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In low-dimensional systems, the combination of reduced dimensionality, strong interactions, and 

topology has led to a growing number of many-body quantum phenomena. Thermal transport, which 

is sensitive to all energy-carrying degrees of freedom, provides a discriminating probe of emergent 

excitations in quantum materials. However, thermal transport measurements in low dimensions are 

dominated by the phonon contribution of the lattice. An experimental approach to isolate the 

electronic thermal conductance is needed. Here, we show how the measurement of nonlocal voltage 

fluctuations in a multiterminal device can reveal the electronic heat transported across a mesoscopic 

bridge made of low-dimensional materials. By using graphene as a noise thermometer, we 

demonstrate quantitative electronic thermal conductance measurements of graphene and carbon 

nanotubes up to 70K, achieving a precision of ~𝟏% of the thermal conductance quantum at 𝟓𝐊. 

Employing linear and nonlinear thermal transport, we observe signatures of long-range interaction-

mediated energy transport in 1D, in agreement with a theoretical model.  Our versatile nonlocal noise 
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thermometry allows new experiments probing energy transport in emergent states of matter in low 

dimensions. 

Heat transport by electrons has been central to the study of materials ever since the pivotal 

measurements of Wiedemann and Franz1. For weakly-interacting electronic systems, the ground state is 

described by Landau’s Fermi Liquid paradigm2, and electronic heat conduction is described by quasi-

particle-mediated energy flow. Most normal metals obey this description, and electronic charge and heat 

flow are intimately connected, giving rise to the WF law. If interactions are sufficiently strong, weakly-

interacting charged quasi-particles no longer describe system behavior and the WF law breaks down. 

Notable examples of such strongly interacting systems include quasi-1D materials3, metallic ferromagnets4, 

heavy fermion materials5, underdoped cuprates6, and the charge-neutral point of graphene7, all cases related 

to the emergence of non-Fermi liquid behavior due to strong interactions. In low-dimensional systems, 

these effects are prominent8,9, motivating thermal transport experiments that can distinguish such states10. 

Accessing the electronic contribution to thermal transport is challenging due to the prevailing 

phonon contribution11. In bulk materials, the electronic contribution can be extracted by interpolation to the 

low temperature limit, where the phonon contribution rapidly decays6, by using a magnetic field to separate 

the electronic contribution with the thermal Hall effect3, or by chemical doping to re-enter the WF regime 

and thereby estimate the phonon contribution in an isostrutural sample7. Electronic thermal transport was 

also successfully isolated in some mesoscopic systems, notably the quantum Hall effect and single-electron 

transistors, by implementing electronic thermometry specific to the system of study7,12–22. However, for 

low-dimensional materials, such as 2D van der Waals monolayers and 1D nanowires and nanotubes, 

existing techniques are dominated by phonon transport23,24, and a general method that quantitatively isolates 

the electronic thermal transport is yet to be realized. 

We approach this problem using Johnson-Nyquist noise, the fluctuations of voltage or current 

arising due to the finite temperature of electrical conductors25,26. Classically, for a resistor 𝑅, the voltage 

fluctuations are given by 〈𝑉2〉 = 4 𝑘𝐵 𝑇 𝑅 ∆𝑓 where 𝑇 is temperature, 𝑅 is the electrical resistance, and ∆𝑓 
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is the measurement frequency bandwidth. Johnson noise is independent of the material type, size, or shape, 

operating over a wide frequency band and temperature range, and is thus widely used in fundamental 

science and applications27. In two-terminal mesoscale samples, Johnson noise can be used to measure 

electronic thermal conductance using self-heating12,15,28,29, in which Joule power dissipated in a resistor is 

balanced by energy loss channels, generating a temperature rise. Recently, this approach was used for 

graphene12,15,28,29, where electronic diffusion cooling governs energy loss over a wide temperature range, 

allowing electronic thermal conductance to be measured to T > 100 K. However, this approach is limited 

to diffusive conducting states with low energy loss to phonons and low contact resistance. A general thermal 

transport measurement that applies to other materials and to non-diffusive conduction requires a minimum 

of two temperature inputs to specify the temperature gradient driving energy flow. We thus require a 

multiterminal approach, in which the local temperature of at minimum two points along a device is 

measured by fluctuations of corresponding local resistors.  

The connection between Johnson noise and our desired multiterminal relation can be found by 

considering voltage noise in multiterminal geometries. An example is shown in Fig.1a. A conducting 

system is connected to multiple leads held at a bath temperature, which may be grounded or floating. 

Current is injected through one of these leads, causing Joule heating of the system. In the limit that electrons 

generate a local temperature through strong equilibration, known as the hot electron regime, it was 

theoretically shown30 that the noise power measured between any two terminals n and m is given by 𝑆𝑛𝑚 =

∫ 𝑑𝒓 𝑔𝑛𝑚(𝒓) 𝑇𝑒(𝒓). Here, 𝑇𝑒(𝒓) is the local electronic temperature and 𝑔𝑛𝑚(𝒓) is a geometry-dependent 

local weighting function defined as 𝑔𝑛𝑚(𝒓) = 𝛻𝜙𝑛 ∙ 𝜎̂𝛻𝜙𝑚, where 𝜎̂ is the local conductivity and 𝜙𝑛 is a 

characteristic potential associated with each terminal of the device (see supplementary section 4 for further 

details). This relationship holds if the energy supplied by Joule heating remains in the electronic degrees of 

freedom and energy losses to phonons and other heat sinks is negligible. Under these conditions, the noise 

emitted at any terminal is closely related to the energy transported to that region of the device and the 

resulting electronic temperature distribution. 
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For a thermal conductance measurement, we seek to realize the thermal circuit sketched in Fig.1b, 

in which two measured temperatures, 𝑇𝐻 and  𝑇𝐶, are combined with the energy current 𝑄 across a bridge 

between two thermometers to give the thermal conductance 𝐺𝑏𝑟𝑖𝑑𝑔𝑒
𝑡ℎ =

𝑄

𝑇𝐻−𝑇𝐶
. To implement this with 

multiterminal noise, we utilize the geometry shown in the central panel of Fig.1c. The device possesses 

four terminals, divided into two pairs. Each pair contacts a rectangular conducting region. A bridge connects 

the two rectangular regions at their midpoints and serves as the material of interest. The wider rectangle on 

the left serves as the hot side where electrons are Joule heated by an injected low-frequency current. To 

avoid directly Joule heating the bridge and cold side, the heating circuit is balanced such that only energy 

current 𝑄 and no electrical current traverses the bridge (see supplementary section 2 for details). The bridge 

width is narrow compared to the hot side length such that it obtains a thermal bias at the peak of the hot 

side temperature distribution. The narrow right-most rectangle serves as the cold side: energy current across 

the bridge heats the cold side at its center point and is equilibrated at the cold contacts, generating a peaked 

temperature distribution and nonlocal voltage fluctuations. With this geometry, the local weighting function  

𝑔𝑛𝑚(𝒓) is well-approximated as a constant and 𝑆𝑛𝑚 is proportional to the average  𝑇𝑒(𝒓) on either side: 

𝑆𝐻,𝐶 ∝ ∫ 𝑑𝒓
𝐻,𝐶

𝑇𝑒(𝒓) (see supplementary section 4.1). The narrow cold side design optimizes sensitivity by 

maintaining a maximal average, while the wide hot side ensures a local temperature distribution that is 

insensitive to the bridge. 

Each thermometer should measure the local temperature 𝑇𝐻,𝐶 without cross-contamination of 

signals, despite being in electrical contact. We achieve this by implementing differential noise 

thermometry31 and operating the hot and cold sides in different frequency bands (see Fig.1c and methods 

section). The combination of geometry and circuit allows the isolation of the heat transport-induced 

nonlocal noise (see supplementary section 4.1). 

To achieve an accurate measurement of the transported energy, we must ensure low electron energy 

loss to phonons in the thermometers. Graphene possesses several properties that are well-suited to electronic 
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thermometry7,12,15,28. Strong electron-electron interactions allow for thermalized temperature distributions 

down to sub-micrometer length scales32,33. The light carbon lattice and stiff bonding result in weak electron-

optical phonon coupling, while the large mismatch between the Fermi and sound velocities puts acoustic 

phonons in the quasi-elastic scattering regime in which energy loss is low7. The small Fermi surface around 

the Dirac point yields negligible umklapp scattering, and the exceptional chemical cleanliness means 

inelastic impurity scattering is largely absent. Because of its 2D nature, it possesses small electronic thermal 

conductance compared to 3-dimensional bulk materials and is thus sensitive to small quantities of injected 

energy34–36. 

As a first demonstration of electronic thermal transport measurement using nonlocal noise, we 

employ graphene as a bridge connecting graphene thermometers in a monolithic multiterminal graphene 

device. Figure 1d shows an H-shaped graphene device encapsulated in insulating hexagonal boron nitride 

(hBN). The device is etched to define the hot, cold, and bridge regions. A low-frequency current is injected 

into the hot side, dissipating Joule power 𝑃𝐻
𝐽
. As the power increases, the measured noise power increases 

monotonically, resulting in a corresponding change in the measured temperature which is linear at low 

Joule power (Fig.1d, left panel). At two different electron densities of the bridge, the hot side temperature 

change is effectively identical, indicating that only a small fraction of the total applied Joule power is 

transported across the bridge. The temperature change on the cold side (Fig.1d, right panel), in contrast, is 

far smaller: for 𝛥𝑇𝐻= 0.6 K, we observe 𝛥𝑇𝐶= 20-30 mK, as expected for a small energy current across the 

bridge. 

Similar to the electrical conductance, the thermal conductance of the graphene bridge can be 

controlled by a voltage applied to a local gate. For this purpose, we fix the applied power in the linear 

response regime and tune the bridge electron density using a local metal gate on the bridge, 𝑉𝑔
𝑏𝑟𝑖𝑑𝑔𝑒

(see 

Fig.2a, inset). The hot and cold side gates are held fixed at values that maintain the thermometers in a 

diffusive regime. The hot side temperature change (Fig.2a, top panel) is observed to be independent of the 

bridge density at three different bath temperatures. The cold side temperature change (Fig.2a, lower panel), 
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in contrast, varies strongly as a function of the bridge gate, and shows a distinct trend that is reproduced at 

the three bath temperatures. Comparison with the electrical resistance of the bridge (Fig.2b, upper panel), 

shows that the Dirac peak of the graphene bridge where resistance is maximal corresponds to the minimum 

in 𝛥𝑇𝐶, reflecting a thermal conductance modulation with density. 

