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Fractional Chern insulators in magic-angle 
twisted bilayer graphene

Yonglong Xie1,2,5ಞᅒ, Andrew T. Pierce1,5, Jeong Min Park2,5, Daniel E. Parker1, Eslam Khalaf1, 
Patrick Ledwith1, Yuan Cao2, Seung Hwan Lee1, Shaowen Chen1, Patrick R. Forrester1, 
Kenji Watanabe3, Takashi Taniguchi4, Ashvin Vishwanath1, Pablo Jarillo-Herrero2ಞᅒ & 
Amir Yacoby1ಞᅒ

Fractional Chern insulators (FCIs) are lattice analogues of fractional quantum Hall states 
that may provide a new avenue towards manipulating non-Abelian excitations. Early 
theoretical studies1–7 have predicted their existence in systems with !at Chern bands and 
highlighted the critical role of a particular quantum geometry. However, FCI states have 
been observed only in Bernal-stacked bilayer graphene (BLG) aligned with hexagonal 
boron nitride (hBN)8, in which a very large magnetic "eld is responsible for the existence 
of the Chern bands, precluding the realization of FCIs at zero "eld. By contrast, magic- 
angle twisted BLG9–12 supports !at Chern bands at zero magnetic "eld13–17, and therefore 
o#ers a promising route towards stabilizing zero-"eld FCIs. Here we report the 
observation of eight FCI states at low magnetic "eld in magic-angle twisted BLG enabled 
by high-resolution local compressibility measurements. The "rst of these states emerge 
at 5 T, and their appearance is accompanied by the simultaneous disappearance of 
nearby topologically trivial charge density wave states. We demonstrate that, unlike  
the case of the BLG/hBN platform, the principal role of the weak magnetic "eld is merely 
to redistribute the Berry curvature of the native Chern bands and thereby realize a 
quantum geometry favourable for the emergence of FCIs. Our "ndings strongly suggest 
that FCIs may be realized at zero magnetic "eld and pave the way for the exploration and 
manipulation of anyonic excitations in !at moiré Chern bands.

The search for novel material systems exhibiting topological proper-
ties holds promise for the next generation of electronics. For example, 
band-structure engineering guided by theoretical predictions has 
enabled the realization of integer quantized Hall states at zero magnetic 
field18–20, enabling new directions in spintronics and topological quan-
tum computing. Likewise, extensive efforts have been directed towards 
engineering FCIs—lattice analogues of fractional quantum Hall (FQH) 
states—in part because of their potential to manifest high-temperature 
topological order and to host non-Abelian excitations at zero magnetic 
field. However, despite a large body of theoretical work1–7, FCI states 
have proved exceptionally difficult to stabilize experimentally, as they 
require not only non-dispersive Chern bands, but also a particular 
quantum band geometry including a flat Berry curvature distribution. 
To date, FCI states have been observed only in Hofstadter bands of a 
BLG heterostructure aligned with hBN at very large (~30 T) magnetic 
fields8. A key disadvantage of this platform is that its band topology 
fundamentally originates from the presence of the magnetic field, thus 
precluding the realization of FCIs in the zero-field limit.

By contrast, moiré superlattices with native topological bands13–17 
provide a promising avenue to search for FCIs at zero magnetic field. 
In particular, the recent discovery of correlated Chern insulators (ChIs) 
in magic-angle twisted BLG (MATBG) down to zero field confirms the 

presence of intrinsic flat Chern bands20–29 and thus raises the possibil-
ity of realizing FCIs in this system. Indeed, recent analytical considera-
tions30 and numerical calculations31–33 have predicted FCI ground states 
in MATBG aligned with hBN. Importantly, these works also show the close 
competition between FCIs and other correlated phases such as charge 
density waves (CDWs), and highlight the importance of Berry curvature 
distribution homogeneity and the quantum metric in stabilizing FCIs in 
MATBG. Here we report the observation of eight FCI states at fractional 
fillings of the Chern bands in MATBG. The first of these states appears at 
5 T in the range 3 < ν < 4, where the system is well described by an isolated 
Chern band. We show that these FCI states result from the intrinsic band 
topology of MATBG and are stabilized by weak magnetic fields that create 
favourable quantum geometric conditions for their emergence. The FCIs 
observed beyond this range, where the parent Chern states possibly reac-
quire their multicomponent character, are more complex, probably owing 
to the interplay between multiple degrees of freedom, and demonstrate 
the potential of MATBG for exploring novel emergent topological order.

