Induced Superconductivity and Engineered Josephson Tunneling Devices in Epitaxial (111)-Oriented Gold/Vanadium Heterostructures

Peng Wei,*†‡ Ferhat Katmis,†‡ Cui-Zu Chang,† and Jagadeesh S. Moodera*†‡

†Francis Bitter Magnet Laboratory, ‡Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

ABSTRACT: We report a unique experimental approach to create topological superconductors by inducing superconductivity into epitaxial metallic thin film with strong spin–orbit coupling. Utilizing molecular beam epitaxy technique under ultrahigh vacuum conditions, we are able to achieve (111) oriented single phase of gold (Au) thin film grown on a well-oriented vanadium (V) s-wave superconductor film with clean interface. We obtained atomically smooth Au thin films with thicknesses even down to below a nanometer showing near-ideal surface quality. The as-grown V/Au bilayer heterostructure exhibits superconducting transition at around 3.9 K. Clear Josephson tunneling and Andreev reflection are observed in S−I−S tunnel junctions fabricated from the epitaxial bilayers. The barrier thickness dependent tunneling and the associated subharmonic gap structures (SGS) confirmed the induced superconductivity in Au (111), paving the way for engineering thin film heterostructures based on p-wave superconductivity and nano devices exploiting Majorana Fermions for quantum computing.

KEYWORDS: Topological superconductor, epitaxial heterostructure, Andreev reflection, Cooper pair tunneling

The quasiparticles at an interface of thin film heterostructures can lead to the observation of emerging properties. It has been shown theoretically that epitaxial noble metal (heavy element) thin films with well-defined crystalline surface, such as Ag(111) and Au(111), and so forth, are ideal materials for robust p + ip superconductors due to giant Rashba spin–orbit coupling (SOC).1,2 The surface quasiparticles gain this SOC owing to the nature of broken inversion symmetry and the short Fermi wavelength of the quasiparticles.3−5 The magnitude of SOC is inversion symmetry and the short Fermi wavelength of the quasiparticles gain this SOC owing to the nature of broken inversion symmetry and the short Fermi wavelength of the quasiparticles.3−5 However, the Nb is too thin (∼1 nm) to show any superconductivity.14 Although the induced superconductivity of a nonepitaxial Au layer in proximity to a thicker Nb has been studied,15,16 growing thicker Nb, on the other hand, would increase the surface roughness of the Nb layer, which would in turn degrade the epitaxial, smooth growth of the top Au(111) layer.

Here we demonstrate high quality ultrathin (∼4 nm) (111)-oriented Au films grown on s-wave superconductor−vanadium (V) that exhibits clear superconducting transition at Tc ∼ 3.9 K. The in situ reflection high-energy electron diffraction (RHEED) studies and ex-situ low-angle X-ray reflectivity (XRR) and X-ray diffraction (XRD) studies confirm (111)-oriented surface of gold that shows high quality even with thickness down to 0.4 nm. The induced SC in Au is confirmed by tunneling using vertically fabricated Josephson junctions, in which the superconducting tunneling is further tuned by varying the tunnel barrier thickness within ±1 Å.

The epitaxial growth of Au on V involved a refined multistep growth sequence as demonstrated in Figure 1 with RHEED snapshots (see also Methods). The RHEED studies were performed at different critical stages while growing. Due to glancing angle of incidence, the electron beam has short penetration depth. Therefore, it is sensitive to the crystallinity of the thin film surface. Besides, the azimuthal angle between...
the electron beam and the substrate can be adjusted (Figure 2a) to probe different crystalline axes of the surface. Initially we direct the electron beam along the [21\overline{1}0] axis of the (0001) surface of Al$_2$O$_3$. This RHEED pattern is shown at $t = 0$ in Figure 1. The clearly observed higher-order Laue rings confirm the high quality of (0001)-Al$_2$O$_3$ surface. Subsequently, a 1 nm seed layer of V was grown at room temperature, which forms a complete diffusive image by blanking the substrate diffraction.

