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Abstract

We present a way to dramatically accelerate Gaussian process models for interatomic force

fields based on many-body kernels by mapping both forces and uncertainties onto functions of low-

dimensional features. This allows for automated active learning of models combining near-quantum

accuracy, built-in uncertainty, and constant cost of evaluation that is comparable to classical ana-

lytical models, capable of simulating millions of atoms. Using this approach, we perform large scale

molecular dynamics simulations of the stability of the stanene monolayer. We discover an unusual

phase transformation mechanism of 2D stanene, where ripples lead to nucleation of bilayer defects,

densification into a disordered multilayer structure, followed by formation of bulk liquid at high

temperature or nucleation and growth of the 3D bcc crystal at low temperature. The presented

method opens possibilities for rapid development of fast accurate uncertainty-aware models for

simulating long-time large-scale dynamics of complex materials.
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I. INTRODUCTION

Density functional theory (DFT) is one of the most successful methods for simulating

condensed matter thanks to a reasonable accuracy for a wide range of systems. Ab-initio

molecular dynamics (AIMD) offers a way to simulate the atomic motion using forces com-

puted at the DFT level. Unfortunately, computational requirements limit the time-scale and

size of AIMD simulations to a few hundred atoms for a few hundred picoseconds of time,

precluding investigation of phase transitions and heterogeneous reactions. Such large-scale

molecular dynamics (MD) simulation must resort to empirically derived analytical inter-

atomic force fields with fixed functional form [6, 16, 30, 49], trading accuracy and transfer-

ability for larger length and time scales. Classical analytical force fields often do not match

the accuracy of ab-initio results, limiting simulations to describing results qualitatively at

best or, at worst, deviating from the correct behavior. In order to broaden the reach of

computational simulations, it would be desirable to compute forces with ab-initio accuracy

at the same cost of classical interatomic force fields.

In recent years, machine learning (ML) algorithms emerged as powerful tools in regression

and classification problems. This interest has inspired several works to develop ML algo-

rithms for interatomic force fields, for example neural-networks (NN) [7–11, 32, 44], MTP

[24, 38, 43], FLARE [50], GAP [2–5], SNAP [48], SchNet [40–42], DeePMD [23, 51, 55],

among others. All these machine learning potentials can make predictions at near ab-initio

accuracy, while greatly reducing the computational cost compared to DFT.

However, most machine learning models have no predictive distributions which provide

uncertainty for energy/force predictions. Without uncertainty, the training data is gener-

ally selected from ab-initio calculations via a manual or random scheme. Determining the

reliability of the force fields then becomes difficult, which could result in untrustworthy con-

figurations in the molecular dynamics simulations. Therefore, uncertainty quantification is

a highly desirable capability [34, 36]. Neural network potentials, e.g. ANI [44, 45] can use

ensemble disagreement as an uncertainty measure. This statistical approach is, however,

not guaranteed to yield reliable calibrated uncertainty. In addition, NN approaches usually

require tens of thousands of data for training, and are a few orders of magnitude slower

than analytical force fields. Bayesian models are promising for uncertainty quantification

in atomistic simulations since they have an internal principled uncertainty quantification
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mechanism, the variance of the posterior prediction distribution, which can be used to keep

track of the error on forces during a molecular dynamics (MD) run. For instance, Jinnouchi

et al. [26, 27] used high-dimensional SOAP descriptors with Bayesian linear regression [4].

Gaussian Process (GP) regression [4, 5, 20–22] is a Bayesian method that has been shown to

learn accurate forces with relatively small training data sets. Bartok et al. [3] used GP un-

certainty with the GAP/SOAP framework to obtain only qualitative estimates of the force

fields accuracy. Recently Vandermause et al. [50] demonstrated a GP-based Bayesian active

learning scheme in the FLARE framework, utilizing rigorously principled and quantitatively

calibrated uncertainty, applying it to a variety of multi-component materials.

In the most common form, however, GP models require using the whole training data

set for prediction, meaning that the computational cost of prediction grows linearly with

the size of the training set, and so accuracy increases together with computational cost. In

complex multi-component structures, O(103) ∼ O(104) training data points are typically

required to construct an accurate GP model, which makes predictions slow. To address this

issue, Glielmo et al.[20–22] noted that, for a suitable choice of the n-body kernel function, it

is possible to decompose GP force/energy prediction into a summation of low-dimensional

functions. As a result, one can construct a parametric mapping of the n-body kernel function

combined with a fixed training set. This approach reaches a constant scaling, which increases

the speed of the GP model without accuracy loss.

In order to accelerate force prediction as well as the uncertainty quantification, enabling

on-the-fly training for GP force fields, it is necessary to also map uncertainty onto low

dimensional functions. However, mapping the prediction of uncertainty was not attempted in

[20–22], since the mathematical form of uncertainty results in decomposition with twice the

dimension of the corresponding mean functions, dramatically increasing the computational

cost of their evaluation with spline interpolations. Thus, to date there is no method that

combines high accuracy, modest training data requirement and fast prediction of both forces

and their principled Bayesian uncertainty.

To address these issues, here we develop the Mapped Gaussian Process (MGP) method

that implements an essentially lossless mapping of both force (mean) and uncertainty (vari-

ance) onto low-dimensional functions of atomic positions. Using dimensionality reduction

techniques, we increase the efficiency of the MGP to make it applicable for large-scale (million

atom) simulations, achieving speeds comparable to classical analytical force fields, several
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orders of magnitude faster than available NN or full GP approaches. Quantified principled

uncertainty allows us to implement a Bayesian active learning workflow, which automates

and accelerates the training process and increases the efficiency of phase space exploration.

As a result, the MGP method benefits from the capability of quantifying its uncertainty,

while at the same time retaining cost independent of training size. To illustrate the benefits

of this method, we incorporated the MGP force field in the parallel MD simulation code

LAMMPS [37], and applied it to simulations of large-scale phase transformation dynamics.

As a test application, we focus on stanene, a 2D material that has recently gathered

attention as a quantum spin Hall insulator [47]. Moreover, the only published force field

for stanene is, to the best of our knowledge, the bond-order potential by Cherukara et

al.[17], which is fitted to capture stanene’s low-temperature crystalline characteristics but,

as common to many empirical interatomic potentials, suffers in accuracy near the melting

temperature. In particular, we show that MGP is capable of rapidly learning to describe a

wide range of temperatures, below and around the melting temperature, and that we can

efficiently monitor the uncertainty on forces at each time step of the molecular dynamics, and

use this capability to iteratively increase the accuracy of the force field by hierarchical active

training. Using parallel simulations of large-scale structures, we characterize the unusual

phase transition, where the 2D monolayer transforms to bcc bulk Sn at the temperature of

200K, and melts to ultimately form a 3D liquid phase at the temperature of 500K.

