twist
angle. As the twist angle decreases, the frequencies of the low-energy modes are reordered and the atomic
displacement fields corresponding to phonon eigenmodes break translational symmetry, developing periodicity
on the moiré length scale. We demonstrate the capabilities of our model by calculating the phonon properties of
three specific structures: Bilayer graphene, bilayer molybdenum disulfide (MoS2), and molybdenum diselenide-
tungsten diselenide (MoSe2-WSe2).
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I. INTRODUCTION

Two-dimensional (2D) van der Waals (vdW) multilayer
structures can be constructed by stacking 2D materials in
a layer-by-layer fashion. If the stacking involves a twist of
one layer by an angle θ with respect to the next layer, the
relative misorientation between atomic lattices produces a
moiré interference pattern with a length scale larger than the
lattice constants of the individual layers. Such moiré bilay-
ers can give rise to localized electronic states and tunable
electronic properties [1–7]. In twisted bilayer graphene, super-
conductivity and other unconventional correlated states have
been observed when the twist angle θ takes values near the
“magic angle” [8–11]. Similar behavior has been shown in
twisted bilayers composed of transition metal dichalcogenides
(TMDCs), albeit often with decreased sensitivity to the twist
angle [12–24]. Determination of the role of phonons is a
crucial step toward an understanding of these strongly corre-
lated electronic states, particularly superconductivity [25–28].
The collective vibration of a twisted bilayer can be strongly
affected by the moiré pattern, forming the so-called moiré
phonons [28,29]. Moiré phonons are also of general experi-
mental interest, and have recently been observed in graphene
[30]. The variation of phonon properties with the twist angle
allows Raman spectroscopy to be used to help characterize
moiré bilayers [31–35].

The interplay of two distinct length scales and the large
number of atoms within a moiré cell make calculations of
the phonon properties extremely challenging. Due to the rapid
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scaling in computational cost with respect to the moiré length,
direct calculations of phonons using density functional theory
(DFT) are currently not feasible for twist angles less than
a few degrees. Moreover, DFT calculations using periodic
supercells can only be carried out for a specific set of com-
mensurate angles. Instead, a continuum approximation has
been successfully used to model the electronic structure and
atomic relaxation of twisted bilayers and trilayers [36–42].
Continuum models have also been considered for moiré
phonon analysis. The most efficient of these are empirical
continuum models, but they leave out important details such
as the out-of-plane degree of freedom and phonon modes that
require coupling, for instance the shearing and layer breathing
modes [29].

We propose a first-principles-based continuum model of
moiré phonons, similar to the one developed by Quan et al.
[35] to help interpret the Raman spectra of twisted MoS2

bilayers, but we have extended it to momenta beyond the
� point and have applied the model to several different bi-
layer systems. To bypass the need to compute the interatomic
forces for all atoms in a large moiré supercell, we adopt a
configuration space formalism to describe the local atomic
environment. This approach has been used as the basis for
a continuum model of atomic relaxations in twisted vdW
heterostructures [41,43–46]. Using this model we obtain the
low-energy phonon properties of bilayer graphene, bilayer
MoS2, and a MoSe2-WSe2 heterostructure, and show how a
relative twist between the layers modifies the phonon frequen-
cies and eigenmodes.

The paper is organized as follows. In Sec. II we derive
the moiré dynamical matrix in configuration space, including
twist-angle-dependent relaxation [41]. We then compare our
model predictions to the results of three other approaches in
Sec. III. In Sec. IV we apply our model to three representative
moiré bilayers and analyze their band structure and real space
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FIG. 1. Schematic representation of the numerical implementation of the CSC model. A collection of monolayer (blue) and bilayer (pink)
calculations are combined into a rigid (unrelaxed) moiré dynamical matrix and used to determine the bilayer relaxation pattern (both purple).
All of these elements are combined to form the relaxed moiré dynamical matrix. The square labeled “relaxed moiré dynamical matrix” formally
represents the dynamical matrix construction: The diagonal blocks are from the monolayer calculations whereas the off-diagonal blocks are
constructed from the stacking dependent force field calculations.

atomic displacements. Finally, we summarize our results and
their implications in Sec. V.

II. CONFIGURATION SPACE CONTINUUM MODEL

The workflow of our configuration space continuum (CSC)
model is summarized in Fig. 1. We first construct the moiré
dynamical matrix by computation of the dynamical matrices
of many rigidly shifted bilayers—one for each configura-
tion of atoms in layer 1 with respect to layer 2—and the
individual monolayers. From the monolayer we obtain the
optimized lattice constant and the elastic constants that are
used for relaxation. We relax the ionic positions of each
shifted bilayer as well, keeping the horizontal positions of
one atom per layer fixed to maintain the registry between
the layers. We then compute atomic forces using the frozen
phonon approach, which under the CSC formalism produces
the unrelaxed (rigid) moiré dynamical matrix. Finally, we
include twist-dependent relaxation which yields the relaxed
moiré form of the dynamical matrix. We provide a derivation
of the model in this section, and details of the calculations can
be found in Appendices A and B. Throughout the derivation,
we use tildes to indicate a quantity in the moiré supercell,
and when referring to the dynamical matrix we use a bar to
denote the matrix in real space (the absence of the bar means
the matrix is expressed in Fourier space).

A. Moiré dynamical matrix

The phonon spectrum of a crystal can be obtained by
diagonalizing the dynamical matrix with the basis expanded
in momentum space. The moiré dynamical matrix at a point
k̃ in the moiré Brillouin zone, which we call the cen-
ter site, is represented generically as a layer-block matrix
encoding intralayer (diagonal) and interlayer (off-diagonal)

couplings:

Dmoiré (̃k) =
[

D1(̃k) D12

D12∗ D2 (̃k).

]
. (1)

Each block of the moiré dynamical matrix depends on two
reciprocal space degrees of freedom, k(�) and k(�′ ), which are
momenta from the monolayer Brillouin zones of layers � and
�′. This is because in a twisted system, the interatomic forces
depend not only on the pairwise distance of two atoms, but
also the position of the atom due to the change of the local
environment.

B. Moiré scattering selection rule

We first derive how the degrees of freedom in the basis of
Eq. (1) are connected to each other through a selection rule.
We begin with a monolayer, which is the intralayer term that
has no stacking dependence. Considering only one layer �, the
monolayer phonon equation of motion can be expressed as

∑
jνβ

D
�

μναβ (Ri − R j )δû j�νβ = ω2δûi�μα, (2)

where D
�

μναβ (Ri − R j ) is the dynamical matrix element, Ri

is a monolayer lattice vector, μ, ν are Cartesian degrees of
freedom, α, β are sublattice degrees of freedom, and δûi�μα is
the phonon displacement component that corresponds to atom
α in direction μ. We can define a phonon displacement in the
Bloch basis as follows,

δûi�μα (k(�) ) = 1√|�∗|eik(�)·Riδu�μα (k(�) ), (3)
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where k(�) is a momentum degree of freedom in �(�)∗, the
monolayer Brillouin zone of layer � with area |�∗|. We first
note the orthogonality relation

∑
μα

δû∗
i�μαδû j�μα = δi j . (4)

To expand the equation of motion, Eq. (2), in the Fourier
basis, we multiply both sides by δû∗

k�μα , then sum over k, μ,

and α:∑
jkμναβ

D
�

μναβ (Ri − R j )δû∗
k�μαδû j�νβ = ω2

∑
kμα

δû∗
k�μαδûi�μα.

