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Electron hydrodynamics in anisotropic materials
Georgios Varnavides1,2,3,6, Adam S. Jermyn4,6, Polina Anikeeva 2,3, Claudia Felser5 & Prineha Narang 1✉

Rotational invariance strongly constrains the viscosity tensor of classical fluids. When this

symmetry is broken in anisotropic materials a wide array of novel phenomena become

possible. We explore electron fluid behaviors arising from the most general viscosity tensors

in two and three dimensions, constrained only thermodynamics and crystal symmetries. We

find nontrivial behaviors in both two- and three-dimensional materials, including imprints of

the crystal symmetry on the large-scale flow pattern. Breaking time-reversal symmetry

introduces a non-dissipative Hall component to the viscosity tensor, and while this vanishes

for 3D isotropic systems we show it need not for anisotropic materials. Further, for such

systems we find that the electronic fluid stress can couple to the vorticity without breaking

time-reversal symmetry. Our work demonstrates the anomalous landscape for electron

hydrodynamics in systems beyond graphene, and presents experimental geometries to

quantify the effects of electronic viscosity.
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Theoretical and experimental studies have revealed that
electrons in condensed matter can behave hydro-
dynamically, exhibiting fluid phenomena such as Stokes

flow and vortices1–9. Unlike classical fluids, preferred directions
inside crystals lift isotropic restrictions, necessitating a general-
ized treatment of electron hydrodynamics. While anisotropic
viscous flows have been studied in geophysics10, their prominence in
condensed matter has yet to be explored. This is of particular
importance, given the recent demonstration of hydrodynamic
behavior in three-dimensional materials such as Weyl semi-
metals11,12. Electron hydrodynamics is observed when microscopic
scattering processes conserve momentum over time- and length
scales that are large compared to those of the experimental probe.
However, even as momentum is conserved, free energy may be
dissipated from the electronic system, giving rise to a measurable
viscosity in the electron flow12–18.

When momentum is conserved, a fluid obeys Cauchy’s laws of
motion19

ρ _ui ¼ ∂jτji þ ρf i ð1Þ

ρ _σ i ¼ ∂jmji þ ρli þ ϵijkτjk; ð2Þ
where u and ρ are the fluid velocity and density, f and l are body
forces and couples, τ andm are the fluid stress and couple stress, and
σ is the intrinsic angular momentum density (internal spin). The
superscript dot denotes the material derivative, _x ¼ ∂tx þ uj∂jx,
and ϵ is the rank-3 alternating tensor. We assume couple stresses
and body couples to be zero, but allow for body forces of the form
ρfi=−Rijuj, where R is a rank-2, positive–semidefinite tensor that is
inversely proportional to a microscopic momentum-relaxing life-
time. In steady state and at experimentally accessible Reynolds
numbers17,20, this implies that the stress tensor is symmetric19. In
this limit, electron fluids obey the modified Navier–Stokes equation

ρuj∂jui ¼ �∂ipþ ∂jτji � Rijuj; ð3Þ
where τ is symmetric. Note that in electron fluids, current density is
analogous to the fluid velocity, and voltage drops are analogous to
changes in pressure. Assuming that the fluid velocity is much
smaller than the electronic speed of sound, u≪ cs, the electron fluids
are nearly incompressible, thus

∂iui ¼ 0: ð4Þ
In this limit, ρ is a constant, which we take to be unity. Since

the fluid stress appears in a divergence, it is defined only up to a
constant, which we choose to make τ vanish when u is uniformly
zero21,22. We further assume that the fluid stress vanishes for
uniform flow, so that it is only a function of the velocity gradient.

Without further loss of generality, the constitutive relation is
written to the first order as21

τij ¼ Aijkl∂luk; ð5Þ
where A is the fluid viscosity, a rank-4 tensor relating the fluid
velocity gradient (∂jui) and the fluid stress. Since we take τ to be
symmetric, A is invariant under permutation of its first two
indices, i.e., Aijkl= Ajikl

21,22. Viscosity is represented as the sum of
three rank-4 tensor basis elements23, summarized in Table 1

AðijÞkl ¼ αððijÞðklÞÞ þ β½ðijÞðklÞ� þ γðijÞ½kl�: ð6Þ
Tensor α describes dissipative behavior respecting both stress

symmetry and objectivity, i.e., αijkl = αjikl = αklij. Tensor β on
the other hand, describes nondissipative Hall viscosity7,23–27, i.e.,
βijkl=−βklij, and is nonzero only when time-reversal symmetry is
broken. Finally, γ breaks stress objectivity, i.e., γijkl=−γijlk,
coupling fluid stress to the vorticity. The fifth column in Table 1

specifies whether the tensor is defined according to a handedness
convention.