Correlated phases at fractional fillings
To search for such topological states, we perform local electronic com-
pressibility measurements on an MATBG device aligned with the hBN 
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with a twist angle of ~1.06° (see  Methods) using a scanning 
single-electron transistor (SET). Our measurements of the inverse 
compressibility dµ/dn as a function of perpendicular magnetic field B 

and moiré band filling factor ν reveal a large number of linearly dispers-
ing incompressible states (Fig. 1a, b) that can be classified by a pair of 
quantum numbers (t, s) satisfying the Diophantine equation 
ν tφ φ s= / +0 , where ν is the filling factor at which the incompressible 
peak occurs, φ is the magnetic flux per moiré unit cell, and φ0 is the 
magnetic flux quantum. We observe in total five distinct classes of 
incompressible states. First, incompressible features with t = 0 and 
integer s ≠ 0 correspond to trivial correlated insulators (green line in 
Fig. 1b). Second, features with integer t ≠ 0 and integer s correspond to 
integer quantum Hall states or ChIs (black lines in Fig. 1b), some of 
which have been identified as translation symmetry (TS)-broken states 
resulting from unit-cell doubling. The observed ChIs at zero field are 
the parent states essential for realizing more complex topological 
states in the zero-field limit. Finally, we observe three classes of gapped 
states with fractional t and/or s, which we identify as CDWs (t = 0 and 
fractional s), symmetry-broken ChIs (SBCIs—integer t ≠ 0 and fractional 
s) and FCIs (fractional t and fractional s).

To demonstrate that our system provides the topological bands 
and strong correlations essential for the realization of FCIs, we focus 
on the range of filling factors near ν = 3, as in this density range the 
band structure can be best approximated by isolated Chern bands. 
Figure 2a shows a measurement of inverse compressibility as a function 
of magnetic field for 2.5 < ν < 4 for B < 3 T. In addition to the insulators 
emanating from ν = 3, we discover three new incompressible states 
that are stable down to zero magnetic field: the two non-dispersive 
states (0, 7/2) and (0, 11/3), which we classify as trivial CDWs, and the 
SBCI state (1, 8/3) (Fig. 2b). The fractional values of s associated with 
these states strongly suggest that electron–electron interactions 
spontaneously break the TS of the underlying moiré superlattice. In 
fact, a previous study29 has shown that the appearance of a portion of 
the ChIs is probably a consequence of TS breaking via doubling of the 
unit cell. In this scenario, the Hartree potential favours filling states 
near the centre of the mini-Brillouin zone, which in MATBG is also the 
region where the Berry curvature is highly concentrated (yellow trace 
in Fig. 2c). Consequently, the system may favour forming one band that 
retains the original Berry curvature and therefore has C = ±1, along 
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Fig. 1 | Incompressible states with fractional quantum numbers in MATBG. 
a, Local inverse compressibility dµ/dn measured as a function of magnetic field 
B and electrons per moiré unit cell ν. b, Wannier diagram identifying the 
incompressible peaks present in a. Black lines correspond to ChIs and integer 
quantum Hall (IQH) states; green lines correspond to correlated insulators 
(CIs) emanating with nonzero integer s and t = 0; blue lines correspond to CDWs 
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remote bands.
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(UC) doubling resulting in a C = ±1 band accompanied by a new C = 0 band.  
e, Band structure in the case of unit-cell tripling resulting in a C = ±1 band 
accompanied by two new C = 0 bands. f–h, Band fillings in the case of unit-cell 
doubling (f) and unit-cell tripling (g, h) needed to produce the density wave 
states observed in a.
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with a new C = 0 band (Fig. 2d). Under this assumption, filling three of 
the four C = 0 bands generated by unit-cell doubling yields the (0, 7/2) 
state (Fig. 2f). Similarly, tripling the unit cell allows one C = ±1 band to 
give rise to a C = ±1 band accompanied by two C = 0 bands (Fig. 2e). 
Sequentially filling the 12 reconstructed bands produces both the  
(1, 8/3) and (0, 11/3) states (Fig. 2f, g). Together, the observation of 
CDW and SBCI states at zero field establishes the presence of both 
intrinsic band topology and strong electron–electron interactions, 
and highlights the critical role of the non-uniform Berry curvature in 
stabilizing these two classes of states.

