Progress and prospects in the quantum anomalous Hall effect

Hang Chi; Jagadeesh S. Moodera

APL Mater 10, 090903 (2022)
https://doi.org/10.1063/5.0100989

Articles You May Be Interested In

Wrist muscle activity of khatrah approach in Mameluke technique using traditional bow archery
AIP Conference Proceedings (April 2018)

Exploratory data analysis of Twitter’s rhythm in Malaysia
AIP Conference Proceedings (October 2018)
Progress and prospects in the quantum anomalous Hall effect

Hang Chi1,2,a) and Jagadeesh S. Moodera1,3,b)

AFFILIATIONS
1 Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2 U.S. Army CCDC Army Research Laboratory, Adelphi, Maryland 20783, USA
3 Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Note: This paper is part of the Special Topic on Materials Challenges and Synthesis Science of Emerging Quantum Materials.

ABSTRACT

The quantum anomalous Hall effect refers to the quantization of the Hall effect in the absence of an applied magnetic field. The quantum anomalous Hall effect is of topological nature and well suited for field-free resistance metrology and low-power information processing utilizing dissipationless chiral edge transport. In this Perspective, we provide an overview of the recent achievements as well as the material challenges and opportunities, pertaining to engineering intrinsic/interfacial magnetic coupling, that are expected to propel future development in this field.

I. INTRODUCTION

The quantum anomalous Hall (QAH) effect represents one of the triumphs in conceptualizing topological aspects of electronic states in condensed matter physics.1-11 It constitutes an ever-evolving family of Hall effects.12 In 1879, Edwin Herbert Hall discovered that the Lorentz force leads to a transverse voltage when the longitudinal current in a conductor is subjected to a perpendicular external magnetic field13—an effect that bears his name and inspires researchers to push the scientific and technological frontiers.14 This ordinary Hall (OH) effect offers a direct tool in assessing the charge carrier type and density in semiconductors, as well as acts as a practical probe in measuring the magnetic field. Hall later reported an unusual and stronger response in ferromagnets with qualitatively different field dependence.15 This ordinary Hall (OH) effect offers a direct tool in assessing the charge carrier type and density in semiconductors, as well as acts as a practical probe in measuring the magnetic field. Hall later reported an unusual and stronger response in ferromagnets with qualitatively different field dependence.15 It hence came to be known as the anomalous Hall (AH) effect, correlated with the spontaneous magnetization M. Its deep roots in topology and geometry were appreciated in recent times,16 enabled by the discoveries of integer17 and fractional18,19 quantum Hall (QH) effects in the 1980s.

For a two-dimensional electron gas (2DEG) under strong applied magnetic field, the Hall resistance R_{yx} develops well-defined plateaus, quantized to exact value of h/e^2 at which the longitudinal resistance R_{xx} vanishes. Here, h is Planck’s constant, e is the elementary charge, and v is the filling factor that is topological in nature and corresponds to the Chern numbers (by integrating the Berry curvature20 over the first Brillouin zone) summed over the occupied bands. In the integer QH regime, the quasi-1D chiral edge channels, each contributing a quantized Hall conductance $G_{xy} = e^2/h$, are immune to back scattering. For practical utilization of such dissipationless edge transport, e.g., in resistance metrology and low-energy-cost electronics, it is natural to desire a QAH system displaying a quantized version of the AH effect. It allows QH states to prevail at zero magnetic field, circumventing the necessity of forming Landau levels as well as the often stringent requirement on sample mobility.21-23 It became clear that, similar to the QH physics, the intrinsic AH conductivity σ_{AH} in a magnetic material is governed by the integral of the Berry curvature over occupied bands.24-27 Effort toward realizing the QAH effect was nonetheless at an impasse for decades, as σ_{AH} is not quantized in metals with partially occupied bands and magnetic insulators with a non-zero Chern number are rare to come by. Since around 2005, however, new prospects emerged...
accompanied by the discovery of topological insulators (TIs) with strong spin–orbit coupling (SOC) under the protection of time-reversal symmetry (TRS). As shown in Fig. 1(a), a 2D TI characterized by a single Z2 topological invariant hosts a pair of spin-polarized helical edge states (can be roughly understood as two copies of the chiral QH states with opposite spin) that leads to the quantum spin Hall (QSH) effect with quantized six-terminal R_{xy} of $h/2e^2$ and transverse spin-accumulation.