(5)

Using Eq. (4),∑
i jμναβ

D
�

μναβ (Ri − R j )δû∗
i�μαδû j�νβ = ω2. (6)

Relabeling R = Ri,
R = Ri − R j and changing to the Bloch
basis using Eq. (3) yields

1

|�∗|
∑

R

[
e−i(k(�)−k′(�) )·R ∑

μναβ

∑

R

Dμναβ (
R)e−ik′(�)·
Rδu∗
�μα (k(�) )δu�νβ (k′(�) )

]
= ω2. (7)

Note the Poisson resummation rule:∑
R

e−i(k(�)−k′(�) )·R = |�∗|
∑
G(�)

δ(k(�) − k′(�) − G(�) ), (8)

where G(�) is a reciprocal lattice vector in layer �. Defining
Dμναβ (k′(�) ) as

Dμναβ (k′(�) ) =
∑

R

Dμναβ (
R)e−ik′(�)·
R, (9)

the phonon equation of motion becomes∑
μναβ

Dμναβ (k(�) )δu∗
�μα (k(�) )δu�νβ (k(�) ) = ω2, (10)

for each G(�), since the phonon displacement δui�μα is the
same at k(�) and k(�) + G(�). Equation (10) is equivalent to

D(k(�) ) · δu(k(�) ) = ω2δu(k(�) ), (11)

which is the eigenvalue equation that describes the intralayer
phonon at k(�), and the dynamical matrix D(k(�) ) can be com-
puted using either density functional perturbation theory or
frozen phonon approaches.

In a moiré cell the dynamical matrix gains an additional
degree of freedom because the forces depend not only on the
difference in lattice vectors, but also the real space position
itself due to the twist. The general phonon equation of motion
is given as the following:∑

jνβ�′
Dμναβ (Ri, R j )δû j�′νβ = ω2δûi�μα, (12)

where Ri and R j correspond to the atomic positions on layers
� and �′, respectively. Similarly to the intralayer term, we
multiply both sides of the equation by δû∗

i�μα and sum over
μ, α, and �. Plugging in the definition in Eq. (3),

∑
μναβ��′

Dk̃μναβ (k(�), k(�′ ) )δu∗
�μα (K (�) )δu�′νβ (K (�′ ) ) = ω2, (13)

where

Dk̃μναβ (k(�), k(�′ ) ) = 1

|�∗|
∑

i j

Dμναβ (Ri, R j )e
−iK (�)·Ri eiK (�′ )·R j , (14)

and K (�) = k̃ + k(�) is an expansion for small momentum k(�) about a given point k̃ in the moiré Brillouin zone. Making a two-
center approximation such that Dμναβ (Ri, R j ) = Dμναβ (Ri − R j ), we can then perform a Fourier expansion on Dμναβ (Ri − R j ):

Dμναβ (Ri − R j ) =
∫

d2 p
(2π )2

eip·(Ri−R j )Dμναβ (p). (15)

Note that despite the two-center approximation, the momentum space dynamical matrix Dk̃μναβ still depends on two different
momenta from the opposite layers � and �′. Using Eq. (15) as well as Eq. (8) in Eq. (14) yields

Dk̃μναβ (k(�), k(�′ ) ) = 1

|�∗|
∫

d2 p
(2π )2

Dμναβ (p)
∑

i j

e−i(K (�)+p)·Ri ei(K (�′ )+p)·R j

= |�∗|
(2π )2

∑
G(�)G(�′ )

∫
d2 p Dμναβ (p) δ(K (�) + p − G(�) ) δ(K (�′ ) + p − G(�′ ) )
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= 1

|�|
∑

G(�)G(�′ )

Dμναβ (̃k + k(�) − G(�) ) δk(�′ )−k(�),G(�′ )−G(�) , (16)

where |�| is the area of the monolayer unit cell and we note that |�| = (2π )2/|�∗|. The δ function imposes a selection rule that
constrains the allowed values of k(�) and k(�′ ). For concreteness, we define each reciprocal lattice vector as

G(�)
mn = mg(�)

1 + ng(�)
2 , (17)

where g(�)
1 and g(�)

2 are a reciprocal lattice basis for layer �. Neglecting higher-order coupling, we assume that only terms with
equal m, n in G(�) and G(�′ ) are nonzero, so the above simplifies to

Dk̃μναβ (k(�), k(�′ ) ) = 1

|�|
∑
mn

Dμναβ (̃k + k(�) − G(�)
mn) δk(�)−k(�′ ),G̃mn

. (18)

The difference G(�)
mn − G(�′ )

mn between corresponding reciprocal
lattice vectors from each layer is a moiré reciprocal lattice vec-
tor G̃mn. Without loss of generality, taking � = 1 and �′ = 2,
Eq. (18) imposes a constraint on the momenta given by

k(1) − k(2) = G(2)
mn − G(1)

mn = −G̃mn. (19)

We henceforth drop the subscripts on G̃ for clarity. Equa-
tion (18) is the fundamental equation governing the moiré
dynamical matrix. The stacking-dependent part of the moiré
phonon equation of motion becomes

1

|�|
∑
νβ�′

∑
G̃

Dμναβ (̃k + k(�) − G(�) )δu�′νβ (K (�′ ) − G̃)

= ω2δu�μα (K (�) ), (20)

where we note that G̃ and G(�) are in one-to-one correspon-
dence via Eq. (19). To simplify the above we choose a gauge
k(�) = G(�′ ) (though other gauges will work, and we will
choose a different one to justify the construction of the moiré
dynamical matrix) with � �= �′. Without loss of generality, we
let � = 1:

Dμναβ (̃k + k(1) − G(1) ) = Dμναβ (k + G(2) − G(1) )

= Dμναβ (̃k − G̃). (21)

Note that reciprocal space has sufficient symmetry that any
choice of a pair of signs for k and G̃ produces the same term
above.

Combining the monolayer term [Eq. (11)] and the twist-
dependent term [Eq. (20)], we obtain the moiré dynamical
matrix. We verified numerically that the magnitude of the
dynamical matrix decays rapidly with distance from the �

point, so it suffices to expand up to the first shell of the moiré
reciprocal lattice, which contains six vectors G̃1, . . . , G̃6. For
the off-diagonal terms, we ignore the k̃ dependence. The in-
terlayer term is explicitly given as follows:

D12 =

⎡⎢⎢⎢⎢⎣
D12

μναβ (G̃0) D12
μναβ (G̃1) · · · D12

μναβ (G̃6)

D12
μναβ (−G̃1) D12

μναβ (G̃0)
...

. . .