To quantify the thermal conductance from the two measured temperatures, we require the energy 

current 𝑄𝑏𝑟𝑖𝑑𝑔𝑒. If energy loss to phonons in the graphene cold side thermometer is negligible, then it can 

be shown that 𝑄𝑏𝑟𝑖𝑑𝑔𝑒 =
2

3
𝐺𝐶

𝑡ℎ𝛥𝑇𝐶, where 𝐺𝐶
𝑡ℎ is the thermal conductance of the cold side graphene 

measured by self-heating (see supplementary section 4.2 for the derivation). Crucially, the cold side 

graphene serves both as a thermometer and a power meter. This can be understood by considering the 

effective thermal circuit of the device (Fig.1b). In this model, 𝛥𝑇𝐻,𝐶 can be computed as a function of the 

total input power 𝑄𝑖𝑛 and the three thermal resistors, from which we obtain 𝐺𝑏𝑟𝑖𝑑𝑔𝑒
𝑡ℎ = 𝐺𝐶′

𝑡ℎ𝛥𝑇𝐶′ ∕

(𝛥𝑇𝐻′ − 𝛥𝑇𝐶′), showing that 𝑄𝑏𝑟𝑖𝑑𝑔𝑒 = 𝐺𝐶′
𝑡ℎ𝛥𝑇𝐶′ (primed quantities refer to the circuit model; see 

supplementary section 5 for the connection between the thermal circuit and device). This result originates 

from the assumption of negligible energy loss to phonons. Thus, the temperature rise combined with the 

local thermal conductance accounts for all the power impinging on the cold side. This analysis can be 

extended to the case where electron-phonon coupling of the graphene thermometers is present, such as at 

high temperatures, since the electron-phonon energy loss can be directly measured in the same setup and 

accounted for quantitatively (see supplementary section 6)12,37,38. 

The resulting thermal conductance of the bridge is shown in the middle panel of Fig.2b and exhibits 

strong anti-correlation with the electrical resistance. This observation can be made precise by computing 

the Lorenz ratio, defined in relation to the Wiedemann-Franz law as 
𝐿

𝐿0
=

𝐺𝑡ℎ𝑅

𝑇𝑏𝑎𝑡ℎ
/𝐿0, where 𝐿0 =

𝜋2

3
(

𝑘𝐵

𝑒
)

2
 

is the Lorenz number. The Lorenz ratio at 𝑇𝑏𝑎𝑡ℎ=5 K (Fig.2b, lower panel, blue curve) is close to 1 for the 

entire gate voltage range. This result demonstrates conclusively the thermal transport origin of the measured 

noise and validates the analysis methodology.  
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At higher temperature, we find a density-dependent violation of the Wiedemann-Franz law 

indicating the breakdown of a simple diffusive electronic system. At 𝑇𝑏𝑎𝑡ℎ=20 K and 30 K, the Lorenz ratio 

is suppressed away from the Dirac point, exhibiting a local minimum and saturating at an intermediate 

value. Electron-electron interactions are predicted to suppress the Lorenz ratio away from charge 

neutrality39–45. This is a sign of the onset of the hydrodynamic regime, recently discovered in graphene46, 

in which electron-electron interactions scatter energy current while conserving charge current. Interactions 

combined with disorder lead to different signatures: long-range disorder suppresses the Lorenz ratio at high 

density41 while short-range disorder suppresses it in a moderate density regime42. The local minimum and 

high-density suppression of the Lorenz ratio thus point to a disordered hydrodynamic regime44,45. 

We now turn to show that this method can be generalized to probe other low-dimensional materials. 

Graphene has previously been used as a contact intermediary for van der Waals materials for which metallic 

contact is difficult to achieve47–49. By replacing the graphene bridge with a different material of interest, 

thermal contact may be established to the two graphene thermometers. To test this idea, we bridge two 

graphene thermometers with a carbon nanotube (NT), as shown in Fig.3a. Carbon NTs are one-dimensional 

metals or semiconductors depending on their atomic structures50. We grow carbon NTs and individually 

characterize and incorporate them into graphene devices (see methods section)51,52. In these devices, the 

graphene thermometers are not covered by hBN in order to ensure electrical contact between the graphene 

and the NT. As a result, the graphene thermometers are more disordered than fully-encapsulated devices 

and experience more energy loss at our operating temperatures (see supplementary section 7). The thermal 

quantities presented here are thus lower bounds. 

The electrical and thermal conductance, 𝐺𝑁𝑇 and 𝐺𝑁𝑇
𝑡ℎ , of a nanotube device (Device 1) are shown 

in Fig.3b as a function of voltage 𝑉𝑔
𝑁𝑇applied to a local metal gate above the nanotube. At Tbath = 70 K, the 

electrical conductance exhibits a global minimum at 𝑉𝑔
𝑁𝑇 ∼ 15𝑉 corresponding to a small gap in the 

electronic spectrum. The thermal conductance exhibits a similar feature. As the temperature is lowered, 

rapid modulations are observed in both electrical and thermal conductance, becoming more pronounced at 
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lower temperature. Throughout, we find that 𝐺𝑁𝑇 and 𝐺𝑁𝑇
𝑡ℎ  closely follow each other. The rapidly varying 

oscillatory conductance is indicative of the onset of Coulomb blockade through the disordered, substrate-

supported nanotube53. In a second device (Device 2) with a larger bandgap and higher channel resistance 

(Fig.3c), the device is in a disordered Coulomb blockade regime and exhibits sharper peaks alternating with 

vanishing electrical conductance at lower temperatures (see Fig.3c, bottom panel inset). The thermal 

conductance data trends with the electrical signal, despite the much higher channel resistance greater than 

1 MΩ, corresponding to 𝐺𝑁𝑇 ∽ 10−3 𝑒2

ℎ
.  The corresponding thermal measurement operates down to ~1% 

of the thermal conductance quantum 
𝜋2

3

𝑘𝐵
2

ℎ
𝑇 at 5 K. The measurement of electronic thermal transport in a 

system with far less than a single open quantum channel demonstrates the exceptional sensitivity of 

graphene noise thermometers in our experiment. 

The relation between 𝐺𝑁𝑇 and 𝐺𝑁𝑇
𝑡ℎ  can be described quantitatively by considering the Lorenz ratio 

𝐿𝑁𝑇/𝐿0 = 𝐺𝑁𝑇
𝑡ℎ /𝐿0𝑇𝐺𝑁𝑇 . For Device 1, with higher conductance, the Lorenz ratio is significantly above 1 

for all gate and temperature ranges measured (see lower panels of Fig.3b), indicating a Wiedemann-Franz 

violation. This is consistent with previous measurements in quasi-1D systems and with several theoretical 

predictions3,54–56. Close inspection shows that 𝐿𝑁𝑇/𝐿0 exhibits peaks whenever the electrical conductance 

shows a dip, suggesting enhanced thermal conduction when electrical conduction is suppressed. In Device 

2, with higher resistance, this enhanced thermal conduction is more clearly visible by plotting the inverse 

Lorenz ratio, (𝐿𝑁𝑇/𝐿0)−1, which is strongly positively correlated with the electrical conductance (Fig. 3c).  

The observed correlation of (𝐿𝑁𝑇/𝐿0)−1 and 𝐺𝑁𝑇 suggests the presence of a channel of excess thermal 

conduction that does not rely on direct electron transport.  

To account for a heat transport channel that is active even with suppressed electrical conduction, 

we propose a model for plasmon hopping mediated by Coulomb interactions. The long-range Coulomb 

interaction has measurable effect on many NT properties57–60. We consider a minimal model of a 1D 

conductor separated into two parts by an impenetrable barrier. In the absence of electron transport, energy 
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transport by hot electrons cannot be achieved. However, a long-range interaction allows for energy transfer 

across the barrier even in the absence of direct charge tunneling. In this case, hot plasmons (density 

fluctuations) induce fluctuations across the electron barrier, leading to an energy current (Fig.4b, inset). 

With Coulomb interactions, the plasmon hopping energy current obeys 𝑄 ∝ 𝑇𝐻
2 − 𝑇𝐶

2, while in the 

presence of screening by a nearby metal gate, the result is modified to 𝑄 ∝ 𝑇𝐻
4 − 𝑇𝐶

4 (see supplementary 

section 8 for a detailed calculation). 

We further test long-range plasmonic energy transport in the NT devices using nonlinear thermal 

transport. We relax the condition 𝛥𝑇𝐻 ≲  𝑇𝑏𝑎𝑡ℎ of the previous measurement by measuring the nanotube 

energy current 𝑄𝑁𝑇 up to large thermal bias 𝛥𝑇𝐻. This measurement is the thermal analogue of a current-

voltage curve in electrical measurement. Figure 4a shows 𝑄𝑁𝑇 as a function of 𝛥𝑇𝐻 𝑇𝑏𝑎𝑡ℎ⁄  at representative 

gate voltages for Devices 1 and 2. We observe a superlinear increase of 𝑄𝑁𝑇 for all measured gate voltages 

and bath temperatures. Figure 4b shows a log-log plot of  𝑄𝑁𝑇 + 𝑄0 versus (𝛥𝑇𝐻 + 𝑇𝑏𝑎𝑡ℎ) 𝑇𝑏𝑎𝑡ℎ⁄ , where 

𝑄0 = 𝑎𝑇𝑏𝑎𝑡ℎ
𝑝 is a fitting parameter with 𝑎 corresponding to the proportionality constant of the expression 

𝑄𝑁𝑇 ∝ 𝑇𝐻
𝑝 − 𝑇𝐶

𝑝. The highly linear scaling observed suggests that 𝑄𝑁𝑇 follows the power law behavior 

above with well-defined 𝑝. The slope of this plot provides 𝑝, which ranges between 2-6 depending on the 

nanotube resistance 𝑅𝑁𝑇 (Fig. 4c). For the more resistive nanotube of Device 2, 𝑅𝑁𝑇 ≫
ℎ

𝑒2 (vertical dashed 

grey line), we observe 𝑝~4, suggesting that once the electron transmission coefficient is far less than 1 and 

tunneling becomes suppressed, plasmon hopping via screened Coulomb interactions may be an important 

contribution to heat transport. For the highly-conductive NT of Device 1, 𝑅𝑁𝑇~
ℎ

𝑒2 and 𝑝 ranges from 2 to 

4. In this regime, electron transport is non-negligible, necessitating further theoretical modelling. We also 

note that our experimental observations cannot be described by an existing theory61 in a disordered 

Luttinger regime with short-range interactions only, which predicts  𝑄 ∝ (𝑇𝐻 − 𝑇𝐶)
4

3 and gives 𝑝 < 2. At a 

high conductance and high temperature point, we find 𝑝~6, indicating the possible presence of additional 
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energy transport mechanisms. Our observations motivate future work to understand the interplay of long-

range interactions and 1D electron and heat transport. 