Upon generalizing to 3D, as exemplified by the Bi$_2$Te$_3$ family of materials, TI features insulating bulk and gapless helical surface states (SSs) with Dirac-like linear dispersion and spin-momentum locking, see Fig. 1(b). Introducing magnetic order to break the TRS in 2D TI, will intuitively lead to a QAH state—when one spin block is driven out of the topologically nontrivial band inverted regime into the normal one with vanishing G_{xy}. Despite early progress, this route was not pursued further, largely owing to the finite magnetic field needed to induce quantization as a result of the paramagnetic nature of Mn doping in HgTe. As shown in Fig. 1(c), an alternative platform was brought forth to leverage 3D TI thin films, where each 2D SS of 3D TI contributes a half-quantized $G_{xy} = \pm e^2/2h$ under broken TRS. In 2013, this was realized in Cr-doped ternary (Bi,Sb)$_2$Te$_3$ thin films, soon gaining wide acceptance with ideal performance. More recently, the QAH effect was also demonstrated in one device of five-layer exfoliated intrinsic antiferromagnetic TI MnBi$_2$Te$_4$ as well as in Moiré materials, namely, magic-angle twisted bilayer graphene and AB-stacked MoTe$_2$/WSe$_2$ heterostructures, greatly expanding the available material platforms and physical mechanisms for investigating the QAH phenomena.

II. REALIZING THE QAH EFFECT

As shown in Fig. 2(a), the archetypical 3D TI of the Bi$_2$Te$_3$-based materials crystallize in a $R3m$ (No. 166) rhombohedral structure, featuring Te(1)–Bi–Te(2)–Bi–Te(1)-type quintuple layers (QLs) with weak van der Waals interlayer bonding. The topologically nontrivial members of the family display a single surface Dirac cone and bandgap of 0.2–0.33, 0.21–0.3, and 0.13–0.2 eV, for Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Bi$_2$Te$_4$ respectively. The chemical stoichiometry and prevalence of defects sensitively affect the transport properties. When grown as thin films with molecular beam epitaxy (MBE), Bi$_2$Se$_3$ and Bi$_2$Te$_3$ are chiefly n-type, owing to Se and Te vacancies, while Sb$_2$Te$_3$ is dominantly p type due to Sb$_2$V$_1$ antisite defects. The inorganic nature of the compounds and availability of different carrier types offer the needed tunability for adjusting the chemical potential to zero-in on the surface transport.

Development of diluted magnetic semiconductors in the early 2000s has provided important insights into the induction of long-range magnetic order in TIs. Taking Sb$_2$Te$_3$ for example, Mn doping in Mn$_n$Sb$_{2−n}$Te$_3$ bulk crystals does not stimulate long-range ordering for x up to 0.045, although ferromagnetism can be stabilized in Mn$_n$Bi$_{2−n}$Te$_3$ (up to 0.09) as well as in topological crystalline insulator Mn$_n$Sn$_{1−n}$Te (up to 0.12). Doping with V and Cr, on the other hand, is effective in introducing magnetic order in V$_x$Sb$_{2−x}$Te$_3$ (0.01 ≤ x ≤ 0.03) and Cr$_x$Sb$_{2−x}$Te$_3$ (up to 0.095). With the incorporation of magnetic dopants (V/Cr)
elevated to even higher levels in the out-of-equilibrium MBE growth, strong out-of-plane ferromagnetic ordering has been successfully demonstrated with Curie temperature T_C reaching 177 and 190 K in $V_xSb_{2-x}Te_3$ (x up to 0.35)\(^{32}\) and $Cr_xSb_{2-x}Te_3$ (x up to 0.59)\(^{33}\) respectively. These early works on relatively thick films (hundreds of nm) have benchmarked the solubility limit, while setting expectation of the achievable exchange energy in films with thickness relevant to the QAH effect, considering that T_C generally decreases upon reducing the thickness.\(^{34,35}\) The high doping, however, is expected to weaken and eventually destroy the topological nature of the band due to reduced SOC. At an intermediate level, $V_xSb_{2-x}Te_3$ (x up to 0.10) thin films can sustain high surface mobility, leading to the prominent Shubnikov–de Haas (SdH) quantum oscillations.\(^{36}\)