The application demonstrates that the MGP force field approaches the computational

cost of an empirical analytical force field, retains nearly ab-initio accuracy, quantitative

Bayesian uncertainty, and is capable of describing large-scale systems with complex physical

processes such as phase transitions.

II. RESULTS

A. Bayesian Active Learning

In a MD simulation, it is likely that the system will evolve to atomic configurations

that have not been seen before, and are therefore far from those in the training set. In

this situation, the uncertainties of the predictions will grow to large values which may be

considered unsatisfactory. Therefore, it is desirable to obtain an accurate estimate of the
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FIG. 1: Bayesian active learning (BAL) workflow with MGP. Iterations of BAL can be run

for different system sizes to refine the force field.

forces for such configurations using a relatively expensive first principles calculation, and

add this new information to the training set of the GP regression model.

This procedure is referred to as Bayesian Active Learning (BAL), where training exam-

ples are added on the fly as more information is obtained about the problem. Bayesian

machine learning models such as GP are particularly well-suited to such uncertainty-based

active learning approaches, as they provide a well-defined probability distribution over model

outputs which can be used to extract rigorous estimates of model uncertainty for any test

point [12, 33].

Here we adopt BAL to achieve automatic training of models for atomic forces, expanding

on our earlier workflow [50]. This way the accuracy of the GP model increases with time,

particularly in the configuration regions that are less explored and likely to be inaccurate.

As mentioned above, GP regression cost scales linearly with the training set size, so the

prediction of forces and uncertainties becomes more expensive as the BAL algorithm keeps

adding data to the training set, hindering simulations of complex materials systems. The

MGP approach is based on an essentially exact mapping both mean and variance of the

predicted forces from a full GP model for a fixed training set to a low-dimensional spline

model. Mathematical formalism is detailed in the Methods section below. The novelty of

this approach is the ability to accelerate prediction of not only the mean, but also GP’s

internal uncertainty without loss of accuracy. MGP is incorporated into the BAL workflow

as depicted in Fig.1. In this scheme, the mapping is constructed every time the GP model is

updated. Atomic forces and their uncertainties for MD are produced by MGP, reducing the
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computational cost of the full original GP prediction by orders of magnitude. We stress that

not only is the MGP faster than the original GP, but also its speedup is more pronounced as

the training data set size NT increases. This is especially critical in complex systems with

multiple atomic and molecular species and phases, where more training configurations are

needed.

In addition, fast evaluation of forces and their variances enables training the force field

model on larger system sizes. Therefore, we can train the MGP force field using a hierarchical

scheme, i.e. for different system sizes, we can run several iterations of active learning. First,

a small system size is used to train an MGP force field model using the BAL workflow. Then,

we perform BAL on a larger system size, where DFT calculations are more expensive but are

needed less frequently, in order to capture potentially new unexplored configurations such

as defects that are automatically identified as high uncertainty by the model of the previous

step. We note that DFT calculations scale as the 3rd power of the number of electrons in

the system, so it is efficient to perform most of the training at smaller sizes, and to only

require re-training on fewer large-scale structures. This way the hierarchical training scheme

helps to overcome finite size effects and explore phenomena that cannot be captured with

small system sizes, such as phase transformations.

B. Case Study: 2D to 3D Transformation of Stanene

To illustrate our method, we apply the mapped on-the-fly workflow (Fig.1) to study

the phase transformation of stanene, a two-dimensional slightly buckled honeycomb lattice

of tin. This structure has received much attention recently due to its unique topological

electronic properties. Stanene can be synthesized by molecular beam epitaxy [56] and has

been shown to have topologically protected states in the band gap [18]. Moreover, tri-layer

stanene is a superconductor [29]. Here, we want to focus on the less studied aspects of

thermodynamic stability and phase transition mechanisms of free standing stanene.

Despite the intense interest, capability is still lacking for accurate modeling of thermody-

namic properties and phase stability of stanene, and most other 2D materials, for which ∼nm

scale supercells are required. Such simulations are beyond the ability of DFT, and to the

best of our knowledge, the only published classical force field for stanene is a bond-order po-

tential (BOP) [17]. Our focus is on developing an accurate potential to model the 2D melting
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process, which is a notoriously difficult problem to tackle with existing classical force fields.

In fact, describing the melting mechanism of a 2D material is a highly non-trivial problem,

since it can be characterized by specific behaviors such as defect formation and nucleation.

For example, the melting of graphene is thought to occur in a temperature range between

4000K and 6000K [19, 31, 54], and seems to be characterized by the formation of defects,

while above 6000K the structure melts directly into a totally disordered configuration. Since

bulk tin melts at a much lower temperature (∼ 500K) than graphite (∼ 4300K), we expect

that stanene will transform at a relatively low temperature. However, little is known about

its melting mechanism and transition temperature. The MGP method is uniquely suited

to describe the transformation processes, as it is scalable to large systems and capable of

accurately describing any configuration that is sufficiently close to the training data.

1. Model Training

To train the force field for stanene, we start by training the MGP using the BAL loop on

a small system size, and gradually increase the size of the simulation, iteratively improving

upon the force field developed for the smaller size.

The DFT settings and the GP model hyperparameter settings are shown in the section

2.1 of supplementary material [53].

The first iteration of training is started with a 4× 4× 1 supercell of stanene (32 atoms in

total) and a 20 ps long MD simulation at a temperature of 50K. Subsequently, we increase

the temperature of the system at 300K, 500K and 800K by velocity rescaling, and let the

system evolve for 20, 30 and 30 ps respectively. This way we efficiently augment the training

set with relevant configurations.

Fig.2b shows the mean square displacement (MSD) of atoms during the on-the-fly BAL

training of the MGP model. Red dots indicate MD steps where DFT is called and new data

is added to the training set, whereas black dots are steps where the MGP model is used

to perform the MD steps. As one would expect, the DFT is called multiple times at the

beginning of the MD simulation, since the MGP needs to build an initial training data set to

make force predictions. Additionally, the DFT is called whenever temperature is increased,

as the trajectory explores new configurations that have not been visited before. Clearly, the

variance increases rapidly when temperature is increased.
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(a) (b)

FIG. 2: (a) Pristine stanene, top view and front view. (b) Atomic mean square

displacement (MSD) of the on-the-fly training trajectory. The solid black line shows the

MSD of the 32 atoms, the color blocks indicate time intervals corresponding to different

temperatures, and the red dots represent events when DFT calculations are called as the

uncertainty predictions exceed the data acquisition decision threshold.