In conclusion, we have demonstrated the measurement of nonlocal voltage fluctuations induced by 

electronic thermal transport. By using graphene noise thermometers, we show high-sensitivity electronic 

heat transport experiments in 2D van der Waals, 1D nanotubes and 0D localized systems, where we observe 

interaction effects in energy transport. Our approach enables the study of electronic thermal transport in a 

wide variety of low dimensional systems that were previously out of reach. 
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Methods 

Nanotube-Graphene Device Fabrication 

Carbon NTs are grown in a CVD furnace using the methods described in Ref.51. The growth substrate is a 

5x5 mm2 silicon chip with a slit in the center, oriented perpendicular to the gas flow direction. Catalyst is 

applied on one side of the slit, so that NTs grow suspended across the slit. Suspended NTs were found and 

characterized using Rayleigh scattering spectroscopy and imaging. By matching peaks in Rayleigh 

scattering intensity with NT optical transition energies, the chiral indices (and thus diameter and 

metallic/semiconducting nature) of the NT can be determined.  

Heterostructures of monolayer graphene on top of a 20-60 nm BN flake were prepared using the inverted 

stacking technique. A 200-500 nm wide, > 10 𝜇𝑚 long slit was then created in the graphene by defining a 

polymethyl methacrylate (PMMA) mask with electron beam (e-beam) lithography and etching with O2 

plasma in a reactive ion etcher. A second e-beam lithography step defines a resist-free window above the 

heterostructure, while the rest of the chip remains coated in ~100 𝑛𝑚 of resist. The growth chip and 

PMMA-coated sample are pressed together until mechanical contact is observed, then heated to 180 °𝐶 for 

5 minutes to melt the resist. The chips are then cooled to 90 °𝐶 and slowly separated. Successful NT transfer 

is confirmed by electron microscope or atomic force microscope imaging. 

Following NT transfer, electrical contacts were made to the edges of the graphene following the method in 

Ref.62. The unwanted sections of the heterostructure are removed by reactive ion etching with CHF3. An 

insulating layer of 120 nm SiO2 was made above the NT by e-beam lithography of hydrogen silsesquioxane 

(HSQ) resist and development with CD-26 developer. A final e-beam lithography step defined the mask 

for the local top gate above the NT, which was formed by thermal evaporation of 3 nm Cr/7 nm Pd/70 nm 

Au (using an angled, rotating stage to mitigate height differences between different parts of the structure). 
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Differential Noise Thermometry 

Each thermometer should measure the local temperature 𝑇𝐻,𝐶 without cross-contamination of signals. 

Single-ended amplification of 𝑆𝐻,𝐶 would mix signals from either side due to a common ground and cause 

direct Joule heating of the cold side if the bridge is electrically conducting (see supplementary section 3). 

We therefore implement a differential noise thermometry measurement, described in detail elsewhere31. 

Briefly, each terminal pair is connected to a balanced matching circuit that couples high frequency signals 

into a differential low noise amplifier (see Fig.1c). The resonant frequencies for the two matching circuits, 

between 100 MHz-1 GHz, are chosen to be separated in frequency by several times the circuit bandwidth, 

so that the hot and cold noise signals are mutually filtered and cross-correlations are suppressed. The 

amplified signals are bandpass filtered and amplified at a second stage (not shown) and sent through a 

power detector which generates a voltage proportional to the integrated high-frequency noise spectral 

density. By applying a low-frequency current at frequency f, the system is heated by Joule power at 

frequency 2f, and the output voltage is amplitude-modulated at frequency 2f. Using lock-in amplifiers, we 

isolate the change in noise power amplitude due to the applied Joule power. After calibration (see 

supplementary section 1), the 2f noise power voltage signal is converted into a temperature rise, 𝛥𝑇𝐻,𝐶. 

Previously, we have shown this measurement can achieve sub-milliKelvin precision in 30s averaging 

time31. 

 

Methods References 

62. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science (80-. ). 

342, 614–617 (2013). 
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Figure 1: Nonlocal Noise Thermometry in Multiterminal Devices. a, Schematic of multiterminal noise 
measurement. A diffusive, conducting electron system is connected to terminals held at a bath temperature 
Tbath. Current is injected into one terminal and escapes via a ground, while other terminals are floating. Finite-
element simulation of the temperature and current distribution assuming a uniform conductivity is shown in 
the color scale and streamlines, respectively. In the absence of energy loss to phonons, the noise Snm measured 
at any two terminals is given by a weighted function of the electronic temperature distribution Te(r), where r is 
a location in the conductor (see main text). b, Thermal circuit for a thermal conductance measurement. Joule 
power  is injected into a hot side reservoir connected by thermal resistance  to . The bridge thermal 
resistance  allows thermal current  to cross from hot to cold side, connected to the bath by . c, 
Circuit and geometry for nonlocal noise thermometry. Box I (blue, center): finite element simulation of the 
device geometry. Joule power is dissipated on the hot side (left, wide rectangle) due to injected current density 
(streamlines). Thermal current is transported across the bridge while the electrical current across the bridge 

, causing heating of the cold side (right, narrow rectangle). Box II (green), box III (yellow), box IV 
(red), correspond respectively to the balanced matching circuit, balanced current excitation and resistance 
measurement, and noise measurement amplification chain (see Methods section for details). d, The upper inset 
of center panel shows an optical image of the device (shown before top gate deposition for clarity), scale bar 
corresponds to 1µm. Schematic measurement setup overlaid on optical image shows the hot side current 
excitation and hot/cold side noise measurement simplified from panel c. The device stack consists of graphene 
encapsulated in hBN layers (lower inset). Left (right) panel displays hot (cold) side noise power and calibrated 
temperature change  ( ) versus applied Joule power, , at  and fixed hot and cold side 
gate voltages at two values of the bridge density (solid and dashed lines). On the hot side (left panel),  rises 
nearly identically, owing to a small amount of power escaping across the bridge, while , which is far 
smaller, strongly depends on the bridge gate voltage, evidencing a difference in thermal current across the 
bridge. 
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Figure 2: Electronic Thermal Conductance of Graphene. a, Top panel: Hot side temperature change  
versus bridge gate, , at fixed hot and cold side gate voltages  and .  5, 20, and 30K 
for blue, yellow, and red curves, respectively (for all panels in this figure). Lower panel: Corresponding cold 
side temperature change  versus bridge gate, . Inset: optical image of the hBN-encapsulated 
graphene device after topgate deposition. Scale bar: 1µm. Schematic circuit diagram: current is injected to the 
hot side at frequency f, and the resulting modulated noise power on hot and cold sides are measured yielding 
the temperature changes  and . b, Top panel display: Electrical resistance of the bridge, , 

versus  (bottom axis) and bridge carrier density  (top axis). In this temperature range, the 

resistance is nearly temperature independent. An excess resistance near =0 at the lowest measured 
temperature arises due to induced disorder of the atomic layer deposited (ALD) insulating layer for the top 
gates. Middle panel shows thermal conductance of the bridge, , deduced from the temperature changes 
and the independently measured cold side thermal conductance (see main text). Bottom panel shows Lorenz 
ratio of the bridge,  (see main text for definition and discussion). 
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Figure 3: Electronic Thermal Conductance of Carbon Nanotubes. a, Left panel: Device schematic. A bottom hBN layer supports monolayer 
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the NT carrier density. Right panel: composite optical and scanning electron microscope image of the device. Scale bar shows 1µm. Dashed yellow line 
shows location of metal top gate. b, Electrical and thermal conductance of a small-bandgap NT in Device 1. Main plots: electrical conductance in blue, 
thermal conductance in orange. Lower plots: Lorenz ratio LNT/L0 in dark green (see main text for definition). Electrical conductance shown in upper panel 
is replotted in faint blue dotted line for explicit comparison with LNT/L0. All thermal quantities are lower bounds (see main text and supplementary 
material). Top, middle, and bottom panels correspond to  70, 40, and 20K respectively. Thermal bias for all plots . c, Electrical 
and thermal conductance measured in Device 2 with a high-resistance CNT bridge. Main plots: electrical conductance in blue, thermal conductance in 
orange. Lower plots: Inverse Lorenz ratio, (LNT/L0)-1, in light green (see main text for definition), electrical conductance is reproduced in faint blue dotted 
line.  Top, middle, and bottoms panels correspond to   15, 10, and 5K respectively. Top and middle panels: . Bottom panel: 

.  DC voltage is applied across the NT to overcome the contact barrier. All NT thermal quantities are lower bounds (see main text 
and supplementary material). Bottom panel inset shows zoom of Coulomb peaks near gap onset. 

 



Figure 4: Nonlinear Thermal Transport in Carbon Nanotubes. a, Thermal current across the NT  
versus scaled thermal bias, . Device 1: Orange: , . Yellow: , 

.  Device 2: Purple: ,  (multiplied by 20 for comparison). Red lines: 
fit to plasmon hopping model (see main text). b, Log-log linearizing plot of NT thermal current versus thermal 
bias. Device 1: Orange, yellow, and purple are identical to a. Blue and green data sets correspond to Device 1, 

,  and Device 2 , , respectively. Brown lines: fit to 
plasmon hopping model. Inset shows a schematic diagram of the plasmon hopping process, in which thermal 
electron density fluctuations are coupled across a barrier by long-range interactions, allowing the transport of 
energy even in an insulating system. c, Extracted exponents of the plasmon hopping model fit versus NT 
resistance . Symbols x and o correspond to data from Device 1 and Device 2, respectively. For device 1, 
blue, purple and red correspond to = 6, 40, and 70K, respectively. For device 2, blue and purple 
correspond to = 30 and 50K, respectively. Symbols without error bars have statistical error less than the 
symbol size. Dashed vertical grey line corresponds to  
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1. Temperature Calibration 
In this section, we describe the calibration that converts noise power to temperature. We use the 

calibration scheme described in Ref.1 which we summarize here. 