Despite its larger bandgap and more ideally positioned surface Dirac cone, the fermionic response from Cr-doped Bi$_2$Se$_3$ is quite weak.\(^{37}\) The effort toward realizing the QAH effect has since largely been focused on the ternary (Bi,Sb)$_2$Te$_3$ matrix, with systematically engineered thickness and Bi/Sb alloying ratio. The QAH state was first demonstrated by Cr doping in 5 QL (Bi$_{0.15}$(Bi$_{1-x}$Sb$_x$)$_{0.85}$)$_2$Te$_3$.\(^{38}\) It was then discovered that V doping instead leads to a better reproducibility and a more robust QAH effect.\(^{37,39}\) As shown in Fig. 2(b), a nearly ideal QAH state is present at the charge neutrality point in 4 QL $V_{0.11}$(Bi$_{0.29}$Sb$_{0.71}$)$_2$Te$_3$, manifesting zero magnetic field $R_{xx}(0) = 1.000 19 \pm 0.000 69 \ h/\ e^2$, $R_{xy}(0) = 0.000 13 \pm 0.000 07 \ h/e^2$ and an AH angle α of 89.993° ± 0.004° at 25 mK. As revealed by low energy muon spin rotation (LE-\(\mu\)SR) spectroscopy in Fig. 2(c), the full magnetic volume fraction is achieved in $(CrV)_x(BiSb)_{2-x}Te_3$ only at doping levels with $x \geq 0.16$. The evolution of the effective magnetic ordering is consistent with the formation and growth of ferromagnetic islands that eventually encompass full volume upon cooling.\(^{31,36}\)

The edge current–voltage $I_i = (e^2/\ h)\sum_j (T_{ij}V_i - T_{ji}V_j)$ is determined by the transmission probability T_{ij}, connecting the ith electrode to the jth electrode in the Landauer–Büttiker theory.\(^{30,39}\) As shown in Figs. 1(c) and 3, in the QAH regime, the chiral edge modes propagate clockwise (counter-clockwise) for $M > 0$ ($M < 0$), leading to $T_{i\pm 1} = 1$ ($T_{i+1,i} = 1$). The ideal dissipationless chiral edge transport at zero magnetic field has indeed been verified by comprehensive local and nonlocal magnetoresistance experiments.\(^{22,24,34}\) In quantum phase transitions concerning a QAH insulator, the temperature dependence of the derivative of $R_{xx}(H)$ at the critical field H_c follows a power law scaling behavior $\langle dR_{xx}(dH)\rangle_{H_c} \propto T^{-\nu}$, with critical exponent ν in the range $0.22–0.62$.\(^{51–55}\) Utilizing a cryogenic current comparator, metrologically comprehensive low-current, high-precision measurements of the QAH states have demonstrated R_{xx} quantization within 1 part per million (ppm) of the von-Klitzing constant R_{K},\(^{96–100}\) and most recently down to 10 parts per billion (ppb), leveraging a permanent magnet design.\(^{31}\) It improves the prospects for zero-field quantum resonance standard and spintronics exploiting chiral edge transport, which favors a more robust QAH state at higher temperature, with even smaller R_{K} and larger breakdown current density.\(^{102,103}\)
III. HIGHER TEMPERATURE QAH EFFECT

In early QAH studies, the critical temperature T_{QAH} reaching full quantization is rather low in the mK range. By Cr/V codoping, the T_{QAH} can be enhanced to 0.3 K with $R_{xy}(0) = h/e^2$ (within the experimental uncertainty) and $R_{xx}(0) = 0.009$ h/e^2, while at $T = 1.5$ K, $R_{xy}(0) = 0.97$ h/e^2 and $R_{xx}(0) = 0.19$ h/e^2.\(^{110}\) The increase in the T_{QAH} via Cr/V codoping verifies to have originated from the improved magnetic homogeneity and favorably modulated surface band structure.

