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We study the effects of local perturbations on the dynamics of disordered fermionic systems in or-
der to characterize time-irreversibility. We focus on three different systems, the non-interacting An-
derson and Aubry-André-Harper (AAH-) models, and the interacting spinless disordered t-V chain.
First, we consider the effect on the full many-body wave-functions by measuring the Loschmidt echo
(LE). We show that in the extended/ergodic phase the LE decays exponentially fast with time,
while in the localized phase the decay is algebraic. We demonstrate that the exponent of the decay
of the LE in the localized phase diverges proportionally to the single-particle localization length as
we approach the metal-insulator transition in the AAH model. Second, we probe different phases
of disordered systems by studying the time expectation value of local observables evolved with two
Hamiltonians that differ by a spatially local perturbation. Remarkably, we find that many-body
localized systems could lose memory of the initial state in the long-time limit, in contrast to the
non-interacting localized phase where some memory is always preserved.

Introduction—The second law of thermodynamics im-
poses strong constraints on the time-reversibility of
non-adiabatic processes between thermodynamic states.
However, the applicability of the second law requires, in
general, ergodicity, which is absent for closed many-body
localized (MBL) systems [1–13]. This has recently also
been shown experimentally [14–18]. Consequently, after
a non-adiabatic process, such MBL systems do not in-
herit a thermodynamic description, leading to a major
question: to what extent does this breaking of ergodicity
influence time-reversibility?

In this work, we probe time-reversibility of closed
quantum many-body systems with disorder. Specifically,
we study the sensitivity of the dynamics due to weak lo-
cal perturbations for a wide range of fermionic systems
including the Aubry-André-Harper (AAH) as well as the
Anderson model with and without interactions. We char-
acterize time-reversibility by noticing that the faster the
departure of the perturbed and unperturbed trajectories,
the stronger is the sensitivity of quantum motion and
therefore the stronger time-irreversibility. In this work,
the quantification of the distance of the two time-evolved
systems is based on two complementary measures: First,
we study the sensitivity in terms of the Loschmidt echo
(LE) [19, 20], which quantifies the deviation on the ba-
sis of the full quantum many-body wave-function. Sec-
ond, we introduce a quantity which measures the close-
ness of only local properties instead of global wave func-
tions, by measuring the local densities, representing a
less strict measure as compared to the LE. We find nu-
merical evidence corroborated by analytical arguments
that the various distinct phases of our fermionic mod-
els can be detected and characterized by studying the
long-time dynamics of these measures. Our predictions
can be tested experimentally because both of the stud-
ied quantities are, in principle, experimentally accessible

for ultracold atoms in optical lattices and trapped ions
where signatures of MBL have been already observed re-
cently [14–18]. In systems of ultracold atoms, local densi-
ties can be measured with the use of quantum gas micro-
scopes [21, 22] and LE by interferometric techniques [23–
25]. The local control of trapped ions provides direct
access to local densities and LE have been already mea-
sured in recent experiments [26, 27].

Models and methods—We study the Hamiltonian

Ĥ := − th
2

L
2 −2∑
x=−L2

ĉ†xĉx+1+h.c.+

L
2 −1∑
x=−L2

hx ˆ̃nx+V

L
2 −2∑
x=−L2

ˆ̃nx ˆ̃nx+1

where ĉ†x (ĉx) is the fermionic creation (annihilation) op-
erator at site x and ˆ̃nx=n̂x − 1

2 with n̂x=ĉ†xĉx, L the

system size and N=L
2 the number of fermions.

We consider three different cases: (i) The non-
interacting Aubry-André-Harper (AAH-) model, ob-
tained from Ĥ with V=0, th=2 and hx=W cos(2πxφ+α)

where φ= 1+
√

5
2 ; α is a random phase uniformly dis-

tributed in [0, 2π]. The AAH model has a metal-insulator
transition at Wc=2 (extended phase for W ≤Wc and lo-
calized phase for W > Wc). The localization length close
to the transition diverges as ξloc ∼ log−1 W