The integrated noise power measured by the power detector (see Fig1 of the main text) can be 

expressed as 

𝑃 = 𝐺(𝑇𝑒
𝑔𝑟

+ 𝑇𝑁) (1.1) 

where 𝑃 is the power detector output in Volts, 𝐺 is an effective gain constant, 𝑇𝑒
𝑔𝑟

 is the electron 

temperature of the graphene thermometer being measured, and 𝑇𝑁 is an effective noise temperature. 

The quantities  𝐺 and 𝑇𝑁 are proportional to frequency integrals of the frequency-dependent gain and 

noise temperature over the system bandwidth. Both 𝐺 and 𝑇𝑁 depend on the resistance 𝑅 of the 

thermometer, such that 𝐺 = 𝐺(𝑅) and 𝑇𝑁 = 𝑇𝑁(𝑅). To accurately translate between noise power 

output and temperature, these two quantities must be known. 

To obtain the gain and noise temperature, we perform calibration sweeps of the graphene 

thermometers. These involve sweeping a gate voltage to drive the thermometer across a range of 

resistance variation and repeating this sweep at several fixed temperatures. An example is shown in 

Fig.S1a, for a graphene thermometer used in Fig.3. As the graphene resistance changes due to the 

backgate voltage 𝑉𝑏𝑔, the output noise power modulates. The specific shape depends on the matching 

circuit design. With these curves, we plot noise power versus temperature at a fixed resistance, shown 

in Fig.S1b. The linear behavior is shown for three different values of the graphene resistance and is 

linear throughout the measured temperature range. We fit the expression above to the data, extracting 

𝐺 from the slope and and 𝑇𝑁 from the x-axis intercept. The results are shown in Fig.S1c. The gain 

exhibits a local maximum, while the noise temperature shows a corresponding local minimum. These 

extremal points correspond to the best-matched resistance value in the circuit, where the graphene 

resistance is closest to the ideal match point of the matching circuit. From these data, noise power can 

be accurately converted to temperature. 

Figure S1 Temperature 
Calibration. a) Total 
noise power output of a 
graphene noise 
thermometer versus 
𝑉𝑏𝑔, for different 

temperatures 𝑇𝑏𝑎𝑡ℎ 
from 5 𝐾 (blue) to 75 𝐾 
(red), spaced by 5 K. b) 
Total noise power versus 
𝑇𝑏𝑎𝑡ℎ at fixed device 
resistance, shown for 
three different 
resistance values. Blue 
points: data, red lines: 
linear fit to Eq.1.1. c) 
Extracted gain and noise 
temperature 𝑇𝑁 versus 
device resistance 𝑅. 
Blue: gain (left axis), 
orange: 𝑇𝑁 (right axis). 
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2. Balancing Circuit 
The thermal transport device described in the main text allows for independent thermal and electrical 

biasing of the bridge. In this section we briefly describe how we achieve the balanced circuit condition 

that allows for this flexible operation. 

Thermal conductance is defined in the absence of electrical current flow. During a thermal transport 

measurement, the current injected to the hot side deposits Joule power, raising the electronic 

temperature and accomplishing a thermal bias for the bridge. The voltage bias of the bridge depends on 

the voltage distribution in the hot and cold sides. These in turn depend on the resistance to ground of all 

four contacts. These resistances will thus determine the potential distribution and the total electrical 

bias of the bridge. 

Therefore, to establish a thermal bias without charge current, we balance the biasing circuit prior to the 

thermal measurements. A simplified schematic of the tuning circuit is shown in Fig.S2. A differential 

lock-in excitation is applied to the hot side. The cold side terminals are shorted together and their 

common voltage level 𝑉𝑢𝑛𝑏𝑎𝑙 is measured at the same lock-in frequency as the hot side excitation. The 

tunable biasing resistor is then adjusted to zero 𝑉𝑢𝑛𝑏𝑎𝑙. This scheme allows for thermal biasing without 

electrical current, but it is also more general. It allows for the application of arbitrary thermal and 

electrical bias, which can be independently tuned for a wider variety of experimental conditions. 

 

3. Single-ended vs. Differential Amplification 
Here, we briefly discuss the problems with single-ended amplification and the need for a differential 

approach. We seek to realize the effective thermal circuit shown in Fig.1b of the main text, reproduced 

in Fig.S3a. Naively, we can construct an electrical circuit for noise thermometry that resembles the 

thermal circuit using amplifiers referenced to a common ground. However, we will show below that this 

single-ended approach poses important issues. 

Consider the electrical circuit shown in Fig.S3b, which represents an experimental scheme for noise 

measurement with single-ended amplification. Here, the resistors form a voltage divider for the voltage 

applied to the hot side, 𝑉𝑖𝑛. 

Two problems present themselves in this setup. First, there are two current paths to ground. The cold 

side is thus heated by direct Joule heating from electrical current flowing across the bridge, in addition 

 
     

Figure S2 Balancing circuit. A balanced differential voltage excitation is 
applied to the hot side graphene thermometer via two biasing resistors. 
The balanced condition is attained by tuning one of the resistors. The 
opposite cold side graphene thermometer has its two contacts shorted 
together and measured as the unbalance voltage 𝑉𝑢𝑛𝑏𝑎𝑙 . The tunable 
resistor is then adjusted until 𝑉𝑢𝑛𝑏𝑎𝑙 = 0. Central image: optical image 
of the device after topgate deposition. Scale bar 1𝜇𝑚. 
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to energy current due to the thermal conductance of the bridge. Second, the amplifiers measure the 

fluctuations associated with two current paths to ground, and thus do not isolate the desired Δ𝑇𝐶  and 

Δ𝑇𝐻, giving instead a mixed signal that is difficult to disentangle.  

The differential circuit shown in Fig.1c of the main text plays two roles. First, it allows for thermally 

biasing the bridge without directly Joule heating the bridge and the cold side. Second, it isolates the 

voltage fluctuations such that the amplifiers measure the temperature rise associated with their 

respective thermometers exclusively, without mixing of signals from both sides. 

 

4. Nonlocal Thermometry with Multiterminal Noise: Theory 
In this section, we present theoretical calculations of multiterminal noise that undergird its use for 

nonlocal thermometry and thermal transport measurement.  

4.1  Connecting Multiterminal Noise and Noise Thermometry 
In this section, we briefly review the formalism of Sukhorukov and Loss2 for the hot electron regime and 

show how multiterminal noise can be related to the average of the thermometer temperature 

distribution by judicious choice of geometry.  

Consider a multiterminal geometry like that shown in Fig.1a of the main text. The noise current on each 

terminal, 𝛿𝐼𝑛(𝑡), gives rise to a correlation between the two terminals defined as 𝑆𝑛𝑚 =

∫ 𝑑𝑡〈𝛿𝐼𝑛(𝑡)𝛿𝐼𝑚(𝑡)〉
∞

−∞
, which corresponds to the mean square noise current per unit frequency. 

Sukhorukov and Loss2 showed that this noise current can be rewritten as 

𝑆𝑛𝑚 = ∫ 𝑑𝒓∇𝜙𝑛 ∙ 𝜎̂∇𝜙𝑚 Π(𝒓) (4.1.1) 

Here, 𝜎̂ is the local conductivity tensor, 𝜙𝑛 is a characteristic potential associated with each terminal of 

the device, defined to obey a sum rule ∑ 𝜙𝑛(𝑟)𝑛 = 1 such that the potential throughout the device 𝑉(𝑟) 

is given by 𝑉(𝑟) = ∑ 𝜙𝑛(𝑟)𝑛 𝑉𝑛 where 𝑉𝑛 is the boundary potential of the 𝑛th terminal, and Π(𝑟) is a 

local effective electron temperature defined by Π(𝑟) = 2 ∫ 𝑑𝜀𝑓0(𝜀, 𝑟)[1 − 𝑓0(𝜀, 𝑟)] where 𝑓0(𝜀, 𝑟) is the 

energy and space dependent symmetric part of the Fermi-Dirac distribution function for the system. In 

Figure S3 Single-ended amplification. a) Thermal circuit for a thermal conductance measurement, reproduced from Fig.1b of the 
main text. b) Electrical circuit under single-ended amplification. The hot side excitation 𝑉𝑖𝑛 is applied to the hot side resistor 𝑅𝐻, 
and flows to the hot side and cold side grounds. The resulting Joule heat is applied to all resistive elements of the circuit. The 
single-ended amplifiers measure voltage to ground, which includes fluctuations from all elements of the circuit. Thus, neither the 
Joule heat nor the noise thermometry is isolated for the hot and cold sides. 
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the hot electron or quasi-equilibrium regime where the electronic temperature 𝑇𝑒(𝑟) is locally defined, 

the local effective electron temperature is given by 

Π(𝑟) = 2𝑇𝑒(𝑟) (4.1.2) 

and is proportional to the real local electron temperature. We define the local weighting function 

𝑔𝑛𝑚(r) = ∇𝜙𝑛 ∙ 𝜎̂∇𝜙𝑚 so that we can rewrite the noise as 

𝑆𝑛𝑚 = 2 ∫ 𝑑𝒓𝑔𝑛𝑚(𝒓) 𝑇𝑒(𝒓) (4.1.3) 

To obtain a measure of the local temperature, we must simplify the form of the local weighting function.  

We first consider the simpler case of a rectangular geometry of length 𝐿 with two contacts spanning the 

width of the channel. The characteristic potentials are found by setting one terminal to 𝑉1 = 1 and the 

other to 𝑉2 = 0 and vice-versa, so that the two characteristic potentials are 𝜙1 = 𝑦 𝐿⁄  and 𝜙2 = 1 −

𝑦 𝐿⁄ . Assuming that the conductivity is uniform and constant, the weighting function is then 𝑔12(r) =

− 𝜎 𝐿2⁄ , also a uniform constant, which is negative because the noise obeys the properties ∑ 𝑆𝑛𝑚𝑛 = 0 

and 𝑆𝑛𝑛 > 0 due to charge conservation. Taking the rectangle to have width 𝑊, we can express the 

noise in terms of the spatially-averaged temperature 𝑇𝑒
𝑎𝑣𝑔

=∫ 𝑑𝒓𝑇𝑒(𝒓) (𝐿 × 𝑊)⁄ , which results in 𝑆12 =

−2 𝜎 
𝑊

𝐿
 𝑇𝑒

𝑎𝑣𝑔
. The electrical conductance of the rectangle is 𝐺 = 𝜎 𝑊 𝐿⁄ , so 

𝑆12 = −2 𝐺 𝑇𝑒
𝑎𝑣𝑔

. (4.1.4) 

Here, 𝑇𝑒
𝑎𝑣𝑔

= 𝑇𝐽𝑁, the measured Johnson noise temperature3,4. This expression resembles the 

equilibrium multiterminal Johnson noise found by Sukhorukov and Loss for arbitrary geometry, 𝑆𝑛𝑚 =

−2 𝐺𝑛𝑚 𝑇, with the difference that Eq.4.1.4 holds for non-equilibrium temperature distributions.  