Further increase in the T_{QAH} would be beneficial in order to advance quantitative understanding of the QAH physics, and to facilitate practical applications. There are apparent disadvantages in introducing ferromagnetic order via traditional doping though: (i) the foreign species act as defects that inevitably degrade the sample quality; (ii) the innate random distribution of magnetic dopants leads to undesirable disorder (including spin scattering) and fluctuation in the energy band (in addition to the more generic local variations of the Bi/Sb ratio and/or film thickness) that adversely affect the QAH state;\(^{110,109}\) (iii) at the high level of doping, or rather substitution, needed for enhanced T_c, the band structure is prone to the development of impurity states in the bulk gap and its topological nature may also be affected, let alone the likelihood of secondary phase segregation.\(^{110}\) Thus, unfortunately, the doping route comes with inherent limitations.

The challenging yet highly desirable goal of raising the T_{QAH} is being actively pursued. A successful approach involves magnetic modulation doping. Specifically, as shown in Fig. 4(a), apart from the conventional single-layer Cr$_{0.06}$(Bi,Sb)$_2$Te$_3$ with uniform and modest Cr doping ($x = 0.10$), alternating combinations of heavily doped ($x = 0.46$) and pristine ($x = 0$) TI QLs are rationally designed to form tri- or penta-layer stacks. The penta-layer structure enables an impressively high $T_{\text{QAH}} = 0.5$ K, while $R_{xx}(0)$ reaches 0.97 h/e^2 at 2 K, as shown in Fig. 4(b).\(^{111}\) The greatly suppressed disorder and magnetic fluctuation are believed to be the key in enhancing the T_{QAH}. In the modulation doping case, as we shall see below, there is also the possibility that the interfacial internal exchange interaction becomes highly effective, leading to a better exchange gap opening in the “cleaner/pristine” layers of TI, thus enabling the achievement of a higher T_{QAH}.

It is worth pointing out that, at such high level of Cr substitution on the Bi/Sb sites (exceeding 20%), the SOC is expected to be much weakened, and the band inversion may no longer sustain. It hence drives the Cr-rich layer away from the TI phase toward a magnetic insulator (MI) instead. The versatility of the MI-like heavily Cr-doped TI block has been recognized and extended to an architecture of [3 QL Cr$_{0.06}$(Bi,Sb)$_2$Te$_3$]/4 QL (Bi,Sb)$_2$Te$_3$]/3 QL Cr$_{0.06}$(Bi,Sb)$_2$Te$_3$.\(^{112}\) Similar to an earlier TI-normal insulator design of [6 QL (Cr,V):(Bi,Sb)$_2$Te$_3$]/3.5 nm CdSe]$_n$/6 QL (Cr,V):(Bi,Sb)$_2$Te$_3$ multilayers,\(^{113}\) it successfully facilitates the demonstration of the high Chern number (adjustable by the stacking number n) QAH state.\(^{114,115}\) This design also allows for probing the physics underlying the plateau-to-plateau phase transition connecting the Chern number $C = 1$ and $C = 2$ phases, by means of systematically engineering the strength of SOC, via tuning the Cr concentration, in the middle Cr-doped layer of a penta-layer device.\(^{116}\) The Chern number tunable QAH state attests to the capability and precise control of multichannel dissipationless chiral conduction. Recently, as illustrated in Fig. 4(c), asymmetric placement of the Cr-rich block in a semi-magnetic configuration allows selective opening of an exchange gap only in the top surface of TI.\(^{117}\) It enables condensed matter investigation of the relativistic parity anomaly in quantum field theory, offering long-sought experimental verification of the half-integer quantization of G_0 in Fig. 4(d).

IV. PROXIMITIZED MI/TI INTERFACE

The revelation of the role of MI/TI interfaces in modulation doped TI points to the significance of proximitized...
internal exchange coupling. Indeed, the QAH effect has been recently achieved in MI/TI/MI heterostructures.118 As shown in Fig. 5(a), Cr-doped ZnTe, a large gap MI with favorable lattice parameters in the (111) plane matching TI, can be grown with non-magnetic TI into high quality sandwiches. The stacks possess atomically sharp interfaces and minimal Cr interfacial migration, as confirmed by energy-dispersive x-ray spectroscopy (EDS) mapping and distribution profile analysis.119–122 Full quantization has been observed at $T = 30$ mK [see Fig. 5(b)]. Despite the high growth temperature, the insignificant Cr diffusion across such an MI/TI interface is a salient feature, enabling reliable placement of alternating Cr-doped TI and pristine TI layers, instrumental in realizing the higher Chern number QAH state,112 as well as spin–orbit-torque-based electrical switching of the chirality of edge current.121

Proximity-driven engineering offers a promising avenue for further enhancing the T_{QAH} beyond the presently available sub-Kelvin regime, as well as uncovering new physics. Higher temperature QAH states may be obtained by imprinting magnetism via high-quality heterostructures with compatible MIs possessing high T_C (or Néel temperature T_N for antiferromagnet) while preserving the structural integrity and salient surface electronic properties of TIs. The interface approach is a center piece at the forefront of the field.