Remarkably, on increasing the magnetic field to 5 T, we observe a 
different family of robust incompressible states that are parametrized 
by fractional values of both t and s (Fig. 3a, b), characteristic of FCIs. 
These states, (2/3, 10/3) and (1/3, 11/3), persist up to at least 11 T, and 
can be interpreted as lattice analogues of νc = 1/3 and 2/3 FQH states 
from the final C = −1 band populated on electron-doping the (1, 3) ChI, 
where νc is the filling factor of the partially filled Chern band (Fig. 3c). 
As these states do not require breaking of the TS of the moiré superla-
ttice, they are referred to below as symmetry-preserving FCIs. These 
two states are expected to exhibit fractional quantized Hall conduct-
ance according to the Streda formula and hence support quasiparticle 
excitations with fractional charge e/3 (ref. 34), Integrating dµ/dn with 
respect to the electron density allows us to directly extract the steps 
in chemical potential µ∆  associated with each of the observed CDW 
and FCI states (Fig. 3d). As the chemical potential is defined with respect 
to electrons, µ∆  must be multiplied by the ratio of the quasiparticle 
charge to the electron charge, yielding energy gaps of about 50 ± 20 µeV 
(~0.6 K) for both FCI states, roughly in agreement with the estimate of 
0.01U from a recent exact diagonalization study33, where U is the 
strength of Coulomb interaction. The same study also argues that, 
because the spin polarization of the valley-polarized Chern band is 

unknown, the FCI states can be either isospin-polarized Laughlin states 
or multicomponent states depending on the detailed quantum geo-
metric properties of the system. While our measurements are not 
capable of directly distinguishing between single and multicomponent 
ground states, we note that the gaps associated with both FCIs are 
much smaller than the spin Zeeman energy scale EZ = gµBB (assuming 
g = 2), where µB is the Bohr magneton, and depend very weakly on B, 
suggesting that the charged excitations of both states probably do not 
require a spin flip. The sudden appearance of the FCIs and disappear-
ance of the CDWs indicates close competition between these two 
phases, with the magnetic field driving the transition yet leaving the 
band topology unaltered.