2 [28]. (ii)
The non-interacting Anderson model [29], given by V=0,
th=1 and {hx} independent random variables uniformly
distributed in [−W,W ]. In the Anderson model, all the
single-particle eigenstates are exponentially localized and
ξloc ∼ W−2 in the weak disorder regime [30]. (iii) The
spinless disordered t-V chain, obtained from the Ander-
son model by turning on the interaction with V=1. This
t-V chain is believed to have a many-body localization
(MBL) transition at a critical disorder strength Wc ≈ 3.5
[4, 9, 10, 31] (extended/ergodic for W < Wc and localized
for W > Wc) at infinite temperature.
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FIG. 1. (a),(b): Behavior of −logL(t) for the AAH model in
the extended phase (W = 1.5) (L(t) ∼ e−Γt) and in the local-
ized phase for several values of W (L(t) ∼ t−β). In the local-
ized phase t and L(t) have been properly rescaled to underline
the time scale on which the decays starts and the behavior of
the exponent of the algebraic decay β. (c): −logL(t) for the
Anderson model for several values of W ; here also a rescaling
has been done on t and L(t). (d),(e): Panels show the ap-
proximate formula LA(t) for the two non-interacting models
and for the same values of W .

To study a spatially local perturbation of the Hamil-
tonian Ĥ, we define

Ĥε := Ĥ+ 2εn̂0, (1)

with ε > 0. A central object studied in this work is
the LE [32–37], which in related forms has already been
studied in disordered systems [38–42]

L(t) := |〈ψ|eitĤe−itĤε |ψ〉|2. (2)

To understand how states deviate in their local properties
if evolved with H and Hε, we study the difference of the
local density profile (DLDP) [42, 43], defining

D(t) :=
∑
x

|δρ(x, t)| (3)

with

δρ(x, t) := 〈ψ|eitĤn̂xe−itĤ|ψ〉 − 〈ψ|eitĤε n̂xe−itĤε |ψ〉,
(4)

Moreover, we are interested in the long-time behavior
of D(t), which quantifies the long-time relative temporal
fluctuations

D∞ := lim
T→∞

1

T

∫ T

0

dsD(s). (5)

For the initial state |ψ〉, we choose a product state in

the occupation basis
(∏N

s=1 c
†
2s|0〉

)
(Neel-state), which

is easy to realize in experiments [14]. The strength of
the perturbation ε is set equal to 0.1, so ε < {th,W, V }.
The average over disorder is indicated with an overline
[44], e.g. D(t).
Non-interacting models— In this section, we study the

LE and the DLDP for the AAH- and Anderson-models.
We compute the LE for these models using a free fermion
technique [45], which permits us to inspect large system
sizes for long times. Figure 1 (a-c) shows the LE in the
two phases of the AAH- and in the Anderson model. In
the extended phase of the AAH-model (W = 1.5), the
LE decays exponentially as L(t) ∼ e−Γt, revealing the
strong effect of local small perturbations. In the localized
phase for both models (AAH- and Anderson-model), the
LE decays algebraically in time as L(t) ∼ t−β . Note
that in both phases, the long time saturation value is
exponentially small in system size, i.e. L(t → ∞) ∼
e−ηL. Still the two phases can be distinguished through
the decay of the LE as a function of time.

For the localized phase, Fig. 1 (b-c) also shows the rela-
tion between the exponent β and the microscopic param-
eter of the Hamiltonian (W ), with a good collapse of the
curves. For the Anderson model, we observe β ∝ W−2,
indicating that β is proportional to ξloc at least in the
weak disorder limit. For the AAH-model, we find the
scaling β ∝ (W log W

2 )−1. Thus, β is again proportional
to the localization length ξloc on approaching the metal-
insulator transition to leading order. The rescaled time
in the LE deserves particular attention: the time scale
for the onset of the algebraic decay is proportional to
the localization length, which on approaching the metal-
insulator transition shifts to infinity.

We now present an analytical argument supporting the
algebraic decay of the LE in the localized phase. In the
Lehmann representation the LE reads

L(t) =

∣∣∣∣∣∑
n,m

〈ψ|n〉〈n|mε〉〈mε|ψ〉e−it(En−E
(ε)
m )

∣∣∣∣∣
2

, (6)

where En (|n〉) and E
(ε)
m (|mε〉) are the eigenvalues (eigen-

vectors) of Ĥ and Ĥε, respectively. The simple picture is
that in the localized phase, the local perturbation causes
an exponentially weak dephasing of the energies of the
unperturbed Hamiltonian with respect to the perturbed
one, inducing the decay of LE. The following approxi-
mations, which are equivalent to a first order expansion
in ε [46], permit us to estimate the behavior of the LE
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and relate the power-law exponent β to the localization
length. We confirmed this relation close to the metal-
insulator transition with exact numerics. First, we as-
sume that the behavior of the LE is not affected by the
choice of the initial product state. Our second approxi-
mation is that the perturbation affects only the eigenen-
ergies but not the eigenstates.