Recently, polarized neutron reflectometry (PNR) experiments at the EuS/Bi$_2$Se$_3$ interface have demonstrated that long-range magnetic order can be induced at the surface of a TI without the complication of creating spin-scattering centers in the doping case.122 As shown in Fig. 5(c), the magnetic scattering length density (MSLD) profile reveals ferromagnetism that extends ~ 2 nm into the Bi$_2$Se$_3$ at 5 K. The experimental spin asymmetry ratio, defined as $SA = (R^+ - R^-)/(R^+ + R^-)$, with R^+ or R^- being the reflectivity with neutron spin parallel (+) or antiparallel (−) to the external field, provides sensitive measurement of in-plane magnetism ($SA = 0$ designates no magnetic moment). The temperature evolution of SA profiles in EuS film and EuS/Bi$_2$Se$_3$ bilayer is drastically distinct−−−−while SA becomes vanishingly small in EuS above $T_C \sim 17$ K, the magnetism apparently survives up to 300 K at the EuS/Bi$_2$Se$_3$ interface (see Fig. 5(d) for MSLD depth profiles at selected temperatures). This enhanced magnetic behavior has been further confirmed by superconducting quantum interference device (SQUID) magnetic measurements as well as x-ray magnetic circular dichroism (XMCD) studies. It is worth emphasizing that a particularly clean, sharp and controlled in situ interface between EuS and TI is required in achieving the needed effective magnetic proximity coupling due to the extreme short-range nature of the exchange interaction (≤ 0.5 nm).123,124 Extraordinary care is warranted in the TI growth, and the magnetic interfacial heterostructuring thereafter, to properly mitigate the adverse influence from residual chalcogen atoms since the optimal TI demands a Se/Te-rich growth condition. This intriguing discovery has opened a vibrant arena for proximitized MI/TI heterostructures.125,126

Extensive investigations have since been devoted to interfacial exchange coupling and the magnetic proximity effect in MI/TI systems127–138 using Y$_3$Fe$_5$O$_{12}$ (YIG),139 Tm$_2$Fe$_5$O$_{12}$ (TIG),140 MnTiO$_3$,141 Cr$_2$Ge$_2$Te$_6$ (Ref. 119 and 144), and Fe$_2$GeTe$_2$ (Ref. 145), just to name a few. Convincing out-of-plane hysteretic AH data in platforms utilizing MIs with in-plane bulk magnetic anisotropy are not

FIG. 5. Proximity-driven magnetic coupling at the magnetic–topological insulator interface. (a) A cross-sectional high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of a Cr$_2$ZnTe/(Bi,Sb)$_2$Te$_3$/Cr$_2$ZnTe stack. (b) The realized QAH state at $T = 30$ mK. (c) The PNR nuclear (NSLD), absorption (ASLD), and magnetic (MSLD) scattering length density profiles as a function of the distance from the sample surface, measured for 5 nm EuS/20 QL Bi$_2$Se$_3$ sample at 5 K under applied in-plane magnetic field of 1 T. The magnetization measured inside the Bi$_2$Se$_3$ layer is marked with red arrows, and the reduction of the in-plane component of EuS at the interface caused by a canting of the Eu magnetization vector toward the out-of-plane direction is marked with a blue arrow. The fit with zero magnetization ($M = 0$ in 2 QL) in the Bi$_2$Se$_3$ layer has a large deviation from the experimental data. (d) Chemical (NSLD, dashed line) and magnetic (MSLD) depth profiles at a few selected temperatures (solid lines for 50, 75, 120 K and green shading for 300 K). The scale on the right shows the magnetic (MSLD) depth profiles as a function of the distance from the sample surface, measured for 5 nm EuS/20 QL Bi$_2$Se$_3$ sample at 5 K under applied in-plane magnetic field of 1 T. The magnetization measured inside the Bi$_2$Se$_3$ layer is marked with red arrows, and the reduction of the in-plane component of EuS at the interface caused by a canting of the Eu magnetization vector toward the out-of-plane direction is marked with a blue arrow. The fit with zero magnetization ($M = 0$ in 2 QL) in the Bi$_2$Se$_3$ layer has a large deviation from the experimental data.
yet available and should be pursued. Initial studies leveraging TIG, a high-T_C ($\sim 560\, \text{K}$) MI with perpendicular magnetic anisotropy, have shown that the ordering of TI can be increased to above 400 K.142 The R_{yx} at present is admittedly small though, on the order of 0.7–2 Ω at 2 K. Inspired by the high T_C, it warrants future effort to improve the interfacial coupling, for instance, by growing TIG and TI in situ without breaking vacuum during the interface fabrication. Sandwich heterostructures taking advantages of multiple interfaces,156,159 such as TIG/TI/TIG are also desirable, should one be able to control the magnetic anisotropy of TIG as out-of-plane oriented in subsequent layers. Furthermore, proximitizing magnetic TI with antiferromagnetic (Al):Cr$_2$O$_3$ enables exchange that is biased at the interface,144 allowing for further tunability in QAH-based devices.144