Figure 1. (a) Detailed growth sequence for the thin film heterostructure of V/Au. At $t = 0$, the sapphire substrate is processed and ready for the growth. At $t = t_0$, 1 nm V seed layer is grown at room temperature. At $t = t_2$, the V seed layer starts to crystallize upon annealing. At $t = t_5$, 20 nm V layer is grown at \sim460 °C. At $t = t_5$, 0.4 nm (~2 monolayers) Au is grown at \sim410 °C. At $t = t_5$, 4 nm Au layer is grown. (b) The corresponding RHEED patterns at each specified time. Note here the well-defined RHEED streaks for the 0.4 nm Au grown on V ($t = t_4$) and the sharper streaks for the 4 nm Au grown on V ($t = t_5$).

Figure 2. (a) Schematics of the RHEED set up with variable electron incidence angle (azimuthal angle). This method is utilized to pinpoint the rotation symmetry and crystal orientation of the thin film. (b) The RHEED pattern of 4 nm gold on V along the [11\overline{1}0] direction of its (111) surface. (c) Upon rotating the azimuthal angle by 30°, as shown in (a), the spacing of the RHEED streaks increases, which corresponds to the [2\overline{1}1] direction on the (111) surface of Au. The two distinct RHEED patterns repeat themselves when the azimuthal angle rotates every 30°. (d) Schematic showing the method to extract the periodic atomic lines (rods) spacing, marked by red and blue dashed lines, thereby extracting the lattice constant of the thin film and further verify its crystal orientation.
spots ($t = t_a$, Figure 1). The vanishing RHEED pattern is an indication of complete wetting of the sapphire surface by formation of an amorphous V seed layer. This V passivation layer serves to improve the growth quality of the subsequent layers. To ensure the high crystal quality of the subsequently grown 20 nm V layer, we annealed the seed layer by raising the substrate temperature gradually to 490 °C in ~1 h. During this process, the RHEED pattern was continuously monitored. At $t = t_s$, sharp diffraction streaks appeared that revealed the crystallization of the V seed layer (Figure 1). Then the substrate temperature was quickly reduced to ~460 °C followed by the growth of 20 nm V layer at a rate of ~0.1 Å/s. As the V layer gets thicker, the streak-like RHEED pattern becomes spot-like (Figure 1 at $t = t_s$), indicating the transition into three-dimensional (3-D) growth mode instead of the two-dimensional (2-D) growth mode.21 As soon as the signature of RHEED spots was observed, the growth of V was terminated. Then Au was quickly deposited over it (rate 0.03 Å/s) at a substrate temperature ~410 °C (Figure 1 at $t = t_a$). The Au layer showed 2-D growth mode as seen by the reappearance of streaky RHEED pattern even with a coverage of 0.4 nm thick layer (close to 2 monolayers) (Figure 1 at $t = t_s$). This observation indicates the growth of high-quality ultrathin gold films on vanadium. As Au gets thicker (approaching 4 nm), the RHEED streak pattern became narrower and sharper (Figure 1 at $t = t_s$) that further demonstrates the enhanced surface quality.

The terminating surface of the 4 nm Au was found to be (111)-oriented. This was confirmed by studying the RHEED pattern while varying the azimuthal angle of the incident electron beam. Figure 2a illustrates the corresponding experimental setup. Figure 2b and c show two characteristic RHEED patterns that periodically appear when the azimuthal angle is changed by 60°. This 6-fold rotation symmetry is a direct proof of the (111)-orientation of the grown Au surface. Further epitaxial relationship between the Au layer and the substrate was investigated by first aligning the electron beam along the [21T0] and the [1T00] axes of (0001)-Al2O3, then monitoring the RHEED during Au growth. We note here that these two crystalline axes have the azimuthal angle difference of 30°. While sharp streaky RHEED was seen along both directions, the streaks have two distinct spacing (Figure 2b and c), which is the measure of the atomic line (rods) spacing of a two-dimensional lattice in the reciprocal space.21 In fact, the spacing between the RHEED streaks W and the spacing between atomic lines (rods) of the Au surface a are connected by $a = \lambda W$, where L is the distance between the RHEED screen and the sample, λ is the wavelength of the incident electron beam. Since an electron beam with a high acceleration energy (15 keV) was used, the relativistic correction to the electron’s wavelength λ gives $\lambda = 12.3/[V(1 + 1.95 \times 10^{-6}, V)]^{1/2}$ Å.21 With $V = 15$ keV, we have $\lambda \sim 0.099$ Å. The distance between our RHEED screen and the sample is $L = 32.13 \pm 0.50$ cm with the error accounting for the location of the electron beam spot on the sample substrate. The spacing of the RHEED streaks was measured to be 12.78 ± 0.50 mm (Figure 2b, along the Au [110] direction) and 21.78 ± 0.60 mm (Figure 2c, along the Au [211] direction), where the errors represent half width of the RHEED streak lines. As a result, the estimated atomic line (rod) spacing is $a_1 = 2.48 \pm 0.10$ Å (Figure 2b) and $a_2 = 1.46 \pm 0.05$ Å (Figure 2c). It is clear that $a_1 \cong \sqrt{3}a_2$, which points to two distinct atomic line (rod) directions on the (111) surface. Figure 2d shows the schematics of these two atomic line (rod) directions, where a_1 is the spacing between the atomic lines along [110] direction of the f.c.c. lattice and a_2 is the spacing between lines along [1T2] direction. Using a_1 and a_2, we further estimate the lattice constant of Au as $a = 2^{1/2}(a_1^2 + a_2^2)^{1/2} = 4.07 \pm 0.25$ Å, which matches well with other reported values.16 In fact, these in situ RHEED results tell us the epitaxial relation between Au and the substrate as Au [110]/Al2O3 [21T0].