In this small simulation, the stanene monolayer decomposes at 800K, where Sn atoms

start moving around the simulation cell. This allows us to augment the training set with

such disordered configurations. However, the small size of the simulation cell does not yet

allow us to draw conclusions about the melting process of stanene: for this, we need a larger

simulation cell.

We continue with our hierarchical active learning scheme to refine the force field, but

retaining the training data from the previous smaller MD run. We now increase the number

of atoms in the simulation, which allows us to explore additional atomic configurations and

improve the quality of the model. Since the system becomes larger and more computationally

expensive, instead of updating the model at each learning step, we update it at the end of

each MD simulation. We note that this ”batching” approach is one of many possible training

schemes and is chosen for reasons of efficiency. The procedure is as below:

1. Run MD simulation on a system of a given size with MGP;

2. Predict mapped uncertainties for the frames from the MD trajectory;

3. Select frames of highest uncertainties in different structures (crystal, transition state

and disordered phase) for additional DFT calculations;
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(a)

(b)

(c)

FIG. 3: (a) Uncertainty of the force predictions in the whole MD trajectory decreases in

three iterations. (b) Mean absolute errors (MAE) of MGP forces against DFT in three

iterations, validated on atomic structures of different phases. (c) Upper: A snapshot of

2048 atoms from MD simulation at 500K, colored by MGP uncertainty. The outlined area

has highest predicted uncertainty, since it contains a defect and a compact region not

known to the first MGP model. Lower-left: Zoomed-in structure of the region of high

uncertainty, colored by atomic heights (z-coordinate) to show the bilayer structure of the

defect. Lower-right: The same snapshot colored by coordination number, which shows

strong correlation with the uncertainty measure.

4. Add atomic environments from those frames based on uncertainty to the training set

of GP;

5. Construct a new MGP model using the updated GP;

6. Repeat the process for same or larger simulation using the new model.
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The above steps form one iteration, and can be run several times to refine the force field.

In our force field training for stanene, we performed one iteration of 32 atoms as described

before, and two iterations all on the system size of 200 atoms at 500K, a relatively high

temperature to explore diverse structures in the configuration phase space. We denote the

MGP force field from the on-the-fly training of 32 atoms as MGP-1, the ones from the two

iterations of training on 200 atoms as MGP-2 and MGP-3. MD are simulated by MGP-1,

2, 3 and the predicted uncertainties of the frames from the three MD trajectories predicted

by MGP are shown in Fig.3a. First, we note that there is a drastic increase of uncertainty

within each trajectory at a certain time. This increase corresponds to the transition from

crystal lattice to a disordered phase, so the uncertainty acts as an automatic indicator of the

structural change. Next, we note that the uncertainties of MGP-1, 2, 3 decrease iteration

by iteration, indicating our model becomes more confident as it collects more data. The

mean absolute error (MAE) of force predictions of MGP against DFT is investigated, as

presented in Fig.3b, showing that MGP becomes also more accurate with each subsequent

training iterations.

It is worth noting that in the transition process of the simulation by MGP-1, in the tran-

sition process there appear a bi-layer stacked defect and a specific compact triangular lattice

around the defect. It is a visibly new ordered structure different from the hexagonal stanene,

and is thus missing in the initial training set, as shown in Fig.3c. The uncertainty is low

in honeycomb lattice, as expected, and becomes high around the bi-layer defect, exhibiting

also a strong correlation with the coordination number. Thus, the mapped uncertainty is

a accurate automatic indicator of the novelty of the new configurations. We note that af-

ter iterative model refinement by the hierarchical training scheme, the triangular lattice no

longer appears in the simulation. This example illustrates how the hierarchical active learn-

ing scheme helps avoid qualitatively incorrect results that arise due to the a priori unknown

relevant configurations. In contrast, a single-pass training of a force field based on manually

chosen configurations is very likely to result in non-physical predictions.

2. Phase Transition Simulations

To investigate the full phase transition mehanism of stanene, we consider low tempera-

ture (below 200K) and high temperature (above 500K) values, corresponding to the crystal
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and liquid phase for bulk tin. In studying the graphite-diamond transition, Khaliullin et

al.[28] identified that nucleation and growth of the disordered phase play key roles in the

phase transition process. We also find that in stanene the phase transition begins with the

appearance of defects and the consequent nucleation and growth of the disordered phase

that eventually transforms the structure.

From DFT ab-initio calculations, the ground state energy of honeycomb monolayer is

∼ 0.38 eV/atom higher than the bcc bulk, so the 2D monolayer structure is expected to be

metastable. The full transformation described below is therefore a sequence of 2D melting,

followed by a kinetically controlled transition to the bulk phase of lower free energy. We

set up the simulation of stanene monolayer of size 15.6nm × 18.1nm (3000 atoms), and

run MD in the NPT ensemble for 3 ns at the temperature of 200K. We discover that the

ordered honeycomb monolayer loses long-range order and undergoes densification, and finally

rearranges into the bcc bulk structure spontaneously, following three transformation steps.

At first, the atoms vibrate around the honeycomb lattice sites, and the monolayer remains in

its ordered 2D phase (Fig.4a - 0.3 ns). The main deviation from the ideal lattice is the out-

of-plane rippling due to membrane fluctuations. The fluctuating ripples are similar to what

was reported in simulations of graphene [19, 31, 54]. Next, double-layer stacking defects

appear due to buckling and densification. These defect regions grow and quickly expand to

the whole system, indicative of a first order phase transition in 2D. The atomic configuration

appears to be a “disordered” phase (Fig.4a - 0.8 ns). In this stage, the structure becomes

denser and increasingly three-dimensional driven by energetic gains from increasing Sn atom

coordination, with the unit cell dimensions shrinking. Finally, patches of bcc lattice nucleate

during the atomic rearrangement (Fig.4a - 1.6 ns), and those patches grow until the whole

system forms the crystal bcc slab and atoms start vibrating around the lattice sites (Fig.4a

- 2 ns).

The stable phase of bulk tin below 286.35K is expected to be the α-phase with the dia-

mond structure, which is different from what we observe here. The reason for the formation

of the bcc phase is kinetic rather than thermodynamic, caused by a lower free energy barrier

separating the 3D disordered structure from the bcc phase than the α-phase, making the

former phase more kinetically accessible. One well-known example is the graphite-diamond

transition, in which the meta-stable hexagonal diamond (HD) is obtained from hexagonal

graphite (HG) in most laboratory synthesis, instead of the more thermodynamically stable
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100 ps 200 ps0.3 ns 0.8 ns

2 ns1.6 ns 400 ps 600 ps

(a) (b)

FIG. 4: (a) The monolayer - bulk transition at 200K. Using common neighbor analysis, the

orange atoms are identified as bcc sites, and atoms of other colors are identified as other

sites. The frame at 0.3 ns: the atoms are vibrating around the honeycomb lattice sites

with out-of-plane ripples. The frame at 0.8 ns: the atoms arrange in the “disordered” way.