To show how Eq.4.1.4 relates to the measurement, we observe that differential noise measures the 

difference in fluctuations between two terminals. This may be expressed as 〈(𝛿𝐼1−𝛿𝐼2)2〉, where 𝛿𝐼1,2 

are the fluctuation currents of terminals 1 and 2. The corresponding noise correlator can be expressed 

by the difference of characteristic potentials, which we define as 𝑆1−2,1−2 = 2 ∫ 𝑑𝒓𝑔1−2,1−2(𝒓) 𝑇𝑒(𝒓), 

where the differential weighting function is defined as 𝑔1−2,1−2(r) = ∇
1

2
(𝜙1 − 𝜙2) ∙ 𝜎̂∇

1

2
(𝜙1 − 𝜙2). 

Expanding, we find that  4𝑆1−2,1−2 = 𝑆11 + 𝑆22 − 𝑆12 − 𝑆21. Invoking ∑ 𝑆𝑛𝑚𝑛 = 0 and 𝑆𝑛𝑚 = 𝑆𝑚𝑛, we 

find that 𝑆1−2,1−2 = −𝑆12. Thus, the two terminal differential noise is determined by Eq.4.1.4 and is 

proportional to 𝑇𝑒
𝑎𝑣𝑔

. 

Next, we examine how a multiterminal device modifies Eq.4.1.4. For simplicity, we first consider a 1D 

bridge located at the center of the hot and cold sides. From above, the differential correlator 𝑆1−2,1−2 =

2 ∫ 𝑑𝒓𝑔1−2,1−2(𝒓) 𝑇𝑒(𝒓) = 2 ∫ 𝑑𝒓∇
1

2
(𝜙1 − 𝜙2) ∙ 𝜎̂∇

1

2
(𝜙1 − 𝜙2) 𝑇𝑒(𝒓). To understand how the 

multiterminal geometry affects 𝑆1−2,1−2, we thus must understand the difference of characteristic 

potentials of the measured terminals in different regions of the device. Due to symmetry of the device 

about the bridge axis, the characteristic potentials 𝜙1 and 𝜙2 are identical up to a reflection about the 

bridge axis. Therefore, their values in the bridge and hot regions are identical, and the integrand above 

vanishes everywhere except the cold side. The resulting 𝑆1−2,1−2 is thus sensitive only to fluctuations on 

the cold side. 
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In real devices, some corrections to the ideal case must be considered. In general, the device will not be 

perfectly symmetric about the bridge axis due to inevitable shifts during fabrication. These shifts arise 

due to imperfections in electron beam lithography, with errors of order 10-100nm, compared to the 

typical device dimensions of several microns. Although these are small, we proceed to consider their 

effect by defining terminals 1 and 2 as cold side top and bottom terminals, and 3 and 4 as hot side top 

and bottom terminals. Due to shifts, the bridge may be offset upward, toward terminals 1 and 3, or 

downwards, towards terminal 2 and 4. We rewrite the differential correlator in terms of the individual 

weighting functions, 𝑆1−2,1−2 = 2 ∫ 𝑑𝒓𝑔1−2,1−2(𝒓) 𝑇𝑒(𝒓) = 2 ∫ 𝑑𝒓(𝑔11 + 𝑔22 − 𝑔12 − 𝑔21) 𝑇𝑒(𝒓). If the 

bridge shifts upward, the bridge value of 𝑔11 will grow, while that of 𝑔22 will correspondingly shrink. On 

the other hand, 𝑔12 will remain the same to first order, since the value of the weighting function at the 

bridge is determined by a product of two near-linear functions in the cold side, and so deviations are 

approximately quadratic about the center of the cold side. These deviations will thus tend to maintain 

the cancellation, yielding a negligible contribution outside of the cold region. In addition, real bridges 

may have a finite width, for which the corrections may be numerically shown to be vanishingly small, 

with hot and bridge contributions orders of magnitude smaller than the cold side contribution. 

In sum, the combination of differential measurement and device geometry and symmetry ensures that 

the noise measurement corresponds to the local electronic temperature, as in Eq.4.1.4, which is borne 

out by the results shown in the main text. 

4.2  The Cold Side as Power Meter 
We now show how the measured temperature rise of the cold side, ∆𝑇𝐶, is related to the total heat flux 

across the bridge, 𝑄. We first present the general result for any geometry, and then present a detailed 

calculation for the specific case of a rectangular noise thermometer. 

We consider a two-terminal cold side thermometer with contacts at the bath temperature and energy 

current 𝑄 injected at some arbitrary point along its boundary (see Fig.S4). As discussed in Sec.4.1, the 

Johnson noise temperature on the cold side ∆𝑇𝐶 is related to the current-current correlator 𝑆, which is 

determined by the conductivity, characteristic potentials and temperature distribution of the cold side. 

This relationship can be generalized, resulting in 

∆𝑇𝐶 = 𝑅 ∫ 𝑑2𝑟 𝑇(𝑟)∇⃗⃗⃗𝜙(𝑟) ⋅ [𝜎∇⃗⃗⃗𝜙(𝑟)] , (4.2.1) 

where 𝜙(𝒓) is the (dimensionless) characteristic potential discussed in the previous supplemental 

section for one of the two terminals (with subscripts dropped in the two-terminal setup), 𝑅 is the two-

Figure S4 Heating of the cold side by the bridge. Left 
panel: energy current Q is injected at an arbitrary 
point along the boundary of a two-terminal 
geometry representing a conducting system with 
contacts at the bath temperature. The axis of 
symmetry is shown by the dashed line. Right panel: 
Rectangular case and geometric definitions used in 
section 4.2.  Different conventions are used in 
section 7. 
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terminal electrical resistance between the contacts on the cold side, and the integral is taken over the 

entire area of the cold side. Manipulating this expression, and using the Wiedemann-Franz relation 𝜎 =

𝜅/(𝐿𝐶𝑇0), where 𝐿𝐶  is the cold side Lorenz ratio and 𝑇0 the bath temperature, as well as the continuity 

of the heat current ∇⃗⃗⃗ ⋅ (𝜅∇⃗⃗⃗𝑇) = 0, one can derive a general relation 

∆𝑇𝐶 =
6

𝐺𝐶
𝑡ℎ ∫𝑑𝑠 𝜙(𝑟)[1 − 𝜙(𝑟)]𝑞⃗(𝑟) ⋅ (−𝑛̂)

𝐶

. (4.2.2) 

In this expression, the integral is taken over the bounding contour C of the cold side, and the quantity 

𝑞⃗(𝑟) ⋅ (−𝑛̂) represents the heat flux density entering the sample at a point 𝑟 along the boundary. For 

the special case where the heat enters the sample at a point along an axis of bilateral symmetry halfway 

between the two contacts, 𝜙 = 1/2, and one has Δ𝑇𝐶 =
6

𝐺𝐶
𝑡ℎ ×

1

4
𝑄, or 

𝑄 =
2

3
𝐺𝐶

𝑡ℎ∆𝑇𝐶 (4.2.3) 

A full derivation of Eq.4.2.2 will be presented in a forthcoming publication4. 

As an explicit example, we now derive the general result shown in Eq.4.2.3 for a rectangular geometry. 

We consider the heat flux as being injected at a point midway along the rectangular cold side, with two 

thermalizing contacts on top and bottom (see Fig.S4). Fourier’s law holds that the heat flux density, 𝑞⃗, is 

related to the thermal conductivity 𝜅, and the temperature distribution, 𝑇, by  

𝑞⃗ = −𝜅∇⃗⃗⃗𝑇 (4.2.4) 

The total heat flux is related to the heat flux density by an integral across the cold side width, which by 

symmetry is 

𝑄

2
= ∫ 𝑑𝑥 

𝑥=𝑤

𝑥=0

𝑞⃗(𝑥, 𝑦) ∙ 𝑦̂ (4.2.5) 

Since we assume that the heat flux is conserved everywhere within the area of the sample (due to 

negligible energy loss to phonons), Eq.4.2.5 applies at every value of 𝑦. Inserting Fourier’s law, 

𝑄

2
= −𝜅 ∫ 𝑑𝑥 

𝑥=𝑤

𝑥=0

𝑑𝑇

𝑑𝑦
(4.2.6) 

For simplicity, we can define 𝑇 relative to the bath temperature, so that  

𝑇 (𝑥, 𝑦 = ±
𝐿

2
) = 0. (4.2.7) 

These boundary conditions allow us to relate the temperature distribution to its derivative via the 

integral 𝑇(𝑥, 𝑦) = − ∫ 𝑑𝑦′ 
𝑦′=𝑦

𝑦′=0

𝑑𝑇

𝑑𝑦′. Now, integrating the left and right sides of Eq.4.2.6,  

∫ 𝑑𝑦′ 

𝑦′=𝑦

𝑦′=0

𝑄

2
= −𝜅 ∫ 𝑑𝑦′ 

𝑦′=𝑦

𝑦′=0

∫ 𝑑𝑥 

𝑥=𝑤

𝑥=0

𝑑𝑇

𝑑𝑦′
, (4.2.8) 
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so that  

𝑄

2
𝑦 = 𝜅 ∫ 𝑑𝑥 

𝑥=𝑤

𝑥=0

𝑇(𝑥, 𝑦). (4.2.9) 

Performing a second integration 

∫ 𝑑𝑦 

𝑦=
𝐿
2

𝑦=0

𝑄

2
𝑦 = 𝜅 ∫ 𝑑𝑦 

𝑦=
𝐿
2

𝑦=0

∫ 𝑑𝑥 

𝑥=𝑤

𝑥=0

𝑇(𝑥, 𝑦) (4.2.10) 

The right side is the average of the temperature distribution, ∆𝑇𝐶, which is what is measured by the 

Johnson noise measurement in this geometry. Performing the integral on the left and rearranging 

therefore gives 

𝑄 =
8𝑊

𝐿
𝜅∆𝑇𝐶 . (4.2.11) 

We can express 𝑄 in terms of the thermal conductance 𝐺𝐶
𝑡ℎ = 𝑃𝐽

𝐶 ∆𝑇𝐶
𝑠.ℎ.⁄  measured through self-

heating, where 𝑃𝐽
𝐶  is the Joule power applied to the cold side in self-heating and ∆𝑇𝐶

𝑠.ℎ. is the cold side 

self-heating temperature rise. Using the self-heating result 𝜅 =
𝐿

12 𝑊
𝐺𝐶

𝑡ℎ,3,5 we obtain 

𝑄 =
2

3
𝐺𝐶

𝑡ℎ∆𝑇𝐶 . (4.2.12) 

This coincides with the general result given in Eq.4.2.3. 