The crystallinity and surface/interface roughness of the thin film bilayer are further elucidated by the low angle XRR (Figure 3a) and high angle XRD $\Theta/2\Theta$ (Figure 3b) scans. In Figure 3a, the XRR demonstrates clear oscillations that are extended to the high angle $2\Theta > 10$ degree, which reveals the smooth surface/interface of the bilayer heterostructure.22 Quantitative fittings were performed (red line in Figure 3a) which matched well with the XRR oscillations (symbols in Figure 3a). The fittings yielded the roughness of the Au layer ~0.89 ± 0.03 nm and the roughness of the V layer ~0.43 ± 0.01 nm. The XRD data shows major Bragg peak at the 2Θ angle of the (111) reflection of Au(111) indicated high crystallinity quality. Remarkably, sharp Laue oscillations also occur near the Bragg peaks of Au and V, which again indicates sharp surface/interface of the heterostructure. These Laue oscillations clearly have two different periods, and we note them as $\Delta 2\Theta_{Au}$ and $\Delta 2\Theta_{V}$ (Figure 3b). From these two distinct periodicities, we
calculate the thickness of Au as \(\sim 4.7 \) nm and V as \(\sim 21.2 \) nm, which matches quite well to the thicknesses monitored by the quartz crystal sensor during the growth. We note here that the Bragg peak of V(110) (Figure 3b) points to the (110) oriented 20 nm V film. While the 1 nm V seed layer shows (111) orientation from the in situ RHEED measurements, the enhanced RHEED spotty features for 20 nm V indicate the change of growth feature when V layer becomes thicker (Figure 1 t = 1 ns vs t = 2 ns). Since bulk V has a body centered cubic (bcc) structure, a thick film of V tends to grow along the (110) direction.

The growth conditions can be well-corroborated by the surface morphology studies, by the SEM studies performed immediately after the growth. We found that the growth temperatures of the Au and V layers critically affected the morphology. By fine-tuning the growth conditions, we were able to observe the transitions from island-like growth to island-less growth. Figure 3c–e show the SEM images of a set of three heterostructure thin film samples, where the scale bar denotes 400 nm. All of them have 1 nm V seed layer grown at room temperature. The sample in Figure 3c has V grown at 634 °C and Au grown at 318 °C. Clear holes and patches can be seen suggesting island-like growth. Increasing the growth temperature of Au to 410 °C while keeping the growth temperature for V same removed the holes, whereas the patches can still be seen (Figure 3d). The best quality samples were achieved by reducing the growth temperature of V to 450 °C and keeping the growth of Au at \(\sim 410 \) °C, in which case the SEM shows island-less morphology of Au on V (Figure 3e).