D12
μναβ (−G̃6) D12

μναβ (G̃0)

⎤⎥⎥⎥⎥⎦,

(22)

where Di j
μναβ (G̃) is a submatrix of the dynamical matrix at

G̃ with rows (columns) corresponding to degrees of freedom
due to layer i ( j). The (i, j) block thus represents phonon
hoppings between reciprocal lattice sites G̃i and G̃ j . We have
disregarded a small number of first-shell terms above that
do not live along the first row, first column, or the diagonal,
after having verified that their inclusion negligibly affects the
numerical results. That is, we ignore hoppings that do not
include G̃0. Similarly for the intralayer term,

Di (̃k) =

⎡⎢⎢⎢⎢⎣
Di

P (̃k+G̃0) Dii
μναβ (G̃1) · · · Dii

μναβ (G̃6)

Dii
μναβ (−G̃1) Di

P (̃k+G̃1)
...

. . .

Dii
μναβ (−G̃6) Di

P (̃k + G̃6)

⎤⎥⎥⎥⎥⎦,

(23)

where the diagonal terms are the dynamical matrix of the
pristine monolayer Di

P (̃k + G̃) and the off-diagonal terms are
the twist-dependent intralayer term constructed from Eq. (20)
when � = �′.

C. Dynamical matrix in configuration space

We are particularly interested in structures with a small
twist angle, which means the moiré cell contains a large
number of primitive cells and consequently many atoms. In
order to make the model computationally feasible, we express
Dμναβ in terms of a collection of local atomic environments,
known as configuration space [41]. Within the continuum
approximation we replace the primitive cell lattice vectors R
with a continuous variable r defined throughout the moiré cell,
and allow quantities of interest to be defined at all r. At each
location r the local environment can be approximated by an
untwisted bilayer with a horizontal shift of one layer relative
to the other. We specify the interlayer shift by b(r), and the
space formed by all b is configuration space. It is in one-to-one
correspondence with real space by a linear transformation

b(r) = (
1 − A2A−1

1

)
r, (24)

where Ai is a matrix whose columns are the primitive lattice
vectors of layer i and 1 is the 2 × 2 identity matrix. This
correspondence also gives a useful relationship between the
reciprocal lattice vectors of the moiré cell, G̃, and those of the
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primitive unit cell, G:

G̃ · r = G · b(r). (25)

Using these concepts, we can express the momentum space
dynamical matrix as follows:

Drig
μναβ (̃k + G̃) = 1√|�∗|

∫
d2r Dμναβ (r) ei(k̃+G̃)·r

= 1√|�∗|
∫

d2b Dμναβ (b) ei(k+G)·b

≈ 1√|�∗|
|�|
N2

∑
b∈S(N )

D
(b)
μναβ ei(k+G)·b. (26)

The factor of |�|, arising from discretization, cancels out
the normalization from Eq. (18). Configuration space allows
us to replace D(r), which we cannot easily determine, with
D(b), which we can readily compute with DFT for a prim-
itive bilayer cell with any specified shift b. In the small θ

limit the local environment varies slowly and smoothly with
b, so we can approximate the integral over b with the sum
over a N × N uniform mesh S (N ) of b values. Since S (N )
is uniform, Drig

μναβ (̃k + G̃) describes a moiré bilayer with a
uniform distribution of local configurations. In other words,
it represents a rigid moiré structure with no twist-induced
continuum relaxation, which is a good approximation for θ

sufficiently large. We describe the procedure for including
relaxation effects in the next subsection.

D. Continuum relaxation

We emphasize that in all structures considered here atomic
relaxation to the lowest-energy (equilibrium) configuration is
included. However, its effect varies as a function of twist an-
gle: For moderate to small twist angles, twist-induced atomic
relaxation is much more important than for large twist angles.
The range of angles over which the atomic relaxation is im-
portant varies by material, but relaxation typically begins to
have a significant impact for twist angles smaller than about
2◦. In real space, atomic relaxation results in enlarged areas
of the lowest-energy stacking configurations (AB and BA
in graphene) at the expense of high-energy stackings (AA),
with domain walls forming in between. In configuration space
relaxation can be viewed as a higher density of configurations
in the lowest-energy stackings [41,42]. This can be accounted
for by shifting each b in the uniform mesh S (N ) by an
angle-dependent relaxation displacement vector uθ (b), yield-
ing a nonuniform mesh B = b + uθ (b) denoted Sθ (N ). We
use linear elasticity theory to describe the intralayer energy,
combined with the generalized stacking fault energy (GSFE)
functional for the interlayer energy. (The GSFE parameters
are given in Appendix A.) By minimizing the total energy
we can compute uθ (b) in configuration space. We refer to
Carr et al. [41] and Zhu et al. [42] for a detailed overview
of continuum relaxation. The dynamical matrix can then be
updated by Fourier interpolation, using an inverse transform

D
(B)
μναβ (̃k) = 1√|�∗|

∑
G̃

Drig
μναβ (̃k + G̃)e−i(k+G)·B, (27)

followed by a second forward transform, which arrives at the
following relaxed moiré dynamical matrix:

Dμναβ (̃k + G̃) = 1√|�∗|
|�|
N2

∑
b∈S(N )

D
(B)
μναβ (̃k)ei(k+G)·b. (28)

To obtain the real space phonon vibration pattern, we
perform an inverse Fourier transform by summing over com-
ponents of the eigenvectors as follows,

δun�μαk̃(r) =
∑

G̃

δun�μαG̃ (̃k)ei(G̃+k̃)·r, (29)

where n is the band index and δun�μαG̃ is the eigenvector

component that corresponds to G̃.

E. Acoustic sum rules

Even though the total forces are fixed to be zero in the force
field calculations of individual stackings, the combination of
all configurations in the moiré dynamical matrix construction
modifies the total force of the combined system. Therefore,
an acoustic sum of the moiré dynamical matrix is required to
ensure the total force stays zero in addition to the sum rules
on the unrotated bilayers and monolayers. We use a correction
matrix (chosen without loss of generality to be diagonal in the
latter pair of indices)

Cμναα =
∑

β

√
Mβ

Mα

D∗
moiré,μνβα (�), (30)

where D∗
moiré,μνβα (�) is the moiré dynamical matrix by replac-

ing the pristine monolayer blocks DP(k + G̃) with DP(�), as
we enforce translational invariance only at the � point and en-
force continuity everywhere else. We then adjust Dmoiré (̃k) ←
Dmoiré (̃k) − C, observing numerically that the above ap-
proximation satisfies adequately the translational invariance
constraint. The sum rule is adapted from Quan et al. [35].

III. MODEL VALIDATION

To validate our CSC model, we compare results obtained
from it with two first-principles models, namely direct DFT on
the moiré supercell for a small system where such calculations
are feasible, and with molecular dynamics (MD) simulations
that employ an interatomic potential [28,47]. We also compare
our CSC results to another empirical continuum (EC) model
adapted from Koshino and Son [29].