In classical fluids, the added consideration of rotational
invariance requires A to be isotropic, reducing it to the form

Aijkl ¼ λδijδkl þ μ δilδjk þ δjlδik

� �

þ B1 ϵikδjl þ δikϵjl

� �
þ Γ1δijϵkl;

ð7Þ

where δ is the Kronecker delta, ϵ is the rank-2 alternating tensor,
and the Lamé parameters λ and μ can be identified as the two
independent components of the proper tensor α. In the incom-
pressible case, λ does not contribute to the stress21. B1 and Γ1 are
constants parameterizing terms with the symmetry of β and γ,
respectively. Since β and γ are pseudotensors, the last three terms
in Eq. (7) are only nonzero in two dimensions23,24.

In crystals, however, there exist preferred directions and we
cannot assume rotational invariance. Instead, we must consider
the effect of the crystal symmetry given by Neumann’s
principle28,29, which requires that physical properties described
by rank-4 tensors, such as viscosity, remain invariant under the
transformation law

A0
ijkl ¼ jsjηsimsjnskoslpAmnop; ð8Þ

where s is the space representation of any given point group
symmetry of the crystal, ∣s∣= ±1 is the determinant of the sym-
metry operation, and η= 0 for proper tensors and η= 1 for
pseudotensors.

Although Eq. (8) relates different components of the viscosity
tensor, further constrains must be imposed to ensure that the
viscosity tensor never does positive work in Eq. (3), so that for
any velocity field u in d dimensionsZ

ui∂jðAijkl∂kulÞddr≤ 0: ð9Þ

Letting the Fourier transform of u be

~uðqÞ ¼
Z

eiq�ruðrÞddr ð10Þ

in d dimensions, we findZ
qjqk~u

�
i ðqÞ~ulðqÞAijkld

dq≥ 0: ð11Þ

This is satisfied when Aijkl has a positive definite biquadratic
form in il and jk, so we impose this constraint in addition to ij
symmetry and crystal symmetry.

Viscosity tensors are then randomly generated to satisfy the
aforementioned constraints, allowing for normalized numerical
deviations from isotropy lower than order unity. The viscosity
tensor is assumed to be spatially uniform in all cases. To
demonstrate the differences between these general viscosity ten-
sors and those more strongly constrained by symmetry, we solve
for the velocity and pressure of low Reynolds number flows in
several geometries. The parameterization of the viscosity tensor in

Table 1 Rank-4 tensors used as orthogonal basis elements
for the viscosity tensor.

Tensor Tensor symmetries Indep. comp.

i↔ j k↔ l ij↔ kl Type 3D 2D
α((ij)(kl)) + + + Proper 21 6
β[(ij)(kl)] + + − Pseudo 15 3
γ(ij)[kl] + − N/A Pseudo 18 3

Even and odd symmetries are represented using parentheses and square brackets, respectively.
The fifth column specifies whether the tensor changes sign under mirror operations.
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Eq. (6) allows us to explore the effects of breaking stress objec-
tivity and time-reversal symmetry. We highlight the effects of
symmetry in the last two indices (kl) because it implies that the
stress only couples to the strain rate (∂kul+ ∂luk) and not to the
vorticity (∂kul− ∂luk). This is a property of classical fluids, which
means that rigid–rotational flows are stress-free, and hence are
only sensitive to rotation via weaker effects like the Coriolis force.
Below, we demonstrate that with more general viscosity tensors,
this is not the case, and that the resulting rotational stresses can
be probed in experimentally accessible geometries.

Results
Effect of anisotropy. We first consider rotational flow in an
annulus with inner radius Rinner= 1 and outer radius Router= 2
(Fig. 1). We apply a no-slip condition to the outer boundary,
allow the inner boundary to rotate with unit angular velocity ω=
1, and solve for the steady-state flow at Reynolds number

Re � ωR2
inner

Aj j ¼ 0:3; ð12Þ

where

Aj j2 ¼ AijklAijkl: ð13Þ
The zero-pressure point is fixed at the bottom of the annulus.

Experimentally, such rotational flows can be achieved by
threading a time-varying magnetic flux through a Corbino disk
geometry30,31 (Fig. 1a). For a fluid with an isotropic viscosity, the
steady-state velocity field rotates rigidly with the angular velocity
set by the inner boundary condition (Fig. 1b).