The superconductivity (SC) of the bilayer heterostructures was studied by Cooper pair tunneling at temperature \(T = 1 \) K. We fabricated a layer of Al\(_2\)O\(_3\) tunnel barrier and a top superconducting electrode Al over the Au (111) surface to form S–I–S tunnel junctions (Figure 4a). The tunneling takes place between Au and Al electrodes through Al\(_2\)O\(_3\) barrier. By carefully varying the thickness of the Al\(_2\)O\(_3\) by \(\pm 0.1 \) nm around 1.5 nm, we were further able to produce a systematic change of the junction resistances \(R_{Jn} \), which in turn modulates the SC tunneling behavior. Here we note that the set of tunnel junctions were fabricated on the same V/Au bilayer stripe and \(R_{Jn} \) was measured in a four-terminal manner across the Al\(_2\)O\(_3\) barrier (Figure 4a). Hence the change of \(R_{Jn} \) reflects the change in the barrier thickness.

In low resistance junction, \(R_{Jn} \sim 10 \) \(\Omega \), Josephson supercurrent was observed (Figure 4b). This can be attributed to Cooper pair tunneling across ultrathin Al\(_2\)O\(_3\) barrier in between Al and Au (111), where SC is induced into Au (111) by V. To further elucidate it, we progressively increased the \(R_{Jn} \) of the tunnel junctions from \(R_{Jn} \sim 0.6 \) to 4.8 k\(\Omega \) (Figure 4c), where multiple Andreev reflection was observed. We found that the Andreev peak at \(V_{bias} = 0 \) mV sharply decreased as the \(R_{Jn} \) (or Al\(_2\)O\(_3\) barrier thickness) increased (Figure 4c). Since the Andreev peak at \(V_{bias} = 0 \) mV is a direct signature of Cooper pair tunneling, its sharp decrease upon increasing \(R_{Jn} \) (or Al\(_2\)O\(_3\) barrier thickness) points to the fact that tunneling occurs across the Al\(_2\)O\(_3\) layer. If one estimates the junction resistance for 1.5 nm thick Al\(_2\)O\(_3\) barrier by changing its thickness by \(\pm 0.1 \) nm around 1.5 nm, we were further able to produce a systematic change of the junction resistances \(R_{Jn} \), which in turn modulates the SC tunneling behavior. Here we note that the set of tunnel junctions were fabricated on the same V/Au bilayer stripe and \(R_{Jn} \) was measured in a four-terminal manner across the Al\(_2\)O\(_3\) barrier (Figure 4a). Hence the change of \(R_{Jn} \) reflects the change in the barrier thickness.

Figure 4. (a) Schematic of S–I–S tunnel junction fabricated from the epitaxial V/Au bilayer samples. (b) In the lowest resistance junction (\(R_{Jn} \sim 10 \) \(\Omega \)), clear Josephson supercurrent is observed. The junction resistance is measured by four-terminal method. Note here the high \(I_R R_{Jn} \) value \(\sim 7.3 \) mV. Inset: The typical resistance vs temperature dependence of the V/Au layer. The temperature is measured by monitoring the liquid helium vapor pressure while pumping down. Below \(T_c \sim 3.9 \) K, the V/Au layer becomes superconducting. (c) Systematically tuning of the junction resistance by merely increasing the thickness of the Al\(_2\)O\(_3\) barrier. Three samples are made simultaneously on the same V/Au bilayer stripe only by varying the Al\(_2\)O\(_3\) barrier (Figure 4a). Hence the change of \(R_{Jn} \) reflects the change in the barrier thickness.