V. INTRINSIC MAGNETIC TI MnBi$_2$Te$_4$

Recognizing the critical importance of high-quality magnetic interfaces in QAH related physics, one may envision pushing the proximity-driven phenomena down to their ultimate limit—i.e., taking advantage of the layer-by-layer atomically ordered internal interfaces in intrinsic magnetic TIs. The promise and feasibility of such a strategy were perhaps well hinted by the large magnetic gap seen in the natural superlattice of QL Bi$_2$Te$_3$ and septuple layer (SL) MnBi$_2$Te$_4$ in Mn-doped Bi$_2$Te$_3$.160 As shown in Fig. 6(a), MnBi$_2$Te$_4$ SLs feature intralayer ferromagnetic order and A-type interlayer antiferromagnetism. The interlayer coupling is tunable via intercalation of non-magnetic Bi$_2$Te$_3$ QLS, forming a family of MnBi$_2$Te$_4$(Bi$_2$Te$_3$)$_m$ rich topological and physical properties.156–159

The layer sensitive magnetism in MnBi$_2$Te$_4$ offers a versatile platform for exploring the magnetic field driven transitions connecting the (canted) antiferromagnetic and poled ferromagnetic phases in the few SL regime, as well as the rich QAH (odd) and/or axion (even) insulator physics with precise SL number control.156–158 As illustrated in Fig. 6(b), the QAH effect has been realized in one optimal 5 SL MnBi$_2$Te$_4$ (device 5 SL A), displaying $R_{yx}(0) = 0.97\, \mu\text{eV}\/\text{K}^2$ and $R_{xx}(0) < 0.061\, \mu\text{eV}\/\text{K}^2$ at 1.4 K.152 While the T_{QAH} for full zero-field quantization was not reported, it is likely on par with the state-of-the-art thin film results using Cr/V codoping142 and Cr-modulation doping.141 A comparable QAH state has also been achieved in crystal flakes with the MnBi$_2$Te$_4$/Bi$_2$Te$_3$ natural superlattice.159 It has stimulated intense investigations of intrinsic magnetic TIs, although reproducing the stunning QAH result62 in 5 SL MnBi$_2$Te$_4$ still appears to be challenging to date. It is likely owing to the complex interplay among crystal quality, magnetic/lattice defect, stacking/strain condition, fabrication processing, device morphology and substrate/film/capping interfaces, which leads to the often qualitatively different $R_{yx}(H)$ profiles, as shown in Fig. 6(b), e.g., for devices from a different batch (device 5 SL B)163 or different group (device 5 SL C).157

As depicted in Fig. 6(c), a zero Hall plateau has been observed in 6 SL MnBi$_2$Te$_4$ (device 6 SL A),160 establishing another candidate system for solid state investigation of axion physics.159–163 The characteristic critical fields, corresponding to the small but discernible kinks in R_{yx} and extrema in R_{xx} for device 6 SL A,160 are generally