A. Comparison with molecular dynamics and DFT

Direct DFT phonon calculations on the moiré cell are the
most accurate but are restricted by the size of the cell. MD
simulations allow for larger supercell sizes, but have inherent
limitations on accuracy due to the choice of interatomic poten-
tial. Both direct DFT and MD are computationally expensive
and require a commensurate supercell. Since the CSC model
uses DFT inputs in a well-defined approximation, it should
reflect the direct DFT and MD calculations reasonably well
and does not suffer constraints based on moiré supercell size
or commensurability. We choose a twist angle, θ = 7.34◦, that
gives a commensurate pattern in bilayer graphene for these
comparisons.

144305-5



LU, ZHU, ANGELI, LARSON, AND KAXIRAS PHYSICAL REVIEW B 106, 144305 (2022)

FIG. 2. Comparison of phonon band at θ = 7.34◦ between DFT (left panel), CSC (middle panel), and MD (right panel) calculations for
graphene. The LB mode is highlighted in red.

Figure 2 compares the phonon bands of the CSC model,
MD simulations, and direct DFT phonon calculations on the
moiré supercell at θ = 7.34◦. The layer breathing (LB) mode,
which represents layer 1 (2) moving in the −z (+z) direction
and a much weaker in-plane motion, is highlighted in red in
each case. The results from the three models are qualitatively
quite similar, validating the CSC construction. The quantita-

tive differences, such as the exact frequency of the LB mode,
are to be expected due to the specific choices made for each
model, such as the exchange correlation functional for DFT
and the interatomic potential for MD.

In addition to the phonon dispersion relations, Fig. 3 shows
a comparison of the atomic displacements of the LB mode
in graphene, corresponding to the red band in Fig. 2 at the

FIG. 3. Comparison of the LB atomic displacements between direct DFT, CSC, and MD. Each model has normalized its displacements δu
separately, in arbitrary units. The insets show the frequency and average displacement magnitude in-plane (δuxy) and out-of-plane (δuz).
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(b)(a)

FIG. 4. Comparison of the phonon bands and DOS for bilayer MoS2 at (a) 0.75◦ and (b) 8.0◦ as calculated using the EC model (red lines)
and the CSC model (black lines). For θ = 0.75◦, the EC DOS has been scaled by a factor of 1000 for visualization.

� point. We focus on a qualitative comparison of the ge-
ometrical structure. All models exhibit a swirling in-plane
motion around the AA regions at the corner of the moiré
supercell. The primary difference between the models is the
variation in the out-of-plane motion. In the DFT calculation
the maximum vertical displacement occurs in the AB regions,
whereas for the CSC model the maximum is in the AA re-
gions. While the MD calculation shows some variation in
the vertical displacement between AA and AB spots and the
maximum vertical displacement also occurs in the AB regions
as in DFT, it is mostly uniform throughout the moiré cell.
The reason for the quantitative difference between the CSC
and the first-principles models is likely due to the breakdown
of the continuum approximation at a large angle. When the
twist angle is large, as is the case for θ = 7.34◦ in graphene,
the local stacking order varies drastically from one real space
position to a neighboring one. However, the CSC still assumes
a smooth variation of the force fields in real space, which
causes the real space LB mode to be similar for all twist
angles and thus it fails to capture the change in the large angle.
Despite this slight disagreement, both the LB frequency and
the band structure from the CSC show an excellent agreement
with first-principles calculations (Fig. 3). Their agreement
in the LB mode out-of-plane displacement field is better at
smaller twist angles (not shown in Fig. 3); that is, all three
models exhibit maxima in the displacement field around the
AA regions.

B. Comparison with empirical continuum model

The EC model, based on empirical interlayer interac-
tions, is the most efficient of the models discussed in this
section [29]. In Fig. 4 we compare the phonon dispersion
relations and density of states for MoS2, obtained with the
EC model and with our CSC model. To obtain the in-plane
phonon modes, we perturb around the relaxed equilibrium
positions by adding a kinetic energy contribution to the inter-

layer and intralayer terms of the dynamical matrix. We then
solve the equation of motion to obtain the phonon modes. We
use the GSFE coefficients and elastic constants provided in
Tables I and II for the CSC model. A detailed derivation is
given in Appendix C.

The EC model has a free empirical parameter that
we determine by scaling the bands such that the lowest-
frequency in-plane translational modes at K coincide in the
two models; the scaling factor is 2.3 for θ = 0.75◦ and 22.5
for 8.0◦.

There is little agreement between the two models for small
θ , as shown in Fig. 4(a). The EC model predicts flatter bands
and exhibits a gap between 2 and 3 cm−1, whereas no such
features occur in the CSC model. Moreover, the slopes of the
in-plane acoustic modes cannot be matched well. Intrinsically,
the EC model also does not include any out-of-plane motion,
such as the z-translational mode, nor does it include interlayer
modes such as the shearing (S) mode. The LB mode is absent
in the EC model for these two reasons. Our continuum model
does not suffer from such limitations.

In the large twist-angle limit, Fig. 4(b), the results from
the two models agree for low frequencies near �; they both
exhibit linear DOS relations and the position of the first folded
band cluster is near 35 cm−1.

TABLE I. GSFE coefficients of MoS2, graphene, and
MoSe2-WSe2 heterostructure. All in units of meV per unit
cell.

MoS2 Graphene MoSe2-WSe2

c0 25.91 6.985 27.07
c1 12.79 4.111 13.31
c2 −2.339 −0.3104 −2.335
c3 −8.0262 −0.1023 −0.8243
c4 0 0 0.1312
c5 0 0 0.2338
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TABLE II. Elastic constants K (bulk modulus) and G (shear
modulus) in units of meV per unit cell.

MoS2 Graphene MoSe2 WSe2

K 73546 99265 81194 73745
G 59028 99275 71562 63681

IV. MOIRÉ PHONON PROPERTIES

Using our CSC model, we calculate the phonon proper-
ties of three different moiré bilayers: Graphene, MoS2, and
a MoSe2-WSe2 heterostructure. Near the � point the lowest-
energy modes include two shearing modes (S) and one layer
breathing (LB) mode. These represent in-plane and out-of-
plane motions, respectively, with each layer moving in the
opposite direction.

A. Low-energy mode frequencies

The phonon dispersion relations are qualitatively similar
for twisted bilayer graphene and TMDCs. Here, we focus
on graphene. Figure 5 shows the graphene phonon bands at
different twist angles θ . As θ decreases, the frequency where
folded clusters of phonon bands appear also decreases, due
to the shrinking of the moiré Brillouin zone area. Atomic
relaxation due to interlayer interactions becomes more signifi-
cant as the twist angle decreases, leading to three qualitatively
different regimes characterized by the value of θ : A “decou-
pled” regime (large θ ), a “soft” regime (moderate θ ), and a
“relaxed” regime (small θ ). The exact values of θ separating
these regimes are specific to the material. For graphene they
are approximately 4.2◦ and 0.5◦, respectively; for MoS2 they
are 7.6◦ and 1◦; and for MoSe2-WSe2 they are 5.5◦ and
1.0◦. In the decoupled regime [Fig. 5(a)] the relatively large
twist angle and small moiré scale means there is little atomic
relaxation and the net interlayer coupling is very weak. Here,
the S mode is slightly positive at � with twofold degeneracy
(when the distinction between the two S modes becomes
important, we shall refer to the lower-energy curve as S1

and the higher-energy curve as S2), while the LB mode is
essentially dispersionless. The zero-frequency modes at � are
the three translational modes. In the soft regime [Fig. 5(b)],

where atomic relaxation starts to become more noticeable,
the S mode begins to exhibit imaginary frequencies at the �

point (plotted as negative values for continuity in the phonon
bands). In the relaxed regime [Fig. 5(d)] the low-energy stack-
ing regions grow in size at the expense of the high-energy
stacking regions. Thus, most of the atoms are in local energy
minima and are therefore resistant to shearing. As a result, the
shearing mode frequency becomes positive again.