The frame at 1.6 ns: some patches of bcc lattice structure appear. The frame at 2 ns: the

atoms form and vibrate around the bcc slab sites. (b) Frames from 500K NPT simulation

with 10,000 atoms (39.4nm× 22.7nm) at 100, 200, 400 and 600 ps, showing the melting

process of the monolayer.

cubic diamond (CD) [13–15, 25, 35]. Computational study [28] reveals that the higher in-

layer distortions result in higher energy barrier for HG - CD than HG - HD transformation,

under most of the experimental conditions. We observe that the 2D stacking order-disorder

and the 3D crystallization transformation steps proceed via nucleation and growth, where

the defect nuclei grow and turn the whole system into the intermediate disordered dense

phase, while in the second step the bcc nuclei then appear from the disordered configuration

and grow, turning the system into the bcc crystal phase.

To investigate the melting behavior at higher temperature, we focus on a 600 ps long MD

run that starts from a pristine sample of stanene with size 39.4nm× 22.7nm (10,000 atoms)

at 500K. A few frames of this simulations are shown in Fig.4b. The melting process can also

be identified as three stages. The first stage is the development of large out-of-plane ripples

in the free-standing 2D lattice. In the second stage, at around 100 ps, double-layer defects

in the monolayer form and agglomerate, causing densification. After 200 ps, densification
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due to large patches of disordered structures lead to the formation of holes, and a large

void area grows. We observe breaking of the 2-dimensionality of the crystal and formation

of stacked configurations where atoms climb over other atoms of 2D stanene. In the third

stage, the disordered stacked configurations shrink into spherical liquid droplets connected

by a neck (400 ps). Subsequently the droplets merge to form a large sphere, minimizing the

surface energy (600 ps).

In the supplementary material [53], we include more discussions and animations of the

monolayer-bulk transition and the melting process.

C. Mapped Gaussian Process Performance

In this section, we discuss the computational cost of the MGP model in application to

large scale MD simulations, and its advantages and limitations. Timing results are shown in

Fig.5a, comparing different models including DFT, full GP (without mapping; implemented

in Python), MGP (with mapped force and uncertainty; Python), MGP-F (MGP with force

prediction only; Python), MGP (force only; implemented in LAMMPS) and BOP (LAMMPS

force field). For DFT, we tested prediction time for system sizes of 32 atoms and 200 atoms,

where computational cost growing as the cube of the system size. The other algorithms’

cost scales linearly with system size, since they rely on local environments with finite cutoff

radius, we measure the same per atom computational cost for both system sizes.

It is important to highlight the acceleration of the MGP relative to the original full GP.

We present the timings of GP and MGP built from different training set sizes (100 and 400

training data) in Fig.5, where the GP scales linearly. MGP-F (without uncertainty) and

MGP (with uncertainty, fixed rank) are independent of the training set size. The numerical

result shows that the speedup of the MGP relative to the GP increases linearly with more

data added to the training set, as reported in the Fig.S3 of the supplementary material

[53]. In the stanene system discussed in Sec.II, MGP is two orders of magnitude faster than

GP with O(102) training data points when both force and variance are predicted, and the

speedup becomes more significant as the GP collects more training data. We also note that

although the prediction of MGP gets rid of the linear scaling with training set size, the

construction of the mappings does scale linearly with training set size, since it requires GP

to make prediction on each grid point.
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(b)

(a)

FIG. 5: (a) The comparison of prediction time (s× processors/atom) between DFT, full

GP, MGP (Python, with force and uncertainty), MGP-F (Python, with force only), MGP

(LAMMPS), BOP (LAMMPS). (b) The scaling of MGP in LAMMPS with respect to

different system sizes, in different phases. Green: 2D honeycomb lattice. Blue: 3D dense

liquid.

The cost of the MGP force field is comparable to that of empirical interatomic BOP force

field, since both BOP and MGP models consider interatomic distances within the local

environment of a central atom and thus have similar computational cost at the same cutoff

radius. For accurate simulations, however, the MGP uses a larger cutoff radius (7.2Å) than

what is used by the BOP (6Å), and thus a simulation with our MGP potential for stanene
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System size (atoms) 100, 000

CPU number 256

Thermostat NVT

Temperature (K) 100

BOP cutoff (Å) 6.0

MGP cutoff (Å) 7.2

BOP speed (atom · timestep/processor/s) ∼ 2.3× 106

MGP speed (atom · timestep/processor/s) ∼ 5.0× 105

TABLE I

is still slower by a factor of 4 ∼ 7 approximately, see our test of 1 million atoms in Table I.

The computational cost of the MGP force field in LAMMPS as a function of the system size

is shown in Fig.5b. The prefactor of the linear dependence depends on the number of pairs

and triplets within a local environment. The scaling factor for the 2D honeycomb lattice

structure is thus lower than for the dense 3D liquid. This is because each atom in the 3D

liquid has more neighbors than the honeycomb lattice within the same cutoff radius.

The hierarchical active learning scheme adopted here is an efficient path to systematically

improve the force field. However, it must be noted that the training is still limited by the

system sizes that can be tackled with a DFT calculation. In fact, DFT calculations with

thousands of atoms are unaffordable. To circumvent this problem, we note that regions of

high uncertainties may be cropped out of the large MGP simulation cell, in order to perform

DFT calculation on a smaller subset of atoms with a relevant structure. In this direction,

we note that uncertainty is a local predicted property in MGP, indicating how each atom

contributes to the total uncertainty. In the Fig.3c we show that the largest uncertainty in an

MD frame of 2048 atoms comes from regions close to defects, since these configurations are

missing in the training set for that particular model. Therefore, one may use the uncertainty

to automatically select a section of the crystal close to the high-uncertainty region, and use

a DFT simulation to add a training data point to the MGP. Automatically constructing

such structures remains an open challenge in complex materials. However, access to the

local uncertainty for each force prediction already allows for assessment of reliability of

simulations, and is central to the new paradigm of Bayesian force fields.
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Finally, we mention that the descriptive power of MGP is limited due to the lack of full

many-body interactions in GP kernel, since the n-body kernel only uses low-dimensional

functions of crystal coordinates. In this work, we have implemented the MGP for 2- and

3-body interactions, which, for the mapping problem, translate to interpolation problems in

3 dimensions. The approach may be extended to higher interaction orders at the expense

of computational efficiency, but it becomes expensive in terms of both computation and

storage requirements for splines on uniform grids to reach a satisfactory accuracy. Many-

body descriptors can be taken into account to increase the descriptive power. To map it

in the same way as the methodology we introduced, it is necessary to have a descriptor

such that it can be decomposed into low-dimensional functions. For example, the SOAP

approach of Refs. [26, 27] cannot be mapped using the methodology followed in this work,

since it relies on a high-dimensional descriptor and, as a result, the MGP approach is not

readily applicable. In particular, the interpolation procedure may be too computationally

expensive to be a viable solution.