 

5. Effective Thermal Circuit Connection 
In this section, we will connect the real-space model of Fig.1c of the main text to the effective thermal 

circuit shown in Fig.1b of the main text. We will work in a simplified regime that will also demonstrate 

consistency with the general nonlocal power-temperature relationship derived in the previous section. 

We begin with the geometry shown in Fig.S5. For a sufficiently narrow bridge and cold side, we can use 

the simplification that all injected Joule power is dissipated in the hot side. Under these conditions, the 

hot side temperature distribution is parabolic, the bridge possesses a linear temperature profile, and the 

cold side a Λ-shaped temperature profile peaked at the cold end of the bridge and terminating at the 

bath temperature of the contacts. 

Figure S5 Simplifications of the device 
temperature distribution. Central image: 
finite element simulation of the 
temperature distribution (see Fig1c of the 
main text for details). Heat equation 
approximations for the hot, bridge, and cold 
regions are shown.  
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We now seek to relate this real-space model to the effective thermal circuit shown in Fig.1b of the main 

text. From that model, we found 𝐺𝑏𝑟𝑖𝑑𝑔𝑒
𝑡ℎ = 𝐺𝐶′

𝑡ℎΔ𝑇𝐶′ ∕ (Δ𝑇𝐻′ − Δ𝑇𝐶′) and 𝑄𝑏𝑟𝑖𝑑𝑔𝑒 = 𝐺𝐶′
𝑡ℎΔ𝑇𝐶′, with the 

primed quantities corresponding to those of the effective thermal circuit. In the effective thermal circuit, 

Δ𝑇𝐶′ is related to the temperature at the cold end of the bridge. In the real space model, this is Δ𝑇𝐶
𝑝𝑒𝑎𝑘

, 

the difference between the peak temperature of the cold side at the cold end of the bridge and the 

bath. We thus have that  

𝑄𝑏𝑟𝑖𝑑𝑔𝑒 = Δ𝑇𝐶
𝑝𝑒𝑎𝑘

 𝐺𝐶′
𝑡ℎ. (5.1) 

Now assume a rectangular cold side shape of length 𝐿 and width 𝑊, with a linearly-varying temperature 

distribution. We can then compute 𝐺𝐶′
𝑡ℎ in terms of 𝜅𝑐𝑜𝑙𝑑, the cold side thermal conductivity,  

𝐺𝐶′
𝑡ℎ = 𝜅𝑐𝑜𝑙𝑑

𝑊

𝐿 2⁄
× 2. (5.2) 

Here, we treat the cold side as two parallel channels of length 𝐿 2⁄  conducting heat to the thermal bath 

at the electrical contacts. We thus have that 

𝑄𝑏𝑟𝑖𝑑𝑔𝑒 = 𝑇𝐶
𝑝𝑒𝑎𝑘

 𝜅𝑐𝑜𝑙𝑑

𝑊

𝐿 2⁄
× 2. (5.3) 

We now use the self-heating result3 

𝜅𝑐𝑜𝑙𝑑 =  
𝑃𝐽

𝐶  

𝑇𝐽𝑁
𝐶𝐶  

𝐿

𝑊

1

12
, (5.4) 

where 𝑃𝐽
𝐶 is the Joule power applied to the cold side, and 𝑇𝐽𝑁

𝐶𝐶is the self-heating temperature rise 

measured on the cold side, which results in 

𝑄𝑏𝑟𝑖𝑑𝑔𝑒 = Δ𝑇𝐶
𝑝𝑒𝑎𝑘 𝑃𝐽

𝐶  

𝑇𝐽𝑁
𝐶𝐶  

1

3
, (5.5) 

from which we can make the identification 

𝐺𝐶′
𝑡ℎ = 𝐺𝐶

𝑡ℎ,𝑠.ℎ.  
1

3
. (5.6) 

Equation 5.6 shows that the effective thermal circuit quantity 𝐺𝐶′
𝑡ℎ can be directly related to the 

measured self-heating value 𝐺𝐶
𝑡ℎ,𝑠.ℎ. through a simple numerical factor. This is the main result of this 

section. 

We now demonstrate consistency with the energy current relation 4.2.3. First, we express Δ𝑇𝐶
𝑝𝑒𝑎𝑘

 in 

terms of the measured Δ𝑇𝐶 = ∫ 𝑑𝒓 𝑇𝑒(𝒓)
𝐶

/(𝐿 × 𝑊), the Johnson noise average over the cold side. The 

path 𝐶 goes between the two opposite electrodes at the bath temperature, crossing at its midpoint the 

bridge location where the temperature is maximal. Since the temperature distribution is linear in the 

absence of energy loss to phonons, the integration is simple and we have 

Δ𝑇𝐶
𝑝𝑒𝑎𝑘

= 2Δ𝑇𝐶 (5.7) 

Putting these two results together we obtain 
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𝑄𝑏𝑟𝑖𝑑𝑔𝑒 = Δ𝑇𝐶
𝑝𝑒𝑎𝑘

 𝐺𝐶′
𝑡ℎ =

2

3
Δ𝑇𝐶  𝐺𝐶

𝑡ℎ,𝑠.ℎ. (5.8) 

which coincides with the general result Eq.4.2.3. 

 

6. Nonlocal Thermometry with Electron-Phonon Coupling 
Here, we consider how electron-phonon coupling in the nonlocal noise thermometers modifies the 

thermal transport analysis. In graphene, the electronic diffusion cooling and electron-phonon energy 

loss terms can be individually, quantitatively determined5–7, enabling the nonlocal measurement even in 

the presence of electron-phonon coupling, as we show below. 

Extracting the thermal conductance 𝐺𝑏𝑟𝑖𝑑𝑔𝑒
𝑡ℎ  of the bridge requires two separate measurements: 

1. Running a current between the contacts of the cold side and measuring the increase of Johnson 

noise temperature ∆𝑇𝐽𝑁
𝐶𝐶 on the cold side 

2. Running a current between the contacts of the hot side and measuring the increase in Johnson 

noise temperature ∆𝑇𝐽𝑁
𝐻𝐶 on the cold side 

We consider these two situations one at a time, taking into account the effects of electron-phonon 

coupling. First, we outline the general structure of the heat equation that governs the spatial profile 

𝑇(𝑟) of the electron temperature 

If the thermal conductivity 𝜅 is taken to be constant and independent of position 𝑟, then the heat 

equation is  

−𝜅∇2𝑇(𝑟) + Σ𝑒𝑝ℎ[𝑇(𝑟)𝛿 − 𝑇0
𝛿] = 𝑝(𝑟) (6.1) 

Where Σ𝑒𝑝ℎ is the electron-phonon coupling constant, 𝛿 is an exponent characteristic of the system 

dimensionality and energy loss mechanism, 𝑇0 is the bath temperature of the phonons and electrons in 

the boundary reservoirs, and 𝑝(𝑟) is the dissipated power density added to the electron system at point 

𝑟. Throughout this section we work in the limit where the heating is weak enough that 𝑇 − 𝑇0 ≪ 𝑇0, so 

that equation 6.1 can be linearized, 𝑇(𝑟)𝛿 − 𝑇0
𝛿 ≈ 𝛿𝑇0

𝛿−1(𝑇 − 𝑇0). It is convenient to change notation 

so that 𝑇 denotes the temperature relative to the base temperature, 𝑇 − 𝑇0 → 𝑇. With these 

simplifications the heat equation is 

∇2𝑇(𝑟) −
𝑇(𝑟)

𝐿𝑒𝑝ℎ
2 = −

𝑝(𝑟)

𝜅
(6.2) 

Here we have introduced the electron-phonon coupling length, 

𝐿𝑒𝑝ℎ = √
𝜅

𝛿Σ𝑒𝑝ℎ𝑇0
𝛿−1

(6.3) 

whose parameters may be extracted from experiments5–7. 
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Temperature profile from self-heating 

We first consider measurement 1, where the cold side experiences Joule heating due to an electrical 

current between the two cold side contacts. Because of the balanced circuit shown in Fig.1 of the main 

text, the current flows essentially uniformly across the cold side. This would also be the case if the hot 

side terminals were both electrically floating, or if the bridge resistance was much greater than the cold 

side resistance. Under at least one of these conditions, the Joule power is uniform in space and 

𝑝(𝑟) =
𝑃𝐽

𝐶

𝑊 𝐿
(6.4) 

Where 𝐿 is the length of the cold side (the distance between the two contacts), 𝑊 is the width, and 

𝑃𝐽
𝐶 = 𝐼𝑐𝑜𝑙𝑑

2𝑅𝑐𝑜𝑙𝑑 is the Joule power dissipated when there is a current 𝐼𝑐𝑜𝑙𝑑 and resistance 𝑅𝑐𝑜𝑙𝑑. 