Such ultrasoft S modes have been discussed in previous
work [48]. In the limit of small angles (large moiré cells)
that are truly incommensurate, they are zero modes at � that
correspond to the invariance of the moiré pattern to a horizon-
tal shift of one layer relative to the other [49,50]. Given the
complicated structure of the moiré dynamical matrix, the del-
icate numerical cancellations necessary to reproduce a (near)
zero mode are unlikely to occur in practice. For comparison,
in standard phonon calculations the zero modes (acoustic
phonons, particularly the translational mode with z invariance
in 2D materials) are corrected by imposing an acoustic sum
rule that explicitly enforces translational invariance. As dis-
cussed previously, we impose such a rule in the CSC model as
well, which is why there are no negative-frequency acoustic
phonon bands. In the same spirit, to deal with the ultrasoft
shearing modes one could impose a “shearing sum rule” to
enforce this additional symmetry of moiré structures. Such a
rule, however, is more subtle and involved than the acous-
tic sum rule, and we leave its imposition to future work.
The imaginary frequencies are not a simple consequence of
numerical sampling error or relaxation effects, as we demon-
strate in Appendix D.

In the soft regime, the LB mode becomes dispersive, as
seen in Figs. 5(b) and 5(c), but progressively flattens out again
as θ approaches the relaxed regime, Fig. 5(d). At 1.1◦, the
LB mode has a crossing with a cluster of folded bands whose
frequency decreases as the Brillouin zone shrinks [Fig. 5(c)],
and similarly for θ = 0.4◦ [Fig. 5(d)].

We may examine the frequency dependence on twist an-
gle more thoroughly by focusing on the � point. Figure 6
compares the S and LB frequencies for graphene, MoS2, and
MoSe2-WSe2. The decoupled, soft, and relaxed regimes are
shaded blue, white, and brown, respectively. The soft regime
begins when the S mode takes negative frequency values, and
ends where the slope of ω becomes negative at small θ . Aside

FIG. 5. Phonon bands of graphene as obtained from our CSC model at four representative angles of (a) 8◦, (b) 2◦, (c) 1.1◦, and (d) 0.4◦.
The two shearing modes are highlighted in red, and the first (lowest energy) LB mode in blue.
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FIG. 6. Frequency of the shearing (red line) and layer breathing (blue line) modes at � as a function of twist angle θ for various bilayers.
The MoSe2-WSe2 heterostructure has an additional LB-like mode that breaks symmetry, labeled SBLB (black line). The background color
shades illustrate the transition from the decoupled region (large θ , S frequencies positive or nearly 0) in blue shade, to the soft region (from
initial dip to negative S frequencies to angle of maximally negative frequency) in white shade, to the relaxed region (upward curve to positive
S frequencies) in brown shade.

from the location and width of the soft regime, however, the
frequency dependence on θ of the S mode is qualitatively
similar for all three materials. For MoS2 and MoSe2-WSe2,
the LB varies smoothly and slowly with θ . By contrast, the
LB mode in graphene has a comparatively higher frequency
in the decoupled regime, which drops sharply near the end
of the soft regime. Since the MoSe2-WSe2 heterostructure
breaks the layer symmetry, it admits an additional LB-like
mode that does not respect the symmetry under layer inversion
(r → −r). We refer to this mode as the symmetry-breaking
LB (SBLB) mode, and note that it is the only mode that varies
linearly in frequency with respect to θ .

B. Real space atomic displacements at the � point

By performing the inverse Fourier transform of eigen-
modes in reciprocal space [Eq. (29)], we obtain the atomic
displacement field of each phonon mode in real space. The
eigenmodes in reciprocal space are unit vectors, but appli-
cation of the Fourier transform gives the magnitude of the
displacement vectors a physical interpretation. Specifically,
the overall magnitudes across various twist angles serve as
an indicator for the magnitude of each eigenmode component
δu(G̃) in reciprocal space. For if most of the magnitude in

reciprocal space is concentrated in the G̃0 component, the real
space magnitude will be large, but if most of the magnitude
is concentrated in the first shell G̃1, . . . , G̃6, the phases in
the inverse Fourier transform reduce the real space magni-
tude to a much smaller quantity. In the absence of the moiré
interlayer couplings, the magnitude in Fourier space should
be concentrated in the G̃0 component, but at smaller values
of θ , emergence of periodicity of the moiré length scale
implies that the magnitude becomes instead concentrated in
higher shells. Thus, we should expect the magnitude in real
space to fall substantially near the angle at which the magni-
tudes of the G̃0 component and the G̃1, . . . , G̃6 components
intersect.

Figure 7 demonstrates these features in the LB mode by ap-
proximating the average real space magnitude through a 13 ×
13 mesh discretization of the moiré supercell. For brevity, we
have averaged the magnitudes of the six first-shell reciprocal
lattice vectors. Note that the magnitude of the G̃0 component
can be measured via Raman spectroscopy [35], and thus the
real space magnitude across θ serves to indicate at which twist
angle the mode will be difficult to detect experimentally.

The magnitudes of δu(r) also allow for comparison of
the relative strength between in-plane (δuxy) and out-of-plane
(δuz) motion; for example, the S modes satisfy δuz � δuxy.

FIG. 7. Average atomic displacement magnitudes in real space (δu, red), of the G̃0 component in reciprocal space (blue), and of the average
of the first-shell components G̃1, . . . , G̃6 of the LB mode at � for MoS2, graphene, and MoSe2-WSe2. The shading of various regimes has the
same meaning as in Fig. 6. The vertical black lines indicate the largest value of the twist angle at which δu → 0.
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FIG. 8. Real space atomic displacements (in arbitrary units) for the twofold degenerate shearing modes, S1 and S2, of the first layer of
graphene at various twist angles. In-plane (x, y) displacements are proportional to the arrows and vertical (z) displacements are shown in color.
The arrows are rescaled for visualization purposes, with the average values of in-plane (δuxy) and out-of-plane (δuz) magnitudes, rounded to
2 decimal places, shown in the lower insets. The displacements of layer 2 are exactly opposite to those of layer 1. The gray parallelogram
outlines a single moiré cell.