In low resistance junction, \(R_{Jn} \sim 10 \) \(\Omega \), Josephson supercurrent was observed (Figure 4b). This can be attributed to Cooper pair tunneling across ultrathin Al\(_2\)O\(_3\) barrier in between Al and Au (111), where SC is induced into Au (111) by V. To further elucidate it, we progressively increased the \(R_{Jn} \) of the tunnel junctions from \(R_{Jn} \sim 0.6 \) to 4.8 k\(\Omega \) (Figure 4c), where multiple Andreev reflection was observed. We found that the Andreev peak at \(V_{bias} = 0 \) mV sharply decreased as the \(R_{Jn} \) (or Al\(_2\)O\(_3\) barrier thickness) increased (Figure 4c). Since the Andreev peak at \(V_{bias} = 0 \) mV is a direct signature of Cooper pair tunneling, its sharp decrease upon increasing \(R_{Jn} \) (or Al\(_2\)O\(_3\) barrier thickness) points to the fact that tunneling occurs across the Al\(_2\)O\(_3\) layer. If one estimates the junction resistance for 1.5 nm thick Al\(_2\)O\(_3\) barrier by changing its thickness by \(\pm 0.1 \) nm around 1.5 nm, we were further able to produce a systematic change of the junction resistances \(R_{Jn} \), which in turn modulates the SC tunneling behavior. Here we note that the set of tunnel junctions were fabricated on the same V/Au bilayer stripe and \(R_{Jn} \) was measured in a four-terminal manner across the Al\(_2\)O\(_3\) barrier (Figure 4a). Hence the change of \(R_{Jn} \) reflects the change in the barrier thickness.
when there is a loss of the Andreev reflection, seen by the dips in conductance which are located for example at \(eV_{\text{bias}} = \Delta_1, \Delta_2, \) and \(\Delta_1 - \Delta_2 \) where \(\Delta_1 \) and \(\Delta_2 \) are the SC gaps \((\Delta_2 > \Delta_1) \). Therefore, the SGS positions reflect the gaps of the superconductors. From Figure 4d (SGS marked by dashed lines), we can get \(\Delta_1 \sim 0.24 \text{ meV} \), which matches very well to the SC gap of 14 nm evaporated Al thin film.\(^{35,36}\) Since the Cooper pair tunneling is proven to take place between Al and Au, the second gap \(\Delta_2 \sim 0.6 \text{ meV} \) is attributed to the induced SC gap in Au(111) due to proximity effect. The other \(dI/dV \) dip feature that satisfies \(eV_{\text{bias}} = \Delta_2 - \Delta_1 \) is also observable that is indicated by the arrow in Figure 4d. The SGS further supports the induced SC in gold, where a gap as large as 0.6 meV is obtained that matches well to the SC gap of 14 nm evaporated Al thin film.25,26 Since the Cooper pair tunneling is proven to take place between Al and Au, the second gap \(\Delta_2 \sim 0.6 \text{ meV} \) is attributed to the induced SC gap in Au(111) due to proximity effect. The other \(dI/dV \) dip feature that satisfies \(eV_{\text{bias}} = \Delta_2 - \Delta_1 \) is also observable that is indicated by the arrow in Figure 4d. The SGS further supports the induced SC in gold, where a gap as large as 0.6 meV is obtained that matches well to the Tc in V/Au measured by the resistance drop of the bilayer stripe. The successfully achieved high quality (111)-oriented superconducting Au thin films, where giant spin–orbit coupling exists, demonstrated an ideal thin film heterostructure system for topological superconductivity and for seeking Majorana Fermions. Our findings pave the way for investigating unknown SC in hybrid systems in the presence of various material interactions, and can lead to the observations of new phenomena in physics.\(^{2,27}\)

Methods. The growth of the V/Au bilayer heterostructure was carried out in a custom built molecular beam epitaxy (MBE) chamber under ultrahigh vacuum (UHV) environment (pressure \(\sim \) low \(10^{-10} \) Torr). High-purity (99.995%) V and Au sources were melted in a multipocket electron beam vaporator. During the deposition, the film thickness and growth rate were monitored by a quartz crystal sensor. The quality of the bilayers and their interfaces were examined in situ with RHEED, which has 15 keV electron beam directed at glancing angle (\(\sim 2^\circ \)) to the thin film surface. The chosen substrates were 0.5 mm polished single crystal \(\alpha\)-Al2O3(0001) (sapphire). Prior to the growth, the substrates were sonicated in acetone and IPA followed by standard SC1 cleaning. They were further processed in the MBE chamber by vacuum annealing at \(\sim 670 \text{ °C} \) for about an hour until the sharp diffraction patterns were observed by RHEED confirming high-quality substrate surface. The post ex situ high-resolution XRR and XRD were carried out using 1.54 Å Cu-K\(_{\alpha 1}\) radiation. The multilayer Josephson tunnel junctions were fabricated in a separate high vacuum chamber using in situ manipulated shadow masks for the control of different tunnel barrier thicknesses. The Josephson tunneling and Andreev reflection characteristics were measured in a Faraday cage and LHe bath cryostat at a temperature \(\sim 1 \text{ K} \).

REFERENCES