Quantum geometry of MATBG
To understand the transition from a CDW-dominated to an 
FCI-dominated regime, we begin by observing that these two classes 
of ground states place very different constraints on the quantum geo-
metric properties of the underlying band structure of MATBG. For the 
CDW ground states to emerge, the Berry curvature of the flat bands 
must be strongly concentrated near the centre of the mini-Brillouin 
zone to take advantage of the Hartree potential29. However, bands with 
sufficiently nonuniform Berry curvature are known to disfavour FCI 
ground states30–33. The observed transition therefore suggests that the 
applied magnetic field in the experiment serves primarily to reduce 
the intrinsic Berry curvature inhomogeneity within the partially filled 
Chern band, unlike in the hBN/BLG system where the applied field is 
needed to produce Chern bands in the first place. To estimate the 
amount of Berry curvature inhomogeneity the FCI ground states can 
tolerate, we note that exact diagonalization studies31–33 indicate a tran-
sition between CDW and FCI ground states as a function of w0/w1, where 
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expected.
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w0 and w1 are the interlayer tunnelling matrix elements at the AA-stacked 
and the AB-stacked regions, respectively. This ratio is known to strongly 
alter the Berry curvature distribution within the flat bands of MATBG. 
According to these works, the transition occurs near w0/w1 ≈ 0.7, as has 
been confirmed by a recent density matrix renormalization group 
study (D.E.Parker et al., manuscript in preparation). The ground-state 
dependence on w0/w1 therefore gives a means of parametrizing the 
dependence of the FCI ground states on the Berry curvature inhomo-
geneity, which we characterize using the quantity σ F( ) , the mean 
standard deviation of the Berry curvature over the mini-Brillouin zone. 
We estimate an upper bound on the allowable Berry curvature inho-
mogeneity σ F( )c  to be in the range of 1.4 to 2.2, depending on the model 
parameters, below which the quantum geometry of the system is 
favourable for the emergence of FCIs (Fig. 3e). For simplicity, we choose 
σ F( )c  = 1.8 for the discussion below. For realistic MATBG samples, w0/w1 
is estimated to be around 0.8 (refs. 25,35,36), yielding large values of 
σ(F) ~ 3, consistent with our observation of CDW states at zero field. 
Thus, the absence of FCI ground states at zero magnetic field in our 
device can be understood to result from the large values of σ F( ) present 
in MATBG.

Having established the critical role of σ F( )  in determining the 
many-body ground state, we now examine its evolution as a function 
of magnetic field by analysing the Hofstadter spectrum of the con-
tinuum model of MATBG aligned with hBN (see Methods). We find that 
increasing the magnetic field reduces σ F( )  monotonically (Fig. 3f), 
with σ F( ) vanishing as φ φ/ → 10 . To estimate the value of magnetic field 
at which the FCI ground state becomes favourable, we identify the 
magnetic field, Bc, at which σ F( )  falls below the critical value σ F( )≈c
1.8. For realistic values of w0/w1 ~ 0.8, our calculations find that σ F( )  is 
reduced below σc starting at φ φ/ ~0  1/5 or Bc ~5.4 T, in good agreement 
with the magnetic field at which the (2/3, 10/3) and (1/3, 11/3) states 
appear experimentally. We emphasize that due to the sharp decrease 
of σ F( ) with field, the critical field Bc is not sensitive to the precise choice 
of σ F( )c . Combining the bound σ F( )c  estimated from many-body 
ground state analyses31–33 (D.E.P., manuscript in preparation) at B = 0 
with our calculations of σ F( )  as a function of B and w0/w1 allows us to 
sketch a phase diagram at νc = 1/3 (Fig. 3g). Our calculations also dem-
onstrate that the FCI is adiabatically connected to the FQH state at 

φ φ/ = 10 , where the band geometry reduces to that of the lowest Landau 
level. However, unlike the case of the usual FQH states or of FCIs occur-
ring within partially filled Hofstadter bands in a BLG/hBN heterostruc-
ture, in which the Berry curvature is supplied by the Landau levels or 
Chern bands that form in a magnetic field, the FCIs observed here 
fundamentally stem from zero-field ChI parent states, and the only 
role of the magnetic field is to flatten the Berry curvature. Therefore, 
only a weak magnetic field of less than 20% of a magnetic flux quantum 
per moiré unit cell is required to stabilize the FCIs by reducing σ F( )
below σ F( )c .