This is seen explicitly by visualization of the S and LB
atomic displacement fields, from which we may also deduce
the geometric structure of the atomic displacements as a
function of θ . In all figures showing atomic displacement
field results from the CSC model, we normalize the mag-
nitudes that correspond to each atomic degree of freedom
by the atomic mass

√
Mα for each layer, and subsequently

average the vectors over the atomic degrees of freedom.
We verified numerically that for all modes analyzed in
the present work, the vectors for each atomic degree of
freedom are identical up to mass normalization, which jus-
tifies the averaging. We then renormalize by multiplying the
atom-averaged field by

√∑
α Mα , where α is the atomic

index.
Figure 8 illustrates the evolution of the atomic displace-

ment field of the two S modes, S1 and S2, as a function of θ . In
all cases, the S mode is dominated by in-plane displacements
and is opposite in the two layers. In the decoupled regime
(7.34◦) the displacement is uniform. As θ decreases, transla-
tional symmetry on the graphene unit cell scale is broken and
we observe structure at the moiré scale.

In contrast to the S modes, the geometrical structure of the
LB mode remains invariant as θ changes. Figure 9 shows the
LB modes at two different angles in which the two layers have
equal and opposite displacements along the z direction, simi-
larly to the LB mode in AB bilayer graphene. However, while
the LB mode in an untwisted bilayer system corresponds to a
negligible in-plane motion, the moiré LB modes correspond
to swirling motion around the corners of the moiré supercell
in opposing directions between layers, which resembles the
relaxation pattern in twisted bilayer graphene [41]. This is
because the � point LB mode changes the interlayer separa-
tion on the moiré scale, which modifies the local interlayer
energy. To compensate for such an energy cost, the mode
adopts an in-plane rotation that changes the total AA area.
Consistent with Fig. 7, the relative magnitude of the LB mode
displacement field varies substantially with respect to twist
angle, as shown in the insets of Fig. 9.

Finally, we examine the real space structure of SBLB mode
in the MoSe2-WSe2 heterostructure. Unlike the LB mode
where the in-plane motions are opposite at every real space
position, the SBLB mode in the heterostructure breaks layer
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FIG. 9. LB atomic displacements of graphene at twist angles (a) 1.00◦ and (b) 7.34◦. Color scale and insets are the same as in Fig. 8. For
each angle, the left (right) panel shows layer 1 (2).

symmetry. As shown in Fig. 10, both layers share the same
in-plane rotation direction. Note that there is a preferential
in-plane rotation direction in the heterostructure; we did not
observe a degenerate SBLB mode with the other rotation
direction. The out-of-plane motions are small but opposite
between layers.

The atomic displacements in real space may be exam-
ined beyond the � point, though that is beyond the scope
of discussion in this paper. We provide a brief discussion in
Appendix E.

C. Higher energy LB (LB2 and LB3) modes

In addition to the lowest-energy LB mode analyzed above
(which we now call LB1), we observe two LB modes of higher

FIG. 10. MoSe2-WSe2 SBLB mode real space atomic displace-
ments at θ = 1.00◦. The insets and color scale are the same as in
Fig. 9.

frequency. The key characteristics of moiré LB modes are the
oppositely oriented swirling in-plane motion and the opposite
out-of-plane motion between each layer at every point r; these
are properties that all three LB modes exhibit. However, in
LB1, as shown in Fig. 9, the out-of-plane displacement has a
uniform direction within each layer. This does not hold for the
LB2 and LB3 modes for all θ . To quantify the uniformity in the
out-of-plane displacement direction, we define the following
quantity:

U12
LB = 1

N2

N2∑
i=1

δsgn[δu(1)
z (ri )],1

δsgn[δu(2)
z (ri )],−1, (31)

where N is the sampling grid size in the moiré supercell and
δu(�)

z (ri ) is the z component of the phonon at point ri in layer �.
Equation (31) essentially estimates the fraction of area where
δu(1)

z points in the positive direction while δu(2)
z points in

the negative direction. Since it does not matter which layer
breathes in which out-of-plane direction, we define the breath-
ing uniformity value ULB = max(U12

LB,U21
LB), which estimates

the fraction of the moiré cell that breathes in the same out-
of-plane direction. A translational mode with z invariance has
ULB = 0, and a perfectly uniform breathing motion (such as
that of LB1) has ULB = 1. A maximally nonuniform breathing
motion has ULB = 0.5, which means that at each point, the
field is equally likely to point in either direction.

Figure 11 shows the two higher-frequency LB modes for
each material, color-coded by ULB. We observe that the unifor-
mity of the breathing motion is dependent of θ . In fact, at any
value of θ , one mode is maximally uniform while the other is
not. Hence, we define the LB2 mode as the maximally uniform
mode and the LB3 mode as the other mode. This identification
is not well defined in degenerate transition regions, such as
that near θ = 6.0◦ in MoS2 and θ � 1.0◦ in all three materials.
In MoS2 only, the LB2 and LB3 modes change order in the
frequency scale.
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FIG. 11. The frequencies of the LB2 and LB3 modes color-coded by their uniformity value ULB (common scale on the right) for (a) MoS2,
(b) graphene, and (c) MoSe2-WSe2. LB1 in gray and SBLB in black are shown for comparison.

In Fig. 12, we provide an example of a uniform versus a
nonuniform higher-frequency LB mode in MoS2 at θ = 3.0◦.
The nonuniformity manifests in the difference in direction of
out-of-plane motion near the AA regions versus the AB/BA
regions.

V. SUMMARY

We developed an accurate and efficient model for calculat-
ing phonon properties in bilayer moiré vdW heterostructures,
which is based on the configuration space continuum (CSC)
formalism. Within this formalism, we showed that phonons
related to moiré patterns in twisted bilayers can be calcu-
lated directly from ensembles of phonons related to rigidly

FIG. 12. Atomic displacement fields of LB2 and LB3 in MoS2 at
θ = 3.0◦. The insets and color scale are the same as in Fig. 8.

shifted bilayers at various arrangements, with first-principles
accuracy.

By analyzing the low-frequency shearing (S) and layer
breathing (LB) modes in three representative materials
(twisted bilayer graphene, bilayer MoS2, and a MoSe2-WSe2

heterostructure), we showed that the physics of moiré-pattern
phonons depend on the twist angle θ . Phonon frequencies vary
slowly and smoothly with θ , while the atomic displacement
magnitude is more sensitive to small changes in twist angle
near certain θ values. Our CSC model can be applied more
generally to classes of bilayers beyond the three materials
on which we focus here, such as bilayers that are oppositely
oriented (the pristine bilayer has one layer rotated by 180◦
relative to the other) or Janus materials.

Despite its efficiency and accuracy, the CSC model is
limited in its present form to lowest-frequency modes and
negative shearing frequencies due to the approximations in-
herent in the model. In the work presented here, we only
expand the moiré dynamical matrix to the first shell of the
moiré Brillouin zone. Increasing the cutoff radius would allow
for the extension to higher frequency modes, although a new
derivation of the acoustic sum rule is required. Future work
to broaden the scope of the CSC model may include intro-
ducing k̃ dependence on the off-diagonal components of the
moiré dynamical matrix in order to remove the low-frequency
approximation. Moreover, the CSC model may be applied
to further investigate relatively low-energy phonon modes of
interest, such as chiral phonons [51–53].