To investigate the effects of anisotropy in two-dimensional
materials, we consider materials with D6 (hexagonal) and D4

(square) symmetry. Notably, D6 materials do not deviate from
isotropic behavior (Fig. 1(c)), consistent with experimental
observations for graphene9,17. We note that 2D materials with

C3 (threefold), C6 (sixfold), and D3 (triangular) symmetry also
exhibit isotropic viscosity tensors (see Supplementary Methods).
By contrast, the flow deviates considerably from isotropic
behavior in D4 materials (Fig. 1d). We repeat the calculation,
allowing for a momentum-relaxing body force equal to ∣R∣L2/∣A∣
= 0.1, illustrating that the deviation from isotropy remains
observable (Fig. 1e). We assume R→ 0 for the rest of the paper,
and investigate its effects and symmetry in Supplemenentary
Figs. 1 and 2. Figure 1f shows the steady-state velocity flow
difference between the isotropic case and D4 materials. We
observe steady-state vortices emerging at ~15% of the bulk flow
rate overlaid onto the isotropic velocity field. While the steady-
state pressure field in D6 materials mirrors that of an isotropic
fluid (Fig. 1g), the pressure field in D4 materials also exhibits four
vortices (Fig. 1h), with orientation set by the underlying
crystal axes.

Effect of asymmetry. We next examine the importance of sym-
metry in the last two indices of the viscosity tensor. We calculate
the flow profile for the annulus in Fig. 1 scaled by a factor of two,
equipped with a pressure gauge, as shown in Fig. 2a. The pressure
gauge is a channel with no-slip boundary conditions, allowing us
to measure the difference between the flow and a nearly sta-
tionary fluid. To isolate the effects of B1 and Γ1 in Eq. (7), Fig. 2a,
b shows the flow and pressure fields in the annulus for a material
with isotropic viscosity tensor where both B1 and Γ1 have been set
to zero (SO(2){α}). These are nearly unchanged inside the
annulus as compared to Fig. 1b, g, with a constant pressure in the
gauge. Allowing for nonzero stress-breaking components, i.e.,
using a material with isotropic viscosity for B1 ¼ 0 and Γ1= 0.25
(SO(2){γ}), we observe a significant pressure buildup near the
gauge. This is due to the shear stress between the rotating and
stationary fluids, while the pressure within the gauge itself is
nearly uniform, as shown in Fig. 2c.
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Fig. 1 Effect of viscosity tensor anisotropy on rotational flow in an annulus. a Corbino disk geometry schematic. The time-varying magnetic flux, Φ(t),
acting on a voltage drop, ΔV, gives rise to a Lorentz force, inducing rotational electron flow. b Steady-state streamplot plot using an isotropic (SO(2))
viscosity tensor. Streamplots using c hexagonal (D6), and d square (D4) viscosity tensors. e Streamplot using square (D4) viscosity tensor, allowing for
momentum-relaxing body force terms equal to ∣R∣L2/∣A∣= 0.1. f Difference in steady-state streamplot between isotropic and D4 viscosity tensors,
highlighting the emergence of steady-state vortices. Steady-state pressure plot using g D6 and h D4 viscosity tensors, illustrating the breaking of azimuthal
symmetry in the latter. Color scales indicate the magnitude of the velocity vector field (b–f) and pressure field (g, h).
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To quantify the pressure difference between SO(2){α} and SO
(2){γ}, note that the pressure is fixed to zero at a point p, the
bottom of the annulus domain. The pressure in the gauge may be
written as the path integral

pgauge ¼
Z g

p
∇p � ds; ð14Þ

where g is a point in the gauge. At low Reynolds numbers, we
may neglect uj∂jui in Eq. (3), to find in the steady state

∇p ¼ Aijkl∂i∂kul: ð15Þ

pgauge ¼
Z g

p
Aijkl∂i∂kuldsj: ð16Þ

Taking into account Eq. (7) and noting that the changes in
fluid flow are negligible, we find

Δpgauge ¼
Z g

p
ΔAijkl∂i∂kuldsj ¼ Γ1

Z g

p
∂iωdsi ¼ Γ1Δω; ð17Þ

where ωi= ϵijk∂juk is the vorticity of the flow. For the geometry
used, we find Δpgauge= 0.15, vorticity in the gauge is zero, and
that in the annulus is 0.6, so Δω= 0.6 (Fig. 2c). Since we chose
Γ1= 0.25, we see that in this setup, the pressure gauge (Δpgauge=
Γ1Δω= 0.25 × 0.6= 0.15) is directly sensitive to the asymmetry in
the viscosity, which couples the rotation directly to the pressure
field and the stress. We note that the same setup is sensitive to
Hall viscosity coefficients for time-reversal broken systems, i.e.,
for the case where both B1 and Γ1 are nonzero, the pressure gauge
generalizes to

Δpgauge ¼
Z g

p
ΔAijkl∂i∂kuldsj ¼ ðB1 þ Γ1ÞΔω: ð18Þ

While time-reversal and stress objectivity-breaking terms
persist in two-dimensional isotropic materials, the handedness
of the pseudotensor implies that mirror operations set them to
zero in 3D. This can be directly observed by comparing low- and
high-symmetry three-dimensional crystals. We consider the same
rotational flow along the ab crystal plane of orthorhombic
materials, such as the hydrodynamically reported Weyl semimetal
WP211,12. Along this plane, the difference between the two

viscosity tensors can be parameterized as follows:

A
Cð001Þ
2v

ijkl ¼ A
Dð001Þ
2h

ijkl þ Γ2δijϵkl þ Γ3σ
z
ijϵkl

1emþ B2 δliϵjk � ϵliδjk

� �
þ B3 δijσ

x
kl � σxijδkl

� �
;

ð19Þ

where B2, B3, Γ2, and Γ3 are constants parameterizing terms with
the symmetry of β and γ, respectively, σx and σz are Pauli
matrices. Figure 2d shows the pressure difference between a
material with D2h symmetry and one with C2v symmetry (for
B2 ¼ B3 ¼ Γ3 ¼ 0 and Γ2= 0.25), indicating the same pressure
buildup as in Fig. 2c inside the gauge along with a nontrivial
pressure structure in the annulus.

2D flows in 3D crystals. Finally, we consider flow through an
expanding channel along high-symmetry planes in 3D. This
geometry has been proposed as a diagnostic of electron hydro-
dynamics because it naturally generates vortices, not present in
ordinary ohmic flow. The case with isotropic viscosity is shown in
Fig. 3a, where the small vortices that form in the corners are
clearly detached from the bulk of the flow. We consider the Td
(tetrahedral) and Oh (cubic) point groups. In particular, we
consider flows along the polar {111}, nonpolar {110}, and semi-
polar {001} family of planes (Fig. 3b)

A
Tð111Þ
d

ijkl ¼ A
Oð111Þ
h

ijkl þ B4 σxijσ
z
kl � σzijσ

x
kl

� �
þ Γ4δijϵkl ð20aÞ

A
Tð110Þ
d

ijkl ¼ A
Oð110Þ
h

ijkl
ð20bÞ

A
Tð001Þ
d

ijkl ¼ A
Oð001Þ
h

ijkl þ B5 σzijδ
z
kl � δijσ

z
kl

� �
þ Γ5σ

x
ijϵkl: ð20cÞ

Along these planes, the difference between the two viscosity
tensors can be parameterized according to Eqs. (20a), (20b),
(20c). We impose fully developed (parabolic) inlet and outlet
flows with constant discharge, and solve for the steady-state flow
at low Reynolds number. Figure 3c shows the difference between
the flow in an isotropic material and the flow in a cubic material
along a {111} close-packed plane, which exhibits rotational
invariance. Along the nonpolar {110} planes, terms with β and γ

symmetry vanish. However, AOð110Þ
h is anisotropic along this plane,

with Fig. 3d showing the difference in flow between the isotropic
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Fig. 2 Proposed setup to quantify the effect of viscosity tensor asymmetry and Hall coefficient. Steady-state a streamplot and b pressure plot using
viscosity tensor SO(2){α}. c Difference in steady-state pressure between viscosity tensor SO(2){α} and the same with additional stress objectivity-
breaking terms (SO(2){γ}). The asymmetry introduces an additional pressure-like contribution, which can be directly measured. d Difference in steady-
state pressure between the D2h and C2v viscosity tensors along the ab plane, showing a similar pressure drop in the gauge, despite the anisotropic behavior
inside the annulus. Color scales indicate the magnitude of the velocity vector field (a) and pressure field (b–d).
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case. Finally, along the semipolar {001} family of planes, the
viscosity tensor is both anisotropic (Fig. 3e) and asymmetric.
Figure 3f quantifies the additional vortices generated by the
asymmetry at ~10%, for B5 ¼ 0 and Γ5= 0.25.

Discussion
We found that electron fluids in crystals with anisotropic and
asymmetric viscosity tensors can exhibit steady-state fluid beha-
viors not observed in classical fluids. In 3D, discrete deviations
from isotropy allow the fluid stress to couple to the fluid vorticity
with or without breaking time-reversal symmetry, for the case of
Hall viscosity and objectivity-breaking viscosity, respectively.
Recent measurements of spatially resolved flows9,17,32 suggest that
these effects can be directly observed in systems beyond graphene.
Our findings further hint at potential applications. For instance,
the pressure gauge in Fig. 2 could be used as a magnetometer,
converting a time-varying magnetic flux through a modified
Corbino disk geometry into current in the annulus, and ultimately
into a voltage drop between it and the gauge. Our work highlights
the importance of crystal symmetry on electronic flow, and invites
further exploration of time-dependent flows in systems with
internal spin degrees of freedom and asymmetric stress tensors.

Data availability
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within the article and its Supplementary Information files.
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