FCIs away from 3 < ν < 4
Outside the density range 3 < ν < 4, the system recovers additional 
degrees of freedom and thus permits more possible competing ground 
states at fractional fillings. In particular, we observe six additional 
FCIs—along with numerous SBCIs with denominators of s as large as 
10 (Extended Data Fig. 1)—at slightly higher values of magnetic field, 
particularly on the hole side (Fig. 4), most of which show values of µ∆  
comparable to those of their counterparts near ν = 3 (Extended Data 
Fig. 2). We emphasize that our measurements unambiguously identify 
these states as FCIs purely on the basis of the Streda formula regardless 
of their exact nature and origin, on which we speculate below. As in the 
case of the FCIs observed for 3 < ν < 4, several of these additional states 
probably correspond to symmetry-preserving FCIs (Fig. 4a, b). For 
example, we interpret the state (−4/3, −5/3) as arising from a νc = 1/3 FCI 
formed within the C = −1 band populated on electron-doping the (−1, 
−2) ChI, similar to the (2/3, 10/3) and (1/3, 11/3) states described above. 
In addition, unlike the aforementioned states, the observed (−8/5, 
11/10) and (−7/3, 2/9) states (Fig. 4c, d) have s with denominator a mul-
tiple of that of t, rather than being equal, suggesting that each unit cell 
binds only a fraction of an electron charge and that the states therefore 
correspond to symmetry-broken FCIs. Specifically, the (−8/5, 11/10) 
state can result from doping the (−2,1) ChI with a νc = 2/5 FCI that quad-
ruples the unit cell and thus contributes to a change in s of only 1/10. 
This interpretation is further supported by the fact that the (−2, 1) ChI 
is a state that breaks TS, and thus might naturally be expected to also 
support symmetry-broken FCIs. We note that such symmetry-broken 
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FCI states have no analogue in the FQH system. Most intriguingly, we 
also find evidence of FCI states with coprime denominators of t and s 
that as a result cannot be described as either symmetry-preserving or 
symmetry-breaking FCIs. The emergence of these exotic many-body 
ground states may originate from complex interplay between spin, 
valley and spatial symmetry.

The observation of FCIs in MATBG reported here leaves open many 
theoretical and experimental questions. An interesting and straight-
forward direction is to identify the quasiparticle charge associated with 
these FCI states, especially those that have no analogues in the FQH 
system. The competition between FCIs and nearby CDWs and SBCIs 
may provide a new setting for the study of quantum phase transitions. 
Importantly, our work establishes the applied magnetic field as a novel 
tuning knob for the Berry curvature distribution, and indicates close 
proximity to zero-field FCIs in the flat bands of MATBG. Thus, a pressing 
experimental task is to develop means of reducing w0/w1 in MATBG and 
to explore alternative platforms beyond MATBG that suffer less from 
Berry curvature inhomogeneity, which would enable the realization of 
FCIs at zero magnetic field and offer new opportunities for the creation 
of next-generation topological quantum devices.
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Methods
Sample preparation
The MATBG device used in this study was fabricated using the 
‘tear-and-stack’ technique described in refs. 37,38, and is the same as 
the one in ref. 29. Briefly, the monolayer graphene and hBN flakes were 
first exfoliated on SiO2/Si substrates and subsequently screened with 
optical microscopy and atomic force microscopy. We use a PC/PDMS 
stamp on a glass slide to sequentially pick up the flakes. The resulting 
stack is released on the pre-stacked hBN-on-Pd/Au back gate. The device 
geometry was defined by electron-beam lithography and reactive ion 
etching. Cr/Au electrical contacts to MATBG were made by the standard 
edge-contact method.

Compressibility measurements
All compressibility measurements were made in a 3He cryostat. The 
SET tips were fabricated using a procedure described elsewhere39. 
Compressibility measurements were performed using a.c. and d.c. 
protocols similar to those described in refs. 29,39. a.c. excitations of 40 mV 
at 97.17 Hz and 1.5 mV at 107.17 Hz were applied to the back gate and to 
MATBG, respectively. The tip was held approximately 100 nm above the 
MATBG. A d.c. feedback loop was used to hold the phase of the SET’s 
Coulomb blockade signal fixed, which results in a direct d.c. measure-
ment of the chemical potential. Compared to ref. 29, a longer integration 
and voltage-ramping time and a slightly smaller tip-sample distance 
were used to further improve the signal-to-noise ratio.