III. CONCLUSION

This work resolves a key computational cost scaling limitation of Gaussian Process re-

gression of interatomic force fields in the case of many-body kernels and provides a new

approach for Bayesian active learning, enabling robust automatic training of high accuracy

interatomic force fields. We present an extended method for mapping the Gaussian Process

regression model, where we accurately parameterize both the force and its variance obtained

from the original Bayesian model as functions of atomic configurations. The mapped mean

forces and their variance are then utilized in an active learning workflow to obtain a machine

learned force field that includes its own uncertainty, the first realization of a fast Bayesian

force field. The resulting model has near-quantum accuracy and computational cost com-

parable to empirical analytical interatomic potentials. Large scale simulations are used as

a demonstration to investigate the microscopic details of inter-dimensional transformation

behavior of 2D stanene into 3D bulk tin. We discover that the transformation proceeds by

nucleation of bilayer defects, densification due to continued disordered multilayer stacking,

and finally conversion into either crystalline or molten bulk tin, depending on temperature.

This application shows that we can actively monitor the uncertainties of force predictions
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during molecular dynamics simulations and iteratively improve the model as the material

undergoes reorganization, exploring diverse structures in the configuration phase space. The

ability to reach simulation sizes of over 1 million atoms is promising for application of ma-

chine learning force fields to study phase diagrams and transformation dynamics of complex

systems, while automated active learning of force fields opens a way to accelerate wide-range

material design and discovery.

IV. METHODS

The goal of the MGP method is to map the predictive mean and variance of n-body

GP models onto low-dimensional splines, making the cost of evaluating atomic forces and

uncertainty independent of the training set size, as also studied in previous works [20–22].

As mentioned in Ref. [22], decomposition of the GP kernel into low-dimensional functions

exists for the GP predictive mean and variance. However, the resulting variance functions

have twice the dimension of the corresponding mean functions, dramatically increasing the

computational cost of their evaluation. In order to make such a mapping feasible in practice,

we developed a dimension reduction technique that reduces the variance map to the same

dimensions as mean, making it possible to use splines to evaluate both the mean and variance

of the GP.

A. Background

1. Gaussian Process Force Field

In this section, we summarize the GP model introduced in Ref. [50]. From here on, we

use bold letters to denote matrices/vectors and regular letters for scalars/numbers.

An atomic configuration is defined by atomic coordinates Rα, a vector of dimension

equal to the number of atoms Natoms, and where α labels the three Cartesian directions

α = x, y, z. While in general the crystal may contain atoms of different species, we here

consider only a single species case for the sake of simplicity. The results can be extended to

the multi-component case, which is discussed in the section 1.1 of supplementary material

[53].
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The objective of the GP regression model is to predict the forces Fα for an given atomic

configuration Rα. To this aim, we associate the forces of an atom i, Fi,α, to the local

environment around this atom ρi. Fi,α can then be computed by comparing its environment

with a training data set of atomic environments with known forces, which is quantified by

distance d between the target environment and the training set.

The atomic environment ρi of the atom i is defined as a set of atoms, including the atom

i itself and all the other atoms that are within a sphere of a cutoff radius rcut centered

at the atom i. We proceed by partitioning this atomic environment ρi into a set of n-

atom subsets, denoted by ρ
(n)
i . For each type of subset, a distance d(n) can be defined to

quantify the difference between environments. We show examples of n = 2 and n = 3 on

the construction of ρ
(n)
i and d(n). For n = 2, ρ

(2)
i is a set of pairs p, between central atom i

and another atom i′ in ρi,

ρ
(2)
i = {p = (i, i′); i′ ∈ ρi, i′ 6= i}; (1)

To each atomic pair p we associate an interatomic distance rp between the two atoms. The

distance metric between two pairs p and q is then defined as (rp − rq)2. And the distance

metric between two atomic environments ρ
(2)
i and ρ

(2)
j is defined as

(d
(2)
ij )2 =

∑

p∈ρ(2)i ,q∈ρ(2)j

(rp − rq)2. (2)

This distance d(2) will be used to determine the two-body contribution to the atomic forces,

for the purposes of constructing the kernel function.

This construction can be extended to higher order interatomic interactions. In this work,

we also include three-body interactions, corresponding to n = 3. Similar to the two-body

case, the set ρ
(3)
i of triplets p between the central atom i and two other atoms i′ and i′′ in ρi

is defined as,

ρ
(3)
i = {p = (i, i′, i′′); i′, i′′ ∈ ρi, i′ 6= i, i′′ 6= i, i′ 6= i′′} . (3)

This time, each triplet p is characterized by a vector rp = {rp,1, rp,2, rp,3}, which represents

the three interatomic distances of this atomic triplet p. Including permutation, the distance

metric between two triplets p and q can be defined as
∑

u,v(rp,u − rq,v)2. And the 3-body

distance metric between two atomic environments ρ
(3)
i and ρ

(3)
j is

(d
(3)
ij )2 =

∑

p∈ρ(3)i ,q∈ρ(3)j

∑

u,v

(rp,u − rq,v)2 . (4)
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Having now defined a distance between atomic environments, we can build a GP re-

gression model for atomic forces. We define the equivariant force-force kernel function to

compare two atomic environments as

kαβ(ρi, ρj) =
∑

n

k
(n)
αβ (ρ

(n)
i , ρ

(n)
j ) =

∑

n

∂2k(n)(ρ
(n)
i , ρ

(n)
j )

∂Riα∂Riβ

, (5)

where α and β label Cartesian coordinates, and ∂
∂Riα

indicates the partial derivative of

the kernel with respect to the position of atom i. The n-body energy kernel function

k(n)(ρ
(n)
i , ρ

(n)
j ) is first expressed in terms of the partitions of n atoms of the two atomic

environments ρi and ρj, and is defined as:

k(n)(ρ
(n)
i , ρ

(n)
j ) =

∑

p∈ρ(n)i

q∈ρ(n)j

k̃(n)(p, q) =
∑

p∈ρ(n)i

q∈ρ(n)j

σ
(n)
sig exp

[
−

(d
(n)
ij )2

2(l(n))2

]
ϕ
(n)
cut , (6)

where k̃(n)(p, q) is a Gaussian kernel function, built using the definition of distance between

n-atoms subsets as described before. The σ
(n)
sig and l(n) are hyperparameters independent of p

and q, that set the signal variance related to the maximum uncertainty and the length scale,

respectively. The smooth cutoff function ϕ
(n)
cut dampens the kernel to zero as interatomic

distances approach rcut. In this work, we chose a quadratic form for the cutoff function,

ϕ
(2)
cut(p, q) = (rq − rcut)2(rp − rcut)2, (7)

ϕ
(3)
cut(p, q) =

∏

s

(rsp − rcut)2
∏

t

(rtq − rcut)2. (8)

The GP regression model uses training data as a reference set of NT atomic environments.