We define the two contacts to be at 𝑦 = 0 and 𝑦 = 𝐿. The contacts are assumed to be perfect heat sinks 

so that 𝑇(0) = 𝑇(𝐿) = 0. One can then solve the equation 6.2 to get 

𝑇(𝑦) =
𝑃𝐽

𝐶

𝜅𝐶

𝐿𝑒𝑝ℎ
2

𝐿 𝑊
[1 − cosh (

𝐿 − 2𝑦

2𝐿𝑒𝑝ℎ
) sech (

𝐿

2𝐿𝑒𝑝ℎ
)] (6.5) 

In the limit where there is no electron-phonon coupling, 𝐿𝑒𝑝ℎ → ∞, this equation becomes the familiar 

parabolic temperature profile: 

𝑇(𝑦) →
1

2

𝑃𝐽
𝐶

𝜅𝐶

𝑦(𝐿 − 𝑦)

𝐿 𝑊
. (6.6) 

From equation 6.5 one can read off the temperature at any given point, for example the maximum at 

𝑦 = 𝐿/2 

𝑇𝑚𝑎𝑥(𝑦) = 𝑇 (𝑦 =
𝐿

2
) =

𝑃𝐽
𝐶

𝜅𝐶

𝐿𝑒𝑝ℎ
2

𝐿 𝑊
[1 − sech (

𝐿

2𝐿𝑒𝑝ℎ
)] . (6.7) 

One can also calculate the Johnson noise temperature, which in the rectangular geometry is a simple 

average of the temperature profile, 𝑇𝐽𝑁 = (1/𝐿) ∫ 𝑇(𝑦)𝑑𝑦
𝐿

0
. This gives 

𝑇𝐽𝑁 =
𝑃𝐽

𝐶

𝜅𝐶

𝐿𝑒𝑝ℎ
2

𝐿 𝑊
[1 − 2

𝐿𝑒𝑝ℎ

𝐿
tanh (

𝐿

2𝐿𝑒𝑝ℎ
)] . (6.8) 

Now we can determine the thermal conductivity 𝜅𝐶  by measuring the Johnson noise temperature 

𝜅𝐶 =
𝑃𝐽

𝐶

Δ𝑇𝐽𝑁
𝐶𝐶

𝐿𝑒𝑝ℎ
2

𝐿 𝑊
[1 − 2

𝐿𝑒𝑝ℎ

𝐿
tanh (

𝐿

2𝐿𝑒𝑝ℎ
)] (6.9) 

The temperature profile from heat coming across the bridge 

Now we consider the second measurement, where current is applied between the two contacts of the 

hot side, and all the heating of the cold side is provided by thermal energy current conducted across the 

bridge. This means that the dissipating Joule power 𝑝(𝑟) is equal to zero everywhere except at the hot 

side. 
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One can again solve equation 6.2 for the temperature profile 𝑇(𝑟). This solution becomes particularly 

simple when 𝐿𝑒𝑝ℎ ≪ 𝑊, i.e. when the cold side is much narrower than the electron-phonon coupling 

length. In this case 𝑇(𝑟) effectively depends only on the vertical position 𝑦, and 

𝑇(𝑦) = 𝑇𝐶 sinh (
𝑦

𝐿𝑒𝑝ℎ
) csch (

𝐿

2𝐿𝑒𝑝ℎ
) (6.10) 

Where 𝑇𝐶 = 𝑇(𝑦 = 𝐿/2) denotes the maximum temperature on the cold side, right at the end of the 

bridge. The corresponding Johnson noise temperature 

𝑇𝐽𝑁 =
1

2
𝑇𝐶

4𝐿𝑒𝑝ℎ

𝐿
tanh (

𝐿

4𝐿𝑒𝑝ℎ
) (6.11) 

In the limit where the electron-phonon coupling is turned off, 𝐿𝑒𝑝ℎ/𝐿 → ∞, these two equations give 

the familiar linear temperature profile 𝑇(𝑦) = 𝑇𝐶  𝑦/(𝐿/2) and 𝑇𝐽𝑁 = 𝑇𝐶/2. 

The value of the temperature 𝑇𝐶  is determined by the total heat 𝑄 flowing across the bridge. In 

particular, 

𝑄 = 2κW |
𝑑𝑇

𝑑𝑦
|

𝑦=
𝐿
2

(6.12) 

That is, the slope of the temperature profile gives the magnitude of the heat current. Evaluating this 

expression, and plugging in the expression for 𝑇𝐽𝑁, gives 

𝑄 = Δ𝑇𝐽𝑁
𝐻𝐶𝜅

𝐿 𝑊

𝐿𝑒𝑝ℎ
2 coth (

𝐿

4𝐿𝑒𝑝ℎ
) coth (

𝐿

2𝐿𝑒𝑝ℎ
) (6.13) 

In the limit of 𝐿𝑒𝑝ℎ/𝐿 → ∞, this becomes the familiar 

𝑄 = Δ𝑇𝐽𝑁
𝐻𝐶𝜅

8𝑊

𝐿
(6.14) 

 

Putting it together to get 𝐺𝑏𝑟𝑖𝑑𝑔𝑒
𝑡ℎ  

We want to estimate the thermal conductance of the bridge 𝐺𝑏𝑟𝑖𝑑𝑔𝑒
𝑡ℎ defined by 

𝐺𝑏𝑟𝑖𝑑𝑔𝑒
𝑡ℎ =

𝑄

𝑇𝐻 − 𝑇𝐶

(6.15) 

All of the necessary ingredients for estimating 𝑇𝐻, 𝑇𝐶, and 𝑄 have been outlined in the above [Eq.6.7 and 

6.14], provided that we know the electron-phonon coupling strength, which is possible to independently 

obtain in situ in graphene devices with thermal noise measurements6–8. 

We now seek to understand what effect 𝐿𝑒𝑝ℎ has on the resulting value of 𝐺𝑏𝑟𝑖𝑑𝑔𝑒
𝑡ℎ . To do so, we expand 

the expression in Eq.6.15 in orders of 𝐿𝑒𝑝ℎ. Up to the first correction, we have 
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𝐺𝑏𝑟𝑖𝑑𝑔𝑒
𝑡ℎ =

2
3

Δ𝑇𝐶  𝐺𝐶
𝑡ℎ

3
2

Δ𝑇𝐻 − 2 Δ𝑇𝐶  
+

𝐿2

𝐿𝑒𝑝ℎ
2

Δ𝑇𝐶  𝐺𝐶
𝑡ℎ(6Δ𝑇𝐻 + 16Δ𝑇𝐶)

180(3Δ𝑇𝐻 + 4Δ𝑇𝐶)2
+ 𝑂 (

𝐿3

𝐿𝑒𝑝ℎ
3) , (6.16) 

where we have used 𝐿 = 𝐿𝐻 = 𝐿𝐶  as the length of the hot and cold sides, Δ𝑇𝐻 is the measured Johnson 

noise temperature of the hot side upon Joule heating (∆𝑇𝐽𝑁
𝐻𝐻 in the notation above), and Δ𝑇𝐶 is the 

measured Johnson noise temperature of the cold side when the hot side is heated (equivalent to ∆𝑇𝐽𝑁
𝐻𝐶 

above). The first term on the right-hand side of Eq.6.16 is the result obtained when 𝐿𝑒𝑝ℎ → ∞, described 

in previous sections. The first correction is positive, so that neglecting electron-phonon coupling when it 

is present in the noise thermometers leads to an underestimate of 𝐺𝑏𝑟𝑖𝑑𝑔𝑒
𝑡ℎ . The scaling with (𝐿/𝐿𝑒𝑝ℎ)

2
 

and the large numerical coefficient of 180 in the denominator of Eq.6.16 suggests that this correction 

may be small. 

 

7. Excess Energy Loss in the Nanotube-Graphene Devices 
In this section, we discuss the presence of excess energy loss in the nanotube-graphene devices. These 

devices are made without a top hBN layer in order to enable electrical contact between the graphene 

and nanotube. Due to the lack of top hBN, additional disorder is present in the graphene thermometers, 

due to fabrication residue and topographic corrugation. 

Figure S6 Cold side resistance and 
temperature change versus gate 
voltage. a) Top panel: circuit schematic 
for the displayed measurements. Joule 
power is applied to the hot side and 
temperature change is measured on the 
cold side as a function of the local cold 

side top gate voltage 𝑉𝑔
𝑐𝑜𝑙𝑑. Bottom 

panel: device stack (see Fig.1d and 
captions for details). b) Cold side 
graphene resistance 𝑅𝐶  and temperature 
change upon hot side heating ∆𝑇𝐶  versus 
local cold side topgate voltage 𝑉𝑔

𝐶. c) Top 

panel: composite optical and scanning 
electron micrograph of the CNT bridge 
device (see Fig.3a and caption for 
details). Bottom panel: device stack. d) 
Cold side graphene resistance 𝑅𝐶  and 
temperature change upon hot side 
heating ∆𝑇𝐶  versus global backgate 
voltage 𝑉𝑏𝑔.  
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We demonstrate this energy loss by sweeping the cold side gate, as shown in Fig.S6. Power is applied to 

the hot side and Δ𝑇𝐶 is measured as the cold side gate is swept, changing the cold side resistance. In the 

fully hBN-encapsulated graphene device, the cold side Dirac peak is visible in Fig.S6b, top panel. The 

corresponding Δ𝑇𝐶, Fig.S6b, bottom panel, evolves in correlation with the cold side resistance. This is 

the behavior expected from the thermal circuit shown in Fig.1b of the main text. For this thermal circuit, 

one can show that  Δ𝑇𝐶 =  𝑄𝑖𝑛  𝐺𝑏𝑟𝑖𝑑𝑔𝑒
𝑡ℎ ∑ 𝐺𝑖

𝑡ℎ𝐺𝑗
𝑡ℎ

𝑖𝑗⁄ . As 𝐺𝐶
𝑡ℎ increases, Δ𝑇𝐶 decreases, as expected.  

In the nanotube-graphene device, however, the behavior is markedly different. At the height of the 

Dirac peak (Fig.S6d, top panel), Δ𝑇𝐶 is at a minimum and increases as the resistance decreases. This 

suggests that an additional energy loss mechanism is present, which may be maximal near charge 

neutrality where it acts to suppress Δ𝑇𝐶 despite the decreased cold side thermal conductance. 

Measurements shown in the main text are taken near charge neutrality of the cold side in order to 

minimize the cold side thermal conductance and thus maximize its sensitivity to the small thermal 

conductance of the nanotubes. Therefore, we interpret the measured electronic thermal conductance 

of the nanotubes shown in the main text as lower bounds, due to the excess heat loss present at charge 

neutrality of the cold side graphene. 

Past work has demonstrated that disordered graphene possesses larger energy loss compared to fully-

encapsulated devices5,7,9,10. This is believed to be due to enhanced electron-phonon interaction in these 

devices (although device size, which also determines electron-phonon coupling, complicates this 

understanding). Further effects may arise from the corrugations of partially- or non-encapsulated 

graphene, which are predicted to lead to an energy loss mechanism due to scattering off of pinned 

flexural phonons11–15. Future development of nanotube-graphene devices with fully-encapsulated 

graphene may mitigate these issues. 

 

8. Theory of Plasmon Hopping Energy Transport 
Here we obtain an expression for the energy current in a one-dimensional conductor with long-range 

interactions between electrons in the presence of a single impurity that blocks transmission of particles.  