Procedure of determining the slope and the intercept for the 
fractional states
We determine the quantum numbers (t, s) of the incompressible states 
by first identifying the peaks associated with each state and performing 
a linear fit to obtain their slope and intercept. To more accuratelycon-
firm the fractional values of t and s and mitigate the error due to effects 
of quantum capacitance8, we use the fitted slope and intercept of the 
nearby Chern and correlated insulators to obtain local estimates of t 
and s. On the basis of the converted values of t and s, we assign the cor-
responding fractions for t and s by identifying those with the smallest 
denominator possible (up to 10) within the 95% confidence interval 
and favour the fractions of t and s that share the same denominators 
(Extended Data Fig. 3).

TS breaking
We briefly summarize the origin of TS breaking in MATBG and its 
consequence on the topological Chern structure reported in ref. 29. It 
has been shown that the strong Hartree potential of the flat bands of 
MATBG favours populating states at the centre (corner) of MATBG’s 
mini-Brillouin zone for the electron-doped (hole-doped) side (see 
Fig. 2c for the electron-doped case). As a result, the system can lower 
its energy by enlarging the moiré unit cell (doubling, tripling, quadru-
plingand so on), thereby breaking TS to form an insulator. The immedi-
ate consequence of enlarging the moiré unit cell is to fold the original 
bands, which results in a new set of N reconstructed bands, where N is 
the factor by which the unit cell is enlarged. For example, doubling (tri-
pling) the unit cell leads to two (three) reconstructed bands (Fig. 2d, e) 
per flavour. As the Berry curvature is highly concentrated at the centre 
of the mini-Brillouin zone (Fig. 2c), the lowest (highest) band retains the 
Chern number of the original band for the electron-doped (hole-doped) 
side, while the rest of the reconstructed bands carry zero Chern number. 
This picture captures the unconventional sequence of ChIs as well as 
the zero-field SBCIs and CDWs we observe in the present work.

Influence of twist angle inhomogeneity on FCIs
We have examined the twist angle inhomogeneity over a distance 
of approximately 1.6 µm, and we find the local twist angle to vary by 
approximately 0.005° (Extended Data Fig. 4a). Extended Data Fig. 4b 

shows the compressibility measurements between ! = 3 and 4 taken 
at 9 T, where the incompressible peaks associated with (0, 3) and (1, 3) 
shift in density owing to the changes in the local twist angle. Similarly, 
the incompressible features that appear in the density range where the 
(2/3, 10/3) and (1/3, 11/3) FCI states are expected to occur—indicated by 
the blue and black arrows, respectively—also display shifts in density. 
To unambiguously identify the nature of these incompressible peaks, 
we have examined their magnetic field dependence at three different 
locations (Extended Data Fig. 4c). We find that, at location 2, where the 
variation of twist angle is small, the evolution of the two incompressible 
peaks indeed follows the Diophantine equation with t = 2/3 and t = 1/3, 
demonstrating the robust reproducibility of the observation of the 
FCIs. At location 1, the peaks associated with t = 2/3 and t = 1/3 are also 
present over most of the field range, but the appearance of additional 
incompressible peaks suggests that location 1 is near a region where 
local disorder different from twist angle inhomogeneity is present. 
However, at location 3 where the twist angle varies rapidly, the left 
incompressible peak deviates from the expected trajectory for a t = 2/3 
FCI and may be better described by a C = 1 SBCI emanating from s = 13/4. 
Overall, these measurements demonstrate the robustness of the FCI 
ground states and highlight the critical role of twist angle homogeneity 
in stabilizing the FCIs, lending further support to the idea that control-
ling local microscopic parameters may provide a pathway for tuning 
transitions between CDWs/SBCIs and FCIs.