In particular, predictions of force values and variances require a 3NT×3NT covariance matrix

Σ = Σiα,jβ = kαβ(ρi, ρj) + σ2
nδijδαβ (9)

where σn is a noise parameter (indices iα and jβ are grouped together). We define an

auxiliary 3NT dimensional vector η with components

ηiα := (Σ−1)iα,jβyjβ , (10)

where y contains the training labels, i.e., the forces Fjβ acting on the atom at the center of

environment j in the Cartesian direction β.
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In order to make a prediction of forces and their errors on a target structure ρi, we

compute the Gaussian kernel vector k̄iα for atom i and a direction α (α = x, y, z), where the

components of the vector are kernel distances (k̄iα)jβ := kαβ(ρi, ρj) between the prediction

iα and the training set points jβ, j = 1, ..., NT , β = x, y, z. Finally, the predictions of the

mean value of the Cartesian component α of the force Fiα acting on the atom at the center

of the atomic environment ρi and its variance Viα are given by [39]:

Fiα = k̄>iαη , (11)

Viα = kαα(ρi, ρi)− k̄>iαΣ−1k̄iα . (12)

We notice that this formulation has two major computational bottlenecks, that we in-

tend to address in this work. First, the vector k̄iα needs to be constructed for every force

prediction; for each atom, the evaluation of k̄iα requires the evaluation of the kernel between

the atomic environment and the training data set, i.e. NT calls to the Gaussian kernel. We

discuss an approach to speed up the evaluation of k̄iα. Second, every variance calculation

requires a matrix-vector multiplication that is computationally expensive, and thus will be

further discussed in Sec.IV C.

B. Mapped Force Field

We start by observing that the GP model constructs a latent “weight field” with a fixed

set of training data. In GP regression, a kernel function is used to build weights that depend

on the distance from training data: training data that are similar (close) to the test data

contribute with a larger weight, and vice versa, dissimilar (distant) training data contributes

less. To make a prediction on a data point (force on an atom in its local environment), the

GP regression model requires the evaluation of the kernel between such point and all the

NT training set data points. The result, i.e. the GP mean prediction, is a weighted average

of the training labels, using the distances as measured by the kernel function as weights. In

Eq. 11, we notice that the predictive mean requires the evaluation of a 3NT -dimensional

vector k̄iα, which quantitatively weighs the contribution to the test atomic environment ρi

coming from the training atomic environments ρj.

In the following discussion, we consider a specific subset size n, capturing n-body atomic

structure information, i.e. (k̄
(n)
iα )jβ = k

(n)
αβ (ρ

(n)
i , ρ

(n)
j ) without loss of generality. The same
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treatment below can be implemented on each n and summed over the mappings of all ”n”s

to get the final prediction if we are using a kernel function of the form of Eq.5.

Starting with the idea introduced in Ref. [21], we can construct the weight field by

considering the special form of the kernel at Eq. 6. In fact, such kernel definition allows us

to decompose the force prediction into contributions from n-atom subsets, and to decompose

the variance into contributions from pairs of n-atom subsets.

To see this, we first note that the kernel vector of atomic environments ρi can be decom-

posed into the kernel of all the n-atom subsets in ρi, and the kernel of an n-atom subset p

can be further decomposed into the contributions from all the n− 1 neighbor atoms (except

for the center atom i). We denote rsp := Rs−Ri as a bond in p, where s labels the remaining

n − 1 neighbor atoms, and introduce the unit vector r̂sp := rsp/r
s
p denoting the direction of

the bond. Then the force kernel has decomposition

k̄
(n)
iα =

∑

p∈ρi
k̃
(n)
iα (p) =

∑

p

∑

s

µ(n)
s (p)r̂sp,α , (13)

where

[
k̃
(n)
iα (p)

]
jβ

:=
∂2k̃(n)(p, q)

∂Ri
α∂R

j
β

(14)

and

[
µ(n)
s (p)

]
jβ

:=
∑

q∈ρj

∑

t

∂2k̃(n)(p, q)

∂rsp∂r
t
q

r̂tq,β (15)

are vectors in R3NT space. In the first equality of Eq.13 we used the decomposition of Eq.

6, and in the second equality we first convert the derivative from atomic coordinates to the

relative distances of the n-atom subset, then take advantage of the fact that the kernel only

depends on relative distances between atoms, i.e. rsp = ‖rsp‖.
Therefore, forces may be written as

F
(n)
iα =

∑

p∈ρi

∑

s

f (n)
s (p)r̂sp,α . (16)

where

f (n)
s (p) := µ(n)

s

>
(p)η (17)

is the scalar “weight field” function and η is define in Eq.10.
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As noted in Ref. [21], we can achieve a better scaling by constructing the weight field

using a computationally efficient parametric method, i.e. an approximate way for construct-

ing such functions f . In fact, a parametric function can be used to quickly yield the weight

field value without the need of evaluating kernel distances from all the GP training points.

As a result, the cost of evaluating the weight field using this parametric model is indepen-

dent on the size of the training set, removing a computational bottleneck of the full GP

implementation.

In order to achieve an effective parametrization of these weight functions, we use a cubic

spline interpolation on a uniform grid of points, which benefits from having an analytic

form and a continuous second derivative. By increasing the number of points in the uniform

grid, the MGP prediction of mean and variance can be made arbitrarily close to the original

functions.

The construction of the mapped force field includes the following steps:

Step 1: Define a uniform grid of points {xk ∈ [a, b](
n
2)} in the space of distances given by

the vectors rp. The lower bound a ≥ 0 is chosen to be smaller than the minimal interatomic

distance, and the upper bound b can be set to the cutoff radius of atomic neighborhoods,

above which the prediction vanishes (using the zero prior of GP), and
(
n
2

)
= n(n − 1)/2 is

the number of interatomic distances in the n-atom subset.

Step 2: A GP model with a fixed training set yields the values {f (n)
s (xk)} for each grid

point xk.

Step 3: Interpolate with a cubic spline function f̂
(n)
s through the points {(x(n)k , f

(n)
s (xk))}.

