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We use first principles calculations to study the electronic properties of rock salt rare earth
monopnictides LaX (X =N, P, As, Sb, Bi). A new type of topological band crossing termed ‘linked
nodal rings’ is found in LaN when the small spin-orbital coupling (SOC) on nitrogen orbitals is
neglected. Turning on SOC gaps the nodal rings at all but two points, which remain gapless due to
C4-symmetry and leads to a 3D Dirac semimetal. Interestingly, unlike LaN, compounds with other
elements in the pnictogen group are found to be topological insulators (TIs), as a result of band
reordering due to the increased lattice constant as well as the enhanced SOC on the pnictogen atom.
These TI compounds exhibit multi-valley surface Dirac cones at three M̄ -points on the (111)-surface.

The discovery of three-dimensional (3D) Dirac
semimetals and Weyl semimetals, both theoretically[1–
9] and experimentally[10–17], attracts great interest and
effort into the emergent field of topological semimet-
als (TSM). A d-dimensional topological semimetals have
Fermi surfaces of reduced dimensions below d − 1. In
3D, the Fermi surface of a topological semimetal is con-
stituted of points or lines instead of surfaces. The new
types of Fermi surfaces is a result of robust band cross-
ings, or topological band crossings, between the conduc-
tion and the valence bands, protected by topology and/or
symmetry. Topological semimetals have distinct physi-
cal properties such as surface Fermi arcs, negative mag-
netoresistence and topologically nontrivial spin texture
near the Fermi surface.

With the only exception of 3D Weyl semimetals, the
stability of all TSM phases requires the presence of sym-
metries in addition to lattice translation, such as point
group or time-reversal[1–3, 18]. Breaking these symme-
tries in different ways typically drives the system into
distinct topological phases: breaking TRS in a 2D Dirac
semimetal, e.g., graphene, leads to a quantum anoma-
lous Hall state; breaking spin rotation in the same system
leads to a 2D TI; breaking time-reversal or 3D inversion
a 3D Dirac semimetal splits a Dirac point into a pair of
Weyl nodes resulting in a Weyl semimetal[19–24]; break-
ing rotation symmetry in a 3D Dirac semimetal results
in a 3D TI. Therefore, a TSM could be viewed as the
parent state of many interesting phases[10].

In this work, based on first-principles calculations, we
predict topological semimetal and topological insulator
phases in a family of lanthanum monopnictides with a
simple rock salt structure: LaX, where X =N, P, As,
Sb and Bi. When the small SOC is neglected in LaN,
the system is an exotic TSM: the band crossing points
form three intersecting nodal rings, which look like the
equator and two perpendicular longitudes of a football
centered at each X point, shown in Fig.1(b) (see also
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FIG. 1: (a) The 3D Brillouin zone of the face-centered cubic
lattice and its projection to the surface Brillouin zone of the
(111)-surface. (b) A schematic of the three nodal rings around
one X-point in LaN. (c,d) The calculated configuration of the
nodal rings on the yz-plane and the xy-plane, respectively.
Due to symmetry, only one quarter of each ring is shown.

Ref.25 for a similar configuration of nodal lines proposed
in 3D graphene networks). These nodal rings are pro-
tected by three mirror planes as well as spin rotation
symmetry, and as the latter is broken by a perturba-
tive SOC, they are gapped almost everywhere, leaving
two Dirac points behind. Hence in LaN, born from the
nodal ring semimetal is a Dirac semimetal with six Dirac
points, two near eachX-point, in the Brillouin zone (BZ).
3D Dirac semimetals have been experimentally identi-
fied in Na3Bi and Cd3As2[11–14]. Considering that the
former is chemically unstable under ambient conditions,
and the latter has a very complicated crystal structure,
we note that LaN, being a simple binary compound with
rock salt structure, has certain advantages from materi-
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als perspective. In the other compounds (X=P, As, Sb
and Bi), the bulk is a 3D TI with full direct gap. A band
inversion between lanthanum d-orbitals and pnictogen p-
orbitals at X-point appears in all five compounds, and
hence is not the reason for the topological phase transi-
tion from TSM to TI. Our study shows that a significant
increase in the lattice constant changes the orbital nature
of the valence band from px-orbital to a linear combina-
tion of py,z-orbitals; this change in orbital nature causes
the topological distinction between a TSM in LaN and a
TI in the other monopnictides. To demonstrate the TI
phase, we calculate the band structure of a thick slab of
LaBi normal to the [111]-direction, finding three surface
Dirac cones near three M̄s in the surface Brillouin zone
(SBZ).