![Fig. 6. Intrinsic magnetic insulator MnBi$_2$Te$_4$. (a) Crystal structure of natural superlattice of BiMn$_2$Te$_4$(Bi$_2$Te$_3$)$_m$, with $m = 0, 1, 2, \ldots$. The A-type antiferromagnetic coupling of the septuple layers (SLs) of MnBi$_2$Te$_4$ may be tuned by intercalating quintuple layers (QLs) of non-magnetic Bi$_2$Te$_3$. Field dependence of R_{yx} (top) and R_{xx} (bottom) for (b) quantum anomalous Hall and (c) axion insulator like state in optimized 5 SL and 6 SL (A) MnBi$_2$Te$_4$, respectively. Additional 5 SL (B and C) devices and even layer samples, 6 SL (B) and 4 SL, are shown for comparison (scaled by $\times 1/2$ and vertically shifted for clarity). Adapted with permission from Deng et al., Science 367, 895–900 (2020). Copyright 2020 American Association for the Advancement of Science, (b) 5 SL A, 5 SL B, (c) 4 SL; Adapted with permission from Liu et al., Nat. Mater. 19, 522–527 (2020). Copyright 2020 Springer Nature Limited, (c) 6 SL A; Adapted with permission from Ovchinnikov et al., Nano Lett. 21, 2544–2550 (2021). Copyright 2021 American Chemical Society, (b) 5 SL C, (c) 6 SL B.](http://pubs.aip.org/aip/apm/article-pdf/doi/10.1063/5.0100989/16491113/090903_1_online.pdf)
consistent with other even SL devices (6 SL B157 and 4 SL165). By means of electric field tuning, Berry-curvature-induced layer Hall (LH) effect has been uncovered in this axion insulator like regime.166 The capability of fusing magnetism and topology at the atomic level bodes particularly well for the future advancement of topological quantum effects. To further understand the key factors underlying the magnetic and topological nature of MnBi$_2$Te$_4$ and QAH insulators in general, multimodal investigations are of immediate interest, synergizing magnetotransport and various scanning probes, including magnetic force microscopy (MFM),167 microwave impedance microscopy (MIM),168 nano-supersconducting quantum interference device (nanoSQUID),169 magneto-optical Kerr effect (MOKE) and magnetic circular dichroism (MCD).170

VI. MOIRÉ MATERIALS

By interfacing 2D crystal layers, of either the same species at a small twist angle or a different kind possessing dissimilar lattice parameters, one creates artificial Moiré superlattices hosting intertwined topology and strong correlations.171 Moiré graphene heterostructures with valley-spin-degenerate topological flat bands enable remarkable phenomena, including superconductivity,172 correlated insulating states,173 and when TRS is broken, orbital magnetism featuring Moiré-scale current loops.174 Significant AH effect with strong magnetic hysteresis has been observed in twisted bilayer graphene (tBLG)175 and ABC-trilayer graphene/hexagonal boron nitride (ABC-TLG/hBN) Moiré superlattices.176 As shown in Fig. 7(a), a robust QAH state has been demonstrated at 1.6 K in a narrow range of density near band filling factor $\nu = 3$ in a flat-band tBLG device aligned to hBN.177 R_{xx} quantization, within 0.1% of R_K, has been found to survive up to 3 K, while the system displays a T_C of 7.5 K.

In electrically tunable semiconductor-based hetero-bilayers, the application of an out-of-plane gating electric field modulates the bandwidth as well as the band topology by intertwining Moiré bands from different layers. At $\nu = 1$, the QAH effect was achieved at 0.3 K, upon spontaneous valley polarization in the MoTe$_2$/WSe$_2$ Moiré superlattice with AB configuration178 [see Fig. 7(b)]. R_{xx} remains quantized up to about 2.5 K, while staying finite up to $T_C \sim 5–6$ K. The two newly emerged Moiré platforms manifest $R_{xx} > h/e^2$ when approaching quantization, different from the TI-based phenomenology with $R_{xx} < h/e^2$, hinting that different disorder mechanisms might underpin the QAH effect owing to orbital magnetic states.