In prediction, contributions from all n-bodies are added up, so the force of local environ-

ment ρ is predicted as:

F̂α(ρ) =
∑

n

∑

p∈ρ(n)

∑

s

f̂ (n)
s (p)r̂sp,α .
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C. Mapped Variance Field

Using a derivation similar to that of the force decomposition (Eq.16), we derive the

decomposition of the variance

Viα =
∑

n,n′

∑

p∈ρ(n)
q∈ρ′(n′)

∑

s,t

v
(n,n′)
s,t (p, q)r̂sp,αr̂

t
q,α , (18)

where

v
(n,n′)
s,t (p, q) := δnn′ k̃(n)αα (p, q)− µ(n)

s (p)>(Σ)−1µ(n′)
t (q) . (19)

with the covariance matrix Σ defined in Eq.9.

We note that the domain of the variance function v has dimensionality twice that of f ,

so that when the interaction order n > 3, the number of grid points becomes prohibitively

large to efficiently map v. Even for a 3-body kernel, when v is a 6-D function, we find that

the evaluation of the variance, both in terms of computational time and memory footprint,

limits its usage to simple benchmarks.

An efficient evaluation of the variance is critical for adopting Bayesian active learning.

We now discuss a key result of this work and introduce an accurate yet efficient approximate

mapping field for the variance. In particular, we focus on simplifying the vector µ
(n)
s (p),

which, from our tests, is the most computationally expensive term for predicting variance.

In particular, since µ
(n)
s (p) evaluates the kernel function between the test point p and all

the training points, it scales linearly with the training set size. By implementing a mapping

of the variance weight field, the cost of variance prediction depends only on the rank of our

dimension reduction approach, and is independent of the training data set size.

To this aim, we first define the vector ψ
(n)
s (p) := L−1µ(n)

s (p) ∈ R3NT , where L is the

Cholesky decomposition of Σ, i.e. Σ = LL>, so that Eq. 19 can be written as

v
(n,n′)
s,t (p, q) = δnn′ k̃(n)α,α(p, q)−ψ(n)

s (p)>ψ(n′)
t (q) . (20)

The domain of vector function ψ
(n)
s (p) is half the dimensionality of that of v

(n,n′)
s,t (p, q).

As a first idea, since each component of ψ(n) has domain of lower dimensionality, one

may think of building 3NT spline functions to interpolate the 3NT components separately,

which means the number of spline functions needed grows with the training set size.
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To achieve a more efficient mapping of ψ
(n)
s , we take advantage of the principal compo-

nent analysis (PCA), a common dimensionality reduction method.

The construction of the mapped variance field includes the following steps:

Step 1: We start by evaluating the function values on the uniform grid {xk ∈ [a, b](
n
2), k =

1, . . . , G} as introduced in the section above. At each grid point xk, we evaluate the vectors

ψ
(n)
s (xk) and use them to build the matrix M

(n)
s := (ψ

(n)
s (x1),ψ

(n)
s (x2), ...,ψ

(n)
s (xG))> ∈

RG×3NT .

Step 2: In PCA we perform singular value decomposition (SVD) on M
(n)
s , such that

M
(n)
s = U

(n)
s Λ

(n)
s (V

(n)
s )>, where U

(n)
s ∈ RG×3NT and V

(n)
s ∈ R3NT×3NT have orthogonal

columns, and Λ
(n)
s ∈ R3NT×3NT is diagonal.

Step 3: We reduce the dimensionality by picking the m largest eigenvalues of Λ
(n)
s and

their corresponding eigenvectors from U
(n)
s and V

(n)
s (here we assume that eigenvalues are

ordered). Then, we readily obtain a low-rank approximation as

M(n)
s ≈ M̄(n)

s = Ū(n)
s Λ̄(n)

s (V̄(n)
s )> , (21)

with Λ̄
(n)
s ∈ Rm×m, Ū

(n)
s ∈ RG×m, and V̄

(n)
s ∈ R3NT×m.

Step 4: Define φ
(n)
s := (V̄

(n)
s )>ψ(n)

s , which is a vector in Rm, and interpolate this vector

between its values at the grid points {xk} (in detail, φ
(n)
s,i (xk) = Ū

(n)
s,ijΛ̄

(n)
s,j , for i, j = 1, ...,m).

As done previously for the force mapping, spline interpolation can now be used for approx-

imating the φ
(n)
s vector as well.

Therefore, the MGP prediction of the variance is given by

v̂
(n,n′)
s,t (p, q) := δnn′ k̃(n)α,α(p, q)− φ(n)

s (p)>(V̄(n)
s )>V̄

(n′)
t φ

(n′)
t (q) . (22)

In this form, the variance would still require a multiplication between two matrices of size
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m× 3NT . However, we note that the computational cost of total variance can be reduced

V̂α(ρ) = kα,α(ρ, ρ)−
(∑

n

∑

p∈ρ(n)

∑

s

V̄(n)
s φ

(n)
s (p)r̂sp,α

)2

. (23)

Nominally, the calculation of the second term in the variance still scales with the data set

size NT , since the size of V̄(n) depends on NT . However, we find the cost of the vector-

matrix multiplication to be negligible compared to evaluations of the self-kernel function

(the 1st term in Eq.22). Therefore, we have formulated a way to significantly speed up the

calculation of the variance, which only weakly depends on the training set size. In addition,

by tuning the PCA rank m, we can optimize the balance between accuracy and efficiency,

increasing the flexibility of this model.
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1. METHODOLOGY

1.1. Multi-Component Systems

In the main text, we derived the mathematical formulation in the context of single com-

ponent. We note that our GP and MGP are natural to extend to multiple components, by

differentiating combinations of species. As described in the main text, the n-body kernel

compares two n-atom subsets p ∈ ρ
(n)
i , q ∈ ρ

(n)
j . When there are multiple species in the

system, we define the kernel function k̃(n)(p, q) to be non-zero only when p and q have the

same species in their corresponding atoms. To formulate more rigorously, denote sp is the

sequence of species of atom is in p, we define the multi-component kernel as

k̃(n)(p, q) = δsp,sq exp

(
− d(n)(p, q)2

2(λ(n))2

)
ϕ
(n)
cut(p, q) ,

Therefore, the mapped force and variance can be extended to multi-component system in

the way that for each possible sp, we construct f (n)(p) and φ(n)(p) the same as the single-

component system that is described in the main text. In prediction, the force and variance

contribution from n-atom subsets in the testing atomic environment are predicted by the

spline functions corresponding to their species.

2. CASE STUDY: STANENE

2.1. Training Settings

We start constructing a 4 × 4 × 1 supercell of stanene (32 atoms in total), a size that

can be tackled with first-principles techniques. The lattice constant a = 4.58Å and buckling

height d = 0.83Å are determined from the DFT structural optimization. The vacuum size

of c = 20Å is used to make sure that the stanene monolayer is well isolated so that the

periodic boundary condition in the z-direction has little influence on the result. We perform

MD with the MGP force field using a time step of 1 fs, and the Velocity Verlet algorithm

to integrate Newtons equations of motion, in the NVE ensemble.