Our first-principles calculations are implemented in the
VASP package with the generalized gradient approxima-
tion (GGA) and the projector augmented wave (PAW)
method [26–28]. Lattice constants of rock salt lanthanum
monopictnides are adopted from experimental values [29–
33]. A Monkhorst-Pack k-mesh (11 × 11 × 11) is used
to sample the Brillouin zone [34]. Fig.1(a) shows the
BZ of the lanthanum monopnictides. To account for the
electron-electron interaction, a mean field Hubbard cor-
rection term (U) is introduced into the frame of den-
sity functional theory[35] (DFT+U). The absence of f -
electrons and the significant dispersion of 5d-states in
all compounds suggest the itinerant nature of the con-
duction band. In accordance with this observations, it is
found in our calculation that when U < 0.5eV, the lattice
constants obtained are consistent with the experimental
values. We hence choose U = 0.25eV for all calculations
performed in this work. We also note that there is no
qualitative difference between the results for U = 0 and
U = 0.5eV.

The band structure along high-symmetry lines for LaN
in the absence of SOC is plotted in Fig.2(a). A band in-
version at X is seen. The px states of N is about 45meV
higher than the dyz states of La. Due to the opposite par-
ity of the two orbitals, the band inversion would have in-
dicated a 3D TI if the direct gap were nonzero. However,
there are two band crossing points near X: one along ΓX
and the other along XW . A symmetry analysis shows
that neither of them is a discrete crossing point in BZ,
but each is an intersection of two nodal rings, protected
by mirror symmetries. There are three mirror planes:
Myz that maps x to −x, Mxz that maps y to −y and
Mxy that maps z to −z. Let us focus on Mxy for now.
In the BZ, bands on the plane defined by kz = 0 can
be labeled by the eigenvalues of Mxy, mxy = ±1. A
band with mxy = +1 cannot anti-cross another band
with mxy = −1, because any hybridization would break
mirror symmetry. This is exactly our case: px-orbital is
invariant under mxy thus having mxy = +1, while dyz-
orbital has mxy = −1. Hence, on the kz = 0-plane, the
conduction band and valence band cross each other in
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FIG. 2: Band structures of LaX with orbital analysis.
(a,b)The band structure of LaN in the absence and the pres-
ence of SOC, respectively. (c-f) The band structures of LaP,
LaAs, LaSb and LaBi along ΓX, respectively, in the presence
of SOC, with insets showing details of the anti-crossing.

a nodal ring, passing through ξ1. Similar analysis pro-
ceeds for the Mxz mirror plane and we derive another
nodal ring on the ky = 0-plane also passing through ξ1.
Therefore, ξ1 is the intersection of two nodal rings. We
can similarly deduce that ξ2 is also such an intersection of
two nodal rings, protected by Mxz and Myz respectively.
From symmetry analysis, we have already deduced three
nodal rings that are all centered at X and cross each
other at ξ1,2 and their symmetry equivalents, as shown in
the schematic in Fig.1(b). An extensive DFT calculation
away from high-symmetry lines confirms this prediction,
and the calculated configurations of the nodal rings are
found in Fig.1(c,d).

We substantiate the above analysis by deriving a min-
imal k · p-Hamiltonian around X-point. Without SOC,
there are two bands at X-point, so the k · p is given by a
two-by-two matrix as function of q ≡ k −X, which can
be decomposed as the sum of the identity matrix and
three Pauli matrices with q dependent coefficients:

h(q) =
∑

µ=0,x,y,z

dµ(q)σµ. (1)

Since we are interested in the band crossing, the σ0-term,
which represents an overall kinetic energy, can be ne-
glected henceforth. The little group of X-point, formed
by all symmetry operations that leave X-point invari-
ant, gives symmetry constraints on the functional forms
of di=x,y,z(q). The little group is D4h ⊗ {I, T}, where
{I, T} is the group generated by time-reversal operation,
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T . The generators of the little group include: fourfold
rotation about x-axis C4x, mirror plane Mxy, 3D inver-
sion P and time-reversal T . The symmetry constraints
hence take the form

C4xh(qx, qy, qz)C
†
4x = h(qx,−qz, qy), (2)

Mxyh(qx, qy, qz)M
†
xy = h(qx, qy,−qz),

Ph(q)P † = h(−q),

Th(q)T † = h∗(−q),

where in the last equation we have used the fact that
time-reversal is anti-unitary. If the basis vectors are cho-
sen to be |px〉 for isospin up and |dyz〉 for isospin down,
the symmetry operations correspond to the following ma-
trices: C4x = σz, Mxy = σz, P = −σz and T = σ0.
Substituting these into Eqs.(2), we obtain the following
constraints for di(q)’s:

dx = 0, (3)

dy(q) = uqxqyqz +O(q5),

dz(q) = m− uq2x − v(q2y + q2z) +O(q4).