Building upon previous experimental studies with Raman
spectroscopy [31–35], the phonon features derived by our
CSC model may be used to guide further experimental com-
parison for other materials. The most direct application of
the CSC model is as a phonon framework for a model of
electron-phonon coupling in moiré materials. Ultimately, such
studies will provide a theoretical foundation for the origin of
strongly correlated states in moiré systems, and the extent to
which phonons play a role in such phenomena.
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APPENDIX A: GENERALIZED STACKING
FAULT ENERGY

The generalized stacking fault energy (GSFE) functional
measures the energy as a function of stacking configuration.
We evaluate the GSFE landscape V GSFE(b) according to a
first shell expansion from Carr et al. [41]. Since the Fourier
expansion is written in coefficients of eiG·b, with G a reciprocal
lattice vector of the bilayer at a configuration b, denote for a
Bravais lattice basis a1 = a0(1, 0), a2 = a0(1/2,

√
3/2):(

μ

ν

)
= 2π

a

[
1 −1/

√
3

0 2/
√

3

]
b. (A1)

Using 120◦ rotational and (μ, ν) → (ν, μ) symmetries, the
GSFE can then be expanded to first shell as

V GSFE = c0 + c1[cos(μ) + cos(ν) + cos(μ + ν)]

+ c2[cos(μ + 2ν) + cos(μ − ν) + cos(2μ + ν)]

+ c3[cos(2μ) + cos(2ν) + cos(2μ + 2ν)]

+ c4[sin(μ) + sin(ν) − sin(μ + ν)]

+ c5[sin(2μ + 2ν) − sin(2μ) − sin(2ν)] (A2)

with c = (c0, . . . , c5) ∈ R6. We fit V GSFE with least-
squares linear regression in the above basis. For quantities
with inversion reciprocal space symmetry, or equivalently
V GSFE(μ, ν) = V GSFE(−μ,−ν), c4 = c5 = 0. The parame-
ters in c are important for computing the relaxation in
configuration space [41,42]. Figure 13 shows the fits to the
GSFE for each of the 3 bilayers we studied. The coefficients
we obtain for each material are given in Table I.

APPENDIX B: COMPUTATIONAL DETAILS

We study the moiré phonons of graphene, MoS2, and
the MoSe2-WSe2 heterostructure, with lattice constants
2.457, 3.178, 3.306 Å, respectively. Following the imple-
mentation in Fig. 1, we sample a 9 × 9 uniform mesh in
configuration space. For each configuration, we perform DFT
calculations using the Vienna Ab initio Simulation Package
(VASP) [54–57] with the r2SCAN-rVV10 van der Waals
functional [58], an 800 eV plane-wave energy cutoff, 17 ×
17 k-point grid, and 10−6 eV electronic convergence thresh-
old. The horizontal positions of the carbon atoms (graphene)

FIG. 13. GSFE of MoS2, graphene, and MoSe2-WSe2 fitted with
first-order Fourier basis regression.

and metal atoms (TMDCs) are held fixed, but the remain-
ing ionic coordinates are allowed to relax until the forces
are below 10−6 eV/Å. We then compute the interatomic
force constants using the frozen phonon approach with a
3 × 3 supercell, converging electronic self-consistent loops to
10−8 eV. We repeat the frozen phonon calculations for the
monolayers, but use a 6 × 6 supercell for improved accuracy.

We then construct the rigid moiré dynamical matrix in
the manner described in Sec. II C of the main text, enforcing
pristine monolayer and bilayer symmetries numerically with
the phonopy and hiPhive libraries as well as the acoustic sum
rule from Sec. II E [59,60]. Finally, continuum relaxation is
implemented by the procedure outlined in Sec. II D from Carr
et al. [41]. Continuum relaxation requires input parameters of
the GSFE coefficients from Table I and the monolayer bulk
(K) and shear (G) moduli, given in Table II.

Direct DFT calculations of moiré phonons were performed
for a commensurate 7.34◦ graphene supercell containing 244
carbon atoms constructed from a primitive cell with lat-
tice constant a = 2.467 Å. These calculations used VASP
and the PBE exchange correlation functional [61] with zero
damping DFT-D3 van der Waals corrections [62], 3 × 3 ×
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1 k-point sampling, and a plane-wave energy cutoff of 400 eV.
The atomic displacements, force constants, and phonon band
structure were computed with the phonopy package.

MD calculations of the moiré phonons are performed using
the LAMMPS package [63]. Phonons are computed by direct
diagonalization of the system’s dynamical matrix [28] ob-
tained after relaxing the twisted bilayer’s atomic positions
[47]. The carbon-carbon intralayer interactions are modeled
via the second generation REBO potential [64]. The interlayer
interactions are instead modeled via the Kolmogorov-Crespi
(KC) potential [65], using the parametrization of Ref. [66].
The starting intralayer carbon-carbon distance is set equal to
a0 = 1.3978 Å, corresponding to the equilibrium bond length
of the adopted REBO potential, giving a lattice parameter of
a ≈ 2.42 Å. Geometric optimizations are performed using the
FIRE algorithm [67]. The atomic positions are relaxed toward
equilibrium until the total forces acting on each atom become
less than 10−6 eV/atom.

APPENDIX C: EMPIRICAL CONTINUUM MODEL

One approach to obtaining moiré phonons is through an
empirical continuum model based on the relaxation model
introduced in Carr et al. [41]. The approach is introduced
by Koshino and Son [29]; we briefly review and adapt it
here. To obtain the in-plane phonon modes, we perturb around
the equilibrium positions after relaxation. Here, we assume a
homobilayer, for which the relaxation in layers 1 and 2 has
symmetry u(1)(r) = −u(2)(b) ≡ u. The equilibrium position
is calculated by minimizing the total energy, which is the sum
of the interlayer energy that is the integral of the GSFE in
configuration space [Eq. (A2)],

E inter (u) =
∫

V GSFE(u + b) d2b, (C1)

and the intralayer elastic energy,

E intra (u) = 2
∫

�intra (u) d2b, (C2)

with

�intra (u) = 1
2∇ru(b) : C : ∇ru(b), (C3)

where ∇r is the real space gradient and C is the linear elas-
ticity tensor. For in-plane deformations, C is a rank-4 tensor
with its components defined as follows:

C11i j =
(
K + G 0

0 G

)
, C12i j =

(
0 K − G
G 0

)
, (C4)

C21i j =
(

0 G
K − G 0

)
, C22i j =

(
G 0
0 K + G

)
.

A lattice vibration perturbs the equilibrium positions, leading
to an additional kinetic energy contribution:

T =
2∑

�=1

∫
ρ

2

[(
U̇ (�)

x

)2 + (
U̇ (�)

y

)2]
d2r, (C5)

where ρ is the area density of a single layer (ρ = 7.61 ×
10−7 kg/m2 for graphene), � labels the layer, and U̇ (�)

α is the
time derivative of the cartesian component α = x, y of U in
layer �.