VII. CONCLUSION AND OUTLOOK

In recent years, tremendous progress has been made in advancing topological concepts in solid state. The realization and development of the QAH effect attests to the ever-more coherent synergy between theoretical prediction/interpretation and experimental exploration/discovery of new materials. We expect the fundamental interfacial magnetism in heterostructures to fuel future development in the field. Identifying new magnetic topological systems with suitable properties for implementing the QAH effect, or exploring the interplay between magnetism and topology in general, is of paramount interest.$^{179–181}$ The versatile selective tunability of the magnetic topological interfaces further enables the investigation of the high energy physics counterparts in materials laboratory, such as dyon particles177 and Majorana bound states,178,179 when additional superconductivity proximity is coupled.

From an application standpoint, the QAH effect bodes particularly well for future universal quantum standard units, combining the Josephson effect in one measurement setup, where uncertainty in the 1 ppb range is a prerequisite to rival that of existing QH systems.180 The ideally dissipation-free nature of chiral edge transport in the QAH state inspires low-energy consumption spintronics or integration to existing computing architectures as chiral
interconnects.101 Furthermore, when hybridized with superconductors, QAH insulators motivate topological quantum computing.102 These technological breakthroughs leverage on the capability of interfacial engineering structural, chemical, magnetic, and electronic properties at the atomic scale, ideally with the robust QAH state for practical operation temperature.

Despite impressive progress using interface-inspired approaches (heterostructure or intrinsic), the T_{QAH} manifesting quantized R_xx with negligible R_xx (~1% \hbar/e^2) is still limited in the sub-Kelvin regime for all Bi$_2$Te$_3$-derived QAH systems. It implies that mechanisms intrinsic to tetradymites, e.g., spatial inhomogeneities in thickness and/or prevailing antisite defects, might be the main culprit limiting the operation temperature, in lieu of the magnetic ordering, as T_c/T_N is reasonably high of the order of tens of Kelvin. Indeed, recent analysis of non-local transport in a Corbino geometry has revealed QAH edge channels surviving up to T_c in V-doped TIs.103 Further optimizing the bulk insulation in tetradymites,104 or discovering an entirely new class of TIs beyond the current paradigm,105 is beneficial toward increasing the practical relevance of the QAH effect.

In addition to MBE growth, recent development in alternative and industrial friendly routes such as sputtering16 may bring about previously overlooked benefits, including quantum confinement and/or superior sample quality. The dynamic MBE deposition and equilibrium crystal synthesis bear dramatically different kinetics and thermodynamics. To realize the QAH state, the former route is instrumental in preparing doped films beyond the bulk solubility limit, while the latter is critical in ensuring the needed layer ordering and placement in intrinsic TIs, however not typically vice versa. Realizing intrinsic magnetic TI films capable of quantization is highly desirable, meaning material exploration. Prospects of advancing QAH physics also lie in the exploration of possibly fractional QAH by feasibly introducing the needed strong correlation, as well as the novel mechanisms exploiting, e.g., in-plane magnetization187 and antiferromagnetism.188 Further inspiration can also be drawn from the exciting development of twistorics, benefiting from magnetic states of orbital origin.189

ACKNOWLEDGMENTS

The work was supported by the Army Research Office (Grant No. W911NF-20-2-0061), the National Science Foundation (Grant Nos. NSF-DMR 1700137 and CIQM 1231319), and the Office of Naval Research (Grant No. N00014-20-1-2306). H.C. was sponsored by the Army Research Laboratory under Cooperative Agreement No. W911NF-19-2-0015.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Hang Chi: Conceptualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Jagadeesh S. Moodera: Conceptualization (equal); Funding acquisition (equal); Project administration (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

Bi$_{78}$ properties of the diluted magnetic semiconductor Sb$_{80}$ tin telluride,” Appl. Phys. Lett. 108 (2016).

S. Dyck, P. Hajek, P. Kostak, and C. Uher, “Diluted magnetic semiconductors based on Sb$_{2-x}$V$_x$Te$_3$ (0.01 ≤ x ≤ 0.03),” Phys. Rev. B 65, 151212 (2002).

W. Ning and Z. Mao, “Recent advances in the study of intrinsic magnetic topological insulators and magnetic Weyl semimetals,” *APL Mater.* 10, 090071 (2020).

Y. Zhao and Q. Liu, “Routes to realize the axion-insulator phase in MnBi₂Te₃/(Bi₂Te₃)ₓ family,” *Appl. Phys. Lett.* 119, 060502 (2021).