The dispersion of Eq.(1) is
√
d2x + d2y + d2z, so the nodal

points are determined by dx = dy = dz = 0. The explicit
forms of di(q)’s given in Eqs.(3) immediately yield three
nodal rings: one circle given by qx = 0, q2y + q2z = m/v,
one ellipse given by qy = 0, uq2x + vq2z = m and another
ellipse given by qz = 0, uq2x + vq2y = m.

The linked nodal rings are, however, generically unsta-
ble against perturbative SOC, i.e., the conduction and
the valence bands anti-cross, despite the unbroken mir-
ror symmetry. This is because the above mentioned mir-
ror symmetries, which only act in the spatial degrees of
freedom, are no longer symmetries of the system, as the
spatial degrees of freedom are now coupled to the spin de-
grees of freedom by SOC. A ‘real’ mirror symmetry acts
simultaneously on the spatial and the spin spaces: Mxy,
for example, not only sends z to −z, but also sends sx,y
to −sx,y, i.e., performs a π-rotation about y-axis in the
spin space, because spin is a pseudo vector. With the
additional spin-rotation, each band with mirror eigen-
value m± in the non-SOC system becomes two degen-
erate bands with mirror eigenvalues +im± and −im±
for the spin-up and spin-down sub-bands, respectively.
Therefore, the band crossing between px band and dyz
band on kz = 0-plane is no longer protected by Mxy: the
spin-up (spin-down) sub-band of px has the same eigen-
value of Mxy as the spin-down (spin-up) sub-band of dyz
and they will anti-cross. The nodal rings hence disap-
pear generically. However, the crossing point ξ1 along
ΓX remains gapless for another symmetry reason. The
high-symmetry line ΓX is a C4x-invariant line, meaning
that each band along this line can be labeled by its C4x

eigenvalue. With SOC, C4x is composed of fourfold ro-
tations in both the spatial and the spin spaces. Accord-
ing to this definition, the two sub-bands of the px band

have C4x eigenvalues of e±iπ/4, and those of the dyz band
have eigenvalues of −e±iπ/4. Therefore, the two doublet
bands can still cross each other as they have different C4-
eigenvalues and the four-band crossing point, ξ1, as well
as its time-reversal equivalent, are two 3D Dirac points.
In Fig.2(b), it is confirmed in calculation that while the
crossing at ξ2 opens a gap, ξ1 remains gapless.

The analysis can also be made explicit in the k · p-
theory. h(q) in Eq.(1) only involves the orbital degrees
of freedom, and we need to find the terms coupling the
orbital and the spin degrees of freedom, i.e., SOC terms,
allowed by the little groups. As explained above, all point
group operations (except for 3D inversion which does
not act on spin) are now constituted of a spatial part
and a spin rotation. One should also remember that
time-reversal acts nontrivially in the spin space, send-
ing {| ↑〉, | ↓〉} to {| ↓〉,−| ↑〉}. If the basis vectors are
chosen to be {|px, ↑〉, |px, ↓〉, |dyz, ↑〉, |dyz, ↓〉}, the little
group generators take the form: C4x = σz exp(−isxπ/4),
Mxy = −iσzsz, P = σz and T = K(isy), where sx,y,z
are Pauli matrices acting on the real spin, in contrast to
σx,y,z that act on the isospin. Under the symmetry con-
straints in Eqs.(2), we find the following SOC terms are
allowed

Hsoc = λσx(qysy − qzsz) +O(q3). (4)

With SOC terms added, the dispersion becomes

E =
√

[m− uq2x − v(q2y + q2z)]2 + λ2(q2y + q2z), (5)

whose only band crossing points are given by qy = qz = 0
and q2x = m/u.

Now we move down the pnictogen in the table of ele-
ment, from N to P and further down to As, Sb and Bi.
We notice that the lattice constant increases drastically
from 5.3Å to 6.03Å in LaP, then gradually increases up to
6.58Å in LaBi. This change modifies the bands near X-
point significantly: it pushes the pnictogen px-band down
in energy by a large amount, such that the valence band
becomes the py,z doublet (without SOC). Upon adding
SOC, the py,z-bands (now four bands including spin) split
into a lower band of Jz = ±1/2, consisting of |py+ ipz, ↓〉
and |py − ipz, ↑〉 state and a higher band of Jz = ±3/2
consisting of |py + ipz, ↑〉 and |py − ipz, ↓〉 state. As a
combined result of lattice and SOC, we find that while
the band inversion also happens at X-point between the
La d-states and the pnictogen p-states, the band cross-
ing along ΓX becomes an anti-crossing. See Fig.2(c-f).
The gap at the anti-crossing point is as small as ∼3meV
in LaP, increasing to 6meV, 20meV and 35meV in LaAs,
LaSb and LaBi, respectively. The anti-crossing can again
be understood in a symmetry analysis. Per the definition
of above, the Jz = ±3/2 states have C4-eigenvalues of
−e±iπ/4, same as those of the dyz-states: C4-symmetry
can no longer protect their crossing. Here we see that the
change in the orbital nature of the valence band induces
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a topological phase transition from a Dirac semimetal to
a 3D TI.