For simplicity, we start with the model of spinless electrons; the effect of the spin and valley degrees of 

freedom will be discussed later.  We describe the electrons in the conductor as a Luttinger liquid16 with 

the Hamiltonian 𝐻̂0 + 𝑉̂, where 

𝐻̂0 =
ℏ𝑣

2𝜋
∫ [𝐾(𝜕𝑥𝜃)2 +

1

𝐾
(𝜕𝑥𝜙)2] 𝑑𝑥

∞

−∞

,  𝜙(0) = 0,  𝜕𝑥𝜃(0) = 0 (8.1) 

𝑉̂ =
1

𝜋2
∫ 𝑑𝑥

∞

0

∫ 𝑑𝑦
0

−∞

 𝑉(𝑥 − 𝑦)𝜕𝑥𝜙(𝑥)𝜕𝑦𝜙(𝑦) (8.2) 

Here 𝑣 is the velocity of the bosonic excitations of the liquid (plasmons), 𝐾 is the Luttinger liquid 

parameter, while 𝜙(𝑥) and 𝜃(𝑥) are the standard bosonic fields with the commutation relation 

[𝜙(𝑥), 𝜕𝑦𝜃(𝑦)] = 𝑖𝜋𝛿(𝑥 − 𝑦) (8.3) 

Their physical meaning is that the electron density is given by 𝑛(𝑥) = 𝑛0 + 𝜕𝑥𝜙(𝑥)/𝜋, while the 

momentum per particle of the Luttinger liquid is 𝜅(𝑥) = −ℏ𝜕𝑥𝜃(𝑥), where 𝑛0 is the mean electron 
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density.  The boundary conditions in Eq.8.1 account for a strong point-like impurity at 𝑥 = 0 that 

completely pins the Luttinger liquid and does not allow transport of electrons through it.  The two parts 

of the system described by the Hamiltonian in Eq.8.1 corresponding to positive and negative 𝑥 are 

completely decoupled from each other. In the full Hamiltonian the coupling term 𝑉̂ is due to the long-

range tail of the interaction potential 𝑉(𝑥) describing the interaction between electrons. 

For the subsequent discussion, it is convenient to express the bosonic fields in terms of the creation and 

annihilation operators 𝑏𝑘 and 𝑏𝑘
†.  Unlike the standard Luttinger liquid theory, this relation should 

account for the barrier at 𝑥 = 0. It is convenient to denote the wavevector of the boson by 𝑘 for the 

liquid to the left of the barrier and by 𝑞 for that to the right of the barrier. Then the bosonic fields take 

the form 

𝜙(𝑥) = 𝜗(−𝑥)√𝐾 ∫
𝑑𝑘

√𝑘

∞

0

(𝑏𝑘 + 𝑏𝑘
†) sin(𝑘𝑥) + 𝜗(𝑥)√𝐾 ∫

𝑑𝑞

√𝑞

∞

0

(𝑏𝑞 + 𝑏𝑞
†) sin(𝑞𝑥) ,

∂𝑥𝜃(𝑥) = −𝜗(−𝑥)
𝑖

√𝐾
∫ 𝑑𝑘

∞

0

√𝑘(𝑏𝑘 − 𝑏𝑘
†) sin(𝑘𝑥) − 𝜗(𝑥)

𝑖

√𝐾
∫ 𝑑𝑞

∞

0
√𝑞(𝑏𝑞 − 𝑏𝑞

†) sin(𝑞𝑥) ,

(8.4) 

where 𝜗(𝑥) is the unit step function. Taking into account the commutation relations [𝑏𝑘 , 𝑏𝑘′
† ] =

𝛿(𝑘 − 𝑘′), [𝑏𝑞 , 𝑏𝑞′
† ] = 𝛿(𝑞 − 𝑞′), and [𝑏𝑘, 𝑏𝑞

†] = 0 for the bosonic operators, one can verify that the 

commutation relation 8.3 for 𝜙 and 𝜃 is satisfied. Substitution of Eqs.8.4 into Eq.8.1 yields 

𝐻0 = ℏ𝑣 ∫ 𝑑𝑘
∞

0

𝑘𝑏𝑘
†𝑏𝑘 + ℏ𝑣 ∫ 𝑑𝑞

∞

0

𝑞𝑏𝑞
†𝑏𝑞 , (8.5) 

where we omitted the constant corresponding to the zero-point energy.  Predictably, the excitations of 

the Luttinger liquid in the presence of the barrier at 𝑥 = 0 are two sets of plasmons with energies 𝜖𝑘 =

ℏ𝑣𝑘 and 𝜖𝑞 = ℏ𝑣𝑞. 

 

Substitution of Eqs.8.4 into Eq.8.2 expresses the operator 𝑉̂ in terms of the bosonic operators, 

𝑉̂ = ∫ 𝑑𝑞
∞

0

∫ 𝑑𝑘
∞

0

𝑡𝑞𝑘(𝑏𝑞 + 𝑏𝑞
†)(𝑏𝑘 + 𝑏𝑘

†), (8.6) 

where 

𝑡𝑞𝑘 =
𝐾

𝜋2

√𝑞𝑘

𝑞2 − 𝑘2
∫ 𝑉(𝑥)

∞

0

[𝑞 sin(𝑞𝑥) − 𝑘 sin(𝑘𝑥)]𝑑𝑥. (8.7) 

To make further progress, one should specify the form of interaction 𝑉(𝑥) between the electrons.  In 

the case of a nanotube in the presence of a gate at a distance 𝑑 from it, due to the resulting image 

charge 𝑉(𝑥) has the form 

𝑉(𝑥) =
𝑒2

|𝑥|
−

𝑒2

√𝑥2 + 4𝑑2
. (8.8) 

For small values of the wavevectors, Eq.8.7 yields 
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𝑡𝑞𝑘 =
2𝐾

𝜋2
𝑒2𝑑√𝑞𝑘, 𝑞, 𝑘 ≪

1

𝑑
. (8.9) 

In the opposite limit, one can neglect the second term in Eq.8.8, which reduces it to pure Coulomb 

repulsion.  In this case, 

𝑡𝑞𝑘 =
𝐾

2𝜋
𝑒2 √𝑞𝑘

𝑞 + 𝑘
, 𝑞, 𝑘 ≫

1

𝑑
. (8.10) 

We are now in a position to study energy transport through the impenetrable barrier.  We assume that 

the left and right subsystems are in thermal equilibrium states with different temperatures 𝑇𝐿 and 𝑇𝑅.  

This implies that the occupation numbers of the plasmons in both subsystems take the form of Bose 

distributions, 

𝑁𝑘
𝐿 =

1

𝑒ℏ𝑣𝑘/𝑇𝐿 − 1
,   𝑁𝑞

𝑅 =
1

𝑒ℏ𝑣𝑞/𝑇𝑅 − 1
. (8.11) 

The coupling of the left and right subsystems described by Eq.8.6 contains terms proportional to 𝑏𝑞
†𝑏𝑘 

and 𝑏𝑘
†𝑏𝑞, which describe hopping of plasmons through the barrier.  The rate of energy transport from 

left to right 𝐽𝐸 = − 𝑑𝐸𝐿 𝑑𝑡⁄  is easily obtained from Fermi's golden rule,  

𝐽𝐸 =
2𝜋

ℏ
∫ 𝑑𝑘

∞

0

∫ 𝑑𝑞
∞

0

|𝑡𝑞𝑘|2𝛿(𝜖𝑘 − 𝜖𝑞)𝜖𝑘[𝑁𝑘
𝐿(𝑁𝑞

𝑅 + 1) − 𝑁𝑞
𝑅(𝑁𝑘

𝐿 + 1)]. (8.12) 

After straightforward manipulations this expression takes the form 

𝐽𝐸 = 𝑗𝐸(𝑇𝐿) − 𝑗𝐸(𝑇𝑅), (8.13) 

where 

𝑗𝐸(𝑇) =
2𝜋

ℏ
∫ |

∞

0

𝑡𝑞𝑞|2
𝑞𝑑𝑞

𝑒ℏ𝑣𝑞/𝑇 − 1
. (8.14) 

At low temperatures 𝑇 ≪ ℏ𝑣/𝑑 the integral in Eq.8.14 is dominated by small values of 𝑞, and one can 

use the expression in Eq.8.9 for the matrix element 𝑡𝑞𝑘.  This results in 

𝑗𝐸(𝑇) =
8𝜋

15

𝐾2𝑒4𝑑2

ℏ5𝑣4
𝑇4. (8.15) 

At higher temperatures, 𝑇 ≫ ℏ𝑣/𝑑, one should use the expression 8.10 for 𝑡𝑞𝑘, which yields 

𝑗𝐸(𝑇) =
𝜋

48

𝐾2𝑒4

ℏ3𝑣2
𝑇2. (8.16) 

We therefore conclude that in the case of pure Coulomb repulsion the energy current through the 

barrier 𝐽𝐸 is proportional to 𝑇𝐿
2 − 𝑇𝑅

2, whereas in the presence of a screening gate 𝐽𝐸 ∝ 𝑇𝐿
4 − 𝑇𝑅

4. 

In the case of pure Coulomb interactions, the above conclusion is not entirely accurate.  Due to the long-

range nature of the interaction potential, the Luttinger liquid parameter 𝐾 is a weak function of 

temperature, 
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𝐾 =
1

√1 +
2𝑒2

𝜋ℏ𝑣𝐹
ln

ℏ𝑣
𝑤𝑇

. (8.17)
 

Here 𝑤 is a short-distance cutoff of the order of the width of the one-dimensional channel.  The 

additional logarithmic temperature dependence can be ignored when comparing the theoretical 

expression for the energy current given by Eqs.8.13 and 8.16 with experimental data. 

In the case of a one-dimensional system with spin and/or valley degrees of freedom, the above 

calculation requires some modification. One should start by bosonizing each channel and introducing 

orthogonal linear combinations of bosonic fields, with one of them, 𝜙(𝑥) = ∑ 𝜙𝑖(𝑥)/√𝑁𝑖 , describing 

excitations of the charge density.  [Here 𝑁 is the total number of channels; 𝑁 = 4 for the electron 

system in a nanotube due to the spin and valley degrees of freedom.  The normalization factor is 

required in order to preserve the commutation relations Eq.8.3.]  This is the plasmon mode, which is 

described by the same Hamiltonian 𝐻0 given by Eq.8.1, but the expression 8.2 for the coupling term 𝑉̂ 

requires modification.  The charge density 𝑛(𝑥) = 𝑛0 + ∑ ∂𝑥𝑖 ϕ𝑖(𝑥)/π = 𝑛0 + √𝑁 ∂𝑥ϕ(𝑥)/𝜋.  Thus, the 

coupling term 8.2 acquires an additional factor 𝑁, and our results 8.15 and 8.16 should be multiplied by 

𝑁2. 
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