FIG. 14. Definition of reciprocal lattice vectors in Eq. (C6),
where the subscript labels different shells (different colors) and the
superscript labels different components within the same shell (same
color). The gray scatter points are reciprocal lattice vectors.

The Lagrangian of the system is given by L = T −
(E intra + E inter ) as a function of U (�)(r). We define U± =
U (2) ± U (1) and rewrite L as a function of U±. Let us rewrite
the GSFE from Eq. (A2) in a more compact form:

V GSFE(b) = c0 +
3∑

j=1

3∑
n=1

c j cos
(
Gn

j · b
)
, (C6)

where Gn
j are the monolayer reciprocal lattice vectors defined

in Fig. 14. Here, the subscript j labels the shell (vectors that
are the same distance from the origin) and the superscript n
labels the element within the shell. For simplicity we assume
symmetry between AB and BA stacking and only consider
the cosine components of the GSFE here (c1, c2, c3), but the
following results can be easily generalized to include the sine
components (c4, c5, c6).

The equations of motion for U− are given as follows:
1

2
ρÜ −

x = 1

2

(
K + G

3

)(
∂2U −

x

∂x2
+ ∂2U −

y

∂x∂y

)
+ G

2

(
∂2U −

x

∂x2
+ ∂2U −

x

∂y2

)

+
3∑

j=1

3∑
n=1

Gn
j,xc j sin

[
Gn
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where Gn
j,α is the α = x, y component of Gn

j . Note that U (r) is
the real space displacement and u(b) is the configuration space
displacement and they are related by the linear transformation
in Eq. (24). The terms on the second lines of Eq. (C7) that
are proportional to c j come from the GSFE, which depends
only on U−, the difference between relaxation in layer 1 and
layer 2, and not on U+. Thus the equations of motion for U+

are given by replacing U− with U+ and dropping the terms
proportional to c j . Because U+ represents equal motion in
both layers, its fluctuations yield the acoustic phonons of a
monolayer.

To determine the moiré phonons we study U− and
consider a small vibration around the static equilibrium
relaxation:

U−(r, t ) = U−
0 (r) + δU−(r, t ), (C8)

where U−
0 is the static relaxation that minimizes the total en-

ergy, E intra + E inter, and δU−(r, t ) is the perturbation around
U−

0 , which constitutes the phonon modes. We define the fol-
lowing Fourier coefficients to express the displacement and
equations of motion in Fourier space:

U−
0 (r) =

∑
G

U0,G̃eiG̃·r,

δU−(r, t ) = e−iωt
∑

q

δU−
q eiq·r,

(C9)
sin

[
Gn

j · (b + u−)
] =

∑
G̃

f n
j,GeiG̃·r,

cos
[
Gn

j · (b + u−)
] =

∑
G̃

hn
j,GeiG̃·r,

where G̃ is the moiré reciprocal lattice vector. Note that G̃ ·
r = G · b, where G is the monolayer reciprocal lattice vector.
We expand Eq. (C7) around the static solution U0 to the first
order in δU and perform a Fourier expansion to obtain the
equation of motion for the perturbation part:

ρω2δU−
G̃+q

= K̂G̃+qδU−
G̃+q

− 4
∑

G̃′

V̂G̃−G̃
′δU−

G̃′+q
, (C10)

where

K̂G̃ =
(

(K + 4
3G)G2

x + GG2
y (K + G

3 )GxGy

(K + G
3 )GxGy (K + 4

3G)G2
y + GG2

x

)
(C11)

and

V̂G̃ =
3∑

j=1

c j

3∑
n=1

hn
j,G̃

(
Gn

j,xGn
j,x Gn

j,xGn
j,y

Gn
j,xGn

j,y Gn
j,yGn

j,y

)
. (C12)

Here, the V̂G̃−G̃
′ is essentially an interlayer scattering selection

rule that couples G̃ and G̃
′

After obtaining the equilibrium
relaxation displacement vectors U−

0 self-consistently [41], we
solve the eigenvalue problem in Eq. (C10) to obtain the eigen-
modes ω2.

FIG. 15. Eigenvalues ω2 of the dynamical matrix of MoS2 at 2.0◦

for two configuration space sampling densities, 9 × 9 and 12 × 12.

APPENDIX D: FURTHER DISCUSSION OF THE
SOFT REGIME

A natural question from the analysis of the CSC model is
whether the imaginary shearing frequencies in the soft regime
are simply due to sampling issues. In this section we provide
evidence that this is not the case.

Our calculations in the continuum approach have used a
9 × 9 discretization of configuration space. Thus, one might
imagine the possibility that this discretization was not suf-
ficiently dense to cover enough configurations, and caused
numerical error that led to soft modes. However, as Fig. 15
illustrates for bilayer MoS2 with a representative twist angle
of θ = 2.0◦, an improved sampling grid of 12 × 12 does not
significantly increase the negative eigenvalues; in fact, if we
were to plot the values of ω, that is, the square root of the
results shown in Fig. 15, the difference is visually indistin-
guishable.

Moreover, as mentioned earlier, relaxation cannot alone
fix the softness of the shearing modes. For a twist angle
of 2.0◦ the relaxation produces only very small changes to
the configuration vectors b, as shown in Fig. 16. Hence, the
problem of ultrasoft shearing modes in the soft regime is a

FIG. 16. Updated configurations of MoS2 at θ = 2.0◦ after con-
tinuum relaxation.

144305-15



LU, ZHU, ANGELI, LARSON, AND KAXIRAS PHYSICAL REVIEW B 106, 144305 (2022)

FIG. 17. Displacement fields of the first folded band in MoS2 at M. For each of (a) and (b), the left (right) side displays layer 1 (2). The
periodicity is of a 2 × 2 moiré supercell.

problem more subtle than that of sampling or relaxation in
configuration space.

APPENDIX E: REAL SPACE DISPLACEMENT
AT OTHER HIGH-SYMMETRY POINTS

The real space analysis in this paper has focused on the
low-energy modes at �. However, the CSC model permits
analysis of fields at any k point, computed in the same way
but with an extra phase given by the k point to the inverse
Fourier transform. Every field at � has the period of one moiré

cell λ. However, at M, some (but not all) bands have the
period of 2 moiré lengths, while at K some have the period
of 3 moiré lengths. This is to be expected, as for a Bravais
hexagonal lattice with basis vectors oriented 120◦ apart, M =
1
2 g̃1 + 1

2 g̃2 and K = 2
3 g̃1 + 1

3 g̃2, where {̃gi} is the reciprocal
lattice basis. Examples of these periodicities are shown re-
spectively in Figs. 17 and 18 on MoS2 on the first folded band,
which is the lowest-energy band at each k point stemming
from the first folded cluster. For example, the analogous band
for graphene is the cluster between the S and LB modes of
Fig. 5(a).

FIG. 18. Displacement fields of the first folded band in MoS2 at K . For each of (a) and (b), the left (right) side displays layer 1 (2). The
maximum periodicity is of a 3 × 3 moiré supercell.
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