An effective k · p theory can be established to con-
firm this result and be used to gain more informa-
tion. If we the four basis vectors are {|py + ipz,→
〉, |py − ipz,←〉, |dyz,→〉, |dyz,←〉, where → / ← means
the spin is along positive/negative x-directions, the gen-
erators of the little group are represented by C4x =
exp(−i3σzsxπ/4), Mxy = iσzsz, P = −σz and T =
−K(iσ0sy). The generic form (up to the first order of
q) of the k · p theory is

H(q) = Mσz + r1qxσxsx + r2σy(syqy − szqz). (6)

The dispersion of this Hamiltonian is fully gapped, and
since the parity of the occupied states at q = 0 changes
as M changes sign, we see that a band inversion at X
changes the strong Z2 index of the system according to
the Fu-Kane formula[36]. The explicit form in Eq.(6) also
enables us to calculate the change in the mirror Chern
number[37, 38] when the band inversion happens, i.e.,
when M changes sign. There are three independent mir-
ror planes to consider: Mxy, Myz and M011, where M011

is the plane rotated from Myz by 45 degrees about x-
axis. Note that although Mxy and Myz are related by
C4z in the whole BZ, they are not related by any little
group operation at X-point, and are hence independent
operations. A straightforward calculation shows that the
change in the three mirror Chern numbers, as m changes
from positive to negative, are given by

∆Cxy = ∆C011 = 1, (7)

∆Cyz = sign(r1r2).

While LaX is predicted to be a 3D TI when X =P,
As, Sb and Bi, a single surface Dirac cone may only exist
on certain surface terminations, due to the large hole
pocket near Γ. To see this point, let us consider the
(001)-surface. Since there are an odd number of surface
Dirac cones, there must be one Dirac cone at M̄ or at Γ̄
in the SBZ. At the same time, we notice that in the 3D
BZ, the line projecting to M̄ passes two X-points, thus
having two band inversions. Therefore a single Dirac cone
cannot exist at M̄ . Γ̄-point in SBZ is the projection of
the line ΓX in BZ, having only one band inversion, but
in Fig.2(c-f), we see that along this line the indirect gap
is closed, i.e., collapsing the bands to one point results in
a continuous spectrum. Therefore the single Dirac cone
is buried inside the bulk projection continuum and hence
cannot be observed.

So far we have argued that no single Dirac cone ap-
pears on the (001)-surface. The topological surface state
can, however, be observed on the (111)-surface. The four
time-reversal invariant momenta are Γ̄ and three M̄ ’s,
and either there is one Dirac cone at Γ̄ or there are three
Dirac cones at three M̄ ’s. In Fig.1(a), we notice the fol-
lowing projections from lines in BZ to points in SBZ:

|m| = 0.1
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FIG. 3: The band structure on the (111)-surface of a 20-layer
slab of LaBi. The inset shows the spin texture near M̄ .

ΓL4 → Γ̄ and XiLi → M̄i. The band inversion happens
at all X, so according to the projection, we expect three
Dirac cones at three M̄ ’s. The prediction is supported by
calculation on a 20-layer LaBi slab normal to the [111]-
direction. In Fig.3, we see a spin-split Dirac cone at
M̄ . Due to the spin-orbital coupling, the spin degrees of
freedom are entangled with orbital degrees of freedom,
and therefore while the surface bands are spin-split, the
physical spins are not fully polarized.

To conclude, we theoretically predict topological
semimetals as well as topological insulators in lanthanum
monopnictides with rock salt structure, LaX (X =N,
P, As, Sb and Bi). We identify LaN as a nodal ring
semimetal when spin-orbital coupling is neglected; and
starting from this phase, we use analysis and numerics
to show that it becomes a 3D Dirac point when pertur-
bative spin-orbital coupling is taken into account. Mov-
ing down in the pnictogen column, we find LaP, LaAs,
LaSb and LaBi to be 3D topological insulators. Our
calculation shows that the topological transition from
Dirac semimetal to topological insulator is induced by
the change in the orbital character of the valence band
caused by an increase in the lattice constant. We fur-
ther argue that the topological surface states of these 3D
topological insulators cannot be observed on the certain
surfaces such as (001)-surface but may be observed on
the (111)-surface. We calculate the surface states in a
LaBi (111)-slab as demonstration.
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