Hofstadter spectrum
We model the system using the Bistritzer–MacDonald model9 with a 
twist angle of θ = 1.06°, and account for the gap at charge neutrality 
observed in the experiment by including a sublattice splitting of 
30 meV. The interlayer tunnelling parameter w1 is set to 110 meV. In the 
range 3 < ν < 4, the system can be approximated by a single Chern band, 
and we thus consider a single fermion species in our calculation. We 
obtain the Hofstadter spectrum following refs. 40–42, which is shown in 
Extended Data Fig. 5. As dictated by the Streda formula, the top C = −1 
band—the parent state of the FCI—is separated by a gap. Complete 
details of the model are given in the Supplementary Information.

Quantum geometry
The stability of FCI is closely related to the quantum geometry of the 
MATBG band structure. One key figure of merit is the standard deviation 
of the Berry curvature distribution over the Brillouin zone. In the pres-
ence of a magnetic flux φ φ= p

q 0, there are 2q bands in the Hofstadter 
spectrum, where q Cp−  bands are filled. Here we present a natural 
multi-band generalization for the standard deviation of the Berry cur-
vature, which is continuous, gauge invariant and reduces to the expected 
values at → 0.φ

φ 0
 At a given magnetic flux φ, let Pk k ku u= ∑ | > < |a

N
=1  be 

the projector to the top C = −1 band. The U(N) non-Abelian Berry  
curvature is defined as F u u( ) = − 2NAIm(< ∂ |1 − |∂ >)ab

x
a

y
bk k k kP , where 

∂ =µ
k
∂

∂ µ  and A A φ φ= /0 0 is the area of the magnetic Brillouin zone. We 
note that the non-standard normalization NA is necessary for 
gauge-invariant quantities to be continuous functions of magnetic field. 
A semi-analytic formula for F, which is both numerically stable and 
accounts for the intrinsic geometry, is derived in the Supplementary 
Information. To evaluate expectation values of the Berry curvature 
distribution, we define the trace operator k k∫O Otr[ ] = (NA) ∑ d ( )b

N
bb

−1
=1

2  
so thattr[Id]  = 1, where Id is the identity operator. The Chern number 
C F= tr[ /2π]  is the mean of the distribution, up to 2π. The standard 

deviation of the Berry curvature is then defined as 



( )σ F C( ) = tr −F

2π

2
.
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Extended data Fig. 1 | Additional CDW and SBCI states at higher magnetic 
field. a–d, Measurements of dµ/dn (×10−11 mV cm−2) in various density ranges 
between 6.5 and 12 T showing additional CDWs and SBCIs. e–g, Schematic 

Wannier diagrams corresponding to the states observed in a–d colored 
according to the classification used in Fig. 1b. Light blue and yellow lines 
denote the CDWs and SBCIs, respectively.



Extended Data Fig. 2 | Energy gaps of additional FCI and SBCI states. a–d, Chemical potential steps ∆µ of the FCI (yellow and green circles) and SBCI (light and 
dark blue circles) states shown in Fig. 4.
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Extended Data Fig. 3 | Fits to (t, s) for FCIs and SBCIs. a–e, Incompressible 
peak locations (blue circles) associated with FCI and SBCI states. Black lines 
mark the results of linear fits. The fitted slope of nearby Chern insulators were 

used to convert the parameters to (t, s), the values of which are shown in the 
brackets with 95% confidence intervals.



Extended Data Fig. 4 | Effect of twist angle inhomogeneity on FCIs. a, Local 
twist angle variation over a distance of 1.6 µm. b, Compressibility 
measurements between ! =3 and 4 measured along the same trajectory as in a 
at 9 T. The blue and black arrows indicate the densities near which the (2/3, 

10/3) and (1/3, 11/3) states occur, respectively. c, Compressibility 
measurements taken at three locations indicated by the dotted lines in a. The 
white, blue, black and green dotted lines mark the expected evolution of the 
incompressible peaks associated with (1, 3), (2/3, 10/3), (1/3, 11/3) and (1, 13/4).
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Extended Data Fig. 5 | Hofstadter spectrum. a, Calculated spectrum of the narrow bands of MATBG at finite magnetic field. The bands are colored according to 
their Chern number at zero magnetic field. b, Wannier plot corresponding to the spectrum in a.