We use Quantum-ESPRESSO [6], a plane-wave implementation of DFT, using an ultra-

soft pseudo-potential with PBEsol[4] exchange-correlation functional for Sn. The k-point

mesh is 4× 4× 1, and the energy cutoff is 50 Ry, with charge density cutoff of 400 Ry.
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Python is used in all our code except for DFT. FLARE [10] is our base framework

of Bayesian active learning with GP, and the newly developed MGP is inserted into the

workflow. The radial cutoffs for local environments are chosen as 7.2Å, the right end of the

fourth peak in the radial distribution function (RDF). The cutoffs are tuned from maximizing

the objective function (maximize likelihood and minimize redundancy).

The initialization of signal strength (σ), length scale l and noise σn are shown in the table

below, and are optimized to maximize the marginal likelihood function during the training,

using the BFGS algorithm [2, 5, 7, 9]. More details on the hyperparameter optimization are

explained in our earlier work [10].

Kernel Cutoff (Å)
Initial Hyps Optimized Hyps

σsig (eV/Å) l (Å) σn (eV/Å) σsig (eV/Å) l (Å) σn (eV/Å)

2-body 7.2 0.2 1.0 0.05 3.27e-2 0.518 0.140

3-body 7.2 1.0e-4 1.0 0.05 3.75e-5 0.691 0.140

TABLE I: GP hyperparameters

For MGP, the hyperparameters are shown in Table.SII. To interpolate a function, we need

to choose a closed interval and determine the grid points in this interval. The number of

grid points for the mapped spline models is chosen based on the trade-off between accuracy

and efficiency of the interpolation. For 2-body, the interval is chosen as [a, b], where a should

be smaller than the minimal interatomic distance in MD simulation, and b is set to be the

same as the 2-body cutoff of GP. For 3-body, we choose a “cube” space, where we find a

closed interval in each dimension. Since 3-body describes triplets, i.e. the triangle formed

by three atoms, that can be determined by the two bonds connected to the center atom, r1,

r2, and the angle a12 = 〈r̂1, r̂2〉 between r1 and r2, we use (r1, r2, a12) as grid points to build

up interpolation function. So the interval for r1 and r2 should be chosen the same as 2-body,

only the upper bound is changed to the 3-body cutoff of GP. For the angle, the lower bound

and upper bound are fixed to be 0 and π, which are not varied in different systems and not

chosen by users.

The 1-D and 3-D cubic spline functions come from Github repository interpolation.py [1].
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grid number lower bound upper bound

2-body 144 2.35 Å 7.2 Å

3-body 128× 128× 128 2.35 Å, 2.35 Å, 0 rad 7.2 Å, 7.2 Å, π rad

TABLE II: MGP hyperparameters

2.2. Accuracy Validation

After obtaining the refined MGP model from the above iterative training process, it is

necessary to validate the accuracy of the force field and the uncertainty prediction.
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FIG. 1: MGP prediction versus GP

First, because the MGP is an approximation to the original GP, we must verify that

MGP force and uncertainty prediction match those of the GP. In Fig.S1, we show that the

mean absolute error (MAE) for force and uncertainty are both in the order 10−6 eV/Å, and

can therefore conclude that the MGP has a negligible loss of accuracy compared to the GP.

Next, we compare the performance of the MGP against the BOP force field of Ref. [3].

In particular, we validate results using frames of different atomic structures taken from an

independent MD trajectory, and study the mean absolute error of forces with respect to

the DFT prediction. Since the MGP force field is trained with PBEsol exchange-correlation

functional, ultra-soft pseudopotential, of the platform Quantum Espresso (labelled as DFT

“I”), while the BOP potential is trained with PBE functional, PAW pseudopotential of
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VASP (labelled as DFT “II”), we make a comparison of the mean absolute error of force

prediction with both DFT “I” and “II” as the ground truth. In Table.SIII we show that the

MGP achieves a better accuracy than the BOP in all of these frames, by at least 54%. As

temperature is increased, and as the deviation from the crystal phase increases, both force

fields have larger MAE. This is because the system at high temperature explores many more

different configurations, likely different from the training set, nevertheless, the results show

that the MGP has uniformly better accuracy.

Crystal Transition Molten

DFT I II I II I II

BOP 0.254 0.241 0.322 0.376 0.258 0.305

MGP 0.082 0.120 0.148 0.206 0.110 0.139

TABLE III: Mean absolute error (MAE) of the force prediction compared to DFT, in units

of eV/Å.

2.3. Phase Transition Process

2.3.1. Radial Distribution Function

The radial distribution function (RDF) of the slab configuration from 200K MD simula-

tion is shown in Fig.2 (top), where the black dash line is the RDF of the perfect bcc lattice

of tin [8].

The radial distribution function of 600 ps frame in the melting process simulation is

shown in Fig.2 (bottom), which shows one peak at ∼ 3 Å and a tail that converges to a

uniform density. This indicates that the final cluster becomes a 3D disordered dense liquid

phase.

2.3.2. Video of the Transition Process

The videos can be downloaded from DOI: 10.24435/materialscloud:cs-tf [11].
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FIG. 2: Radial distribution function (RDF) of 3D slab and liquid

3. PERFORMANCE

3.1. MGP’s Acceleration of Original GP

Since the original GP is a non-parametric method, it depends on the training data set

completely, thus its prediction cost scales linearly with respect to the training data set size.

After the force field is trained and mapped, MGP is obtained as a parametric model, whose

basis is a group of cubic spline functions, and can be directly employed independent of the

original GP regression model as well as training data set, thus reaches constant scaling of

computational cost at prediction.

The major computational bottleneck in the prediction of the current scheme lies in two

parts. One is the construction of the local atomic environment, which requires calculating

interatomic distances and identifying all n-atom subsets. The other is the calculation of

the first term in the variance formulation, the self-kernel function kαα(ρ, ρ) which scales

quadratically with the number of n-atom subsets in ρ, while the second term, the vectorized
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FIG. 3: Speed up of MGP compared to GP, which grows linearly w.r.t. the training set

size. Prediction of both force and uncertainty (blue line) gets 2 orders of magnitude of

acceleration when GP has O(102) training data, while force prediction without uncertainty

is 3 orders of magnitude faster.

spline function φ, scales linearly. We note the situation is different in the original GP, where

the construction of atomic environment and the evaluation of the self-kernel are negligible

compared to the evaluation of the kernel vector. In this way the present mapping scheme

for both forces and uncertainties eliminated the main computational bottleneck of the full

GP model.
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