The first approximation allows us to replace the over-
lap with the initial state |ψ〉 in Eq. (6) with a normalized
trace over the entire Hilbert space. The second approx-
imation implies 〈n|mε〉 = δn,m. Finally, evaluating the

energy difference En−E(ε)
n using first-order perturbation

theory in ε, En − E(ε)
n ≈ ε〈n|n̂0|n〉, we can express the

result in a closed form

LA(t) =

L∏
j=1

cos2
(
ε|φj(0)|2t

)
, (7)

where {φj(0)} are the single-particle wave-functions eval-
uated at the center of the chain. The subscript A under-
lines that this is an approximate formula. Since all single
particle eigenstates are exponentially localized, after an
appropriate relabeling of the index j, we assume that

|φj(0)|2 ∼ e
− j
ξ

ξ . Thus, the only factors that contribute

significantly are the ones where ε|φj(0)|2t ≈ 1

LA(t) ≈
ξ log εt

ξ∏
j=1

cos2
(
ε|φj(0)|2t

)
∼
(
εt

ξ

)−cξ
, (8)

with c > 0. The last row of Fig. 1 (c,d) shows the
algebraic decay with time of the LE from Eq. (7) as
LA(t) ∼ t−βA for the two models and several values of
W . Surprisingly, despite being a perturbative expansion
in ε, LA(t) reproduces the algebraic decay of the LE also
for long times. The exponents βA and β have the same
dependence on the microscopic parameter W in the vicin-
ity of the critical point, namely β, βA ∼ W−2 as W → 0
for the Anderson-model and β, βA ∼ log−1 W

2 as W → 2
for the AAH-model. Indeed, as shown in Fig. 1 (d-e),
βA is proportional to the localization length (βA ∝ ξloc).
For the Anderson model, the deviation with increasing
disorder strength W is just a sign that the perturbative
expansion for ξloc is breaking down. Moreover, the ap-
proximate formula Eq. (8) describes well the rescaling of
time, given by t→ εt

ξ .
Next, we probe the effect of local perturbation on the

dynamics of local observables by studying D(t). Figure 2
shows D(t) for two different values of W for the AAH-
model. In the extended phase with W = 1.5, D(t) shows
an algebraic growth with time, D(t) ∼ tα, α ≈ 0.6 for
W = 1.5. The saturation point in time of D(t) is con-
sistent with the scale

√
L (inset, Fig. 2 (a)) with system

size, indicating that in the long time limit the average

over index sites of the DLDP (D∞L ) relaxes algebraically
with system size [47].
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FIG. 2. D(t) for the AAH model in the two phases for differ-
ent L. (a): W = 1.5, D(t) ∼ tα while its inset shows D∞ as

a function of L (D∞ ∼
√
L). (b): W = 2.5, D(t) ∼ logα t, its

inset shows D∞ ∼ L.

In the localized phase, D(t) has a log-like slow growth,
D(t) ∼ logα t with α ≈ 1.3 for W = 2.5, so the effect
of local perturbations on the dynamics is exponentially
slow in time. Moreover, D∞ ∼ L (inset, Fig. 2 (b)), so

that the relaxation of D∞L never takes place.

Spinless t-V chain—Having shown that the LE cap-
tures the salient features of the metal-insulator transition
in the AAH model, we now study L(t) for the interact-
ing spinless t-V chain that has an MBL transition. We
perform the time evolution using full diagonalization for
small systems size L ≤ 16, and using the Chebyshev in-
tegration technique [48] for larger L (18 ≤ L ≤ 24). Fig-
ure 3 (a-c) shows the behavior of LE for the interacting
model for different values of disorder strength W . The
enhanced decay compared with the non-interacting prob-
lem is also shown in Fig. 3). Nevertheless, in the localized
phase, the LE still decays algebraically as in the local-
ized phase of the non-interacting models. For W = 6 the

function − logL(t)
t (inset Fig. 3 (c)) does not present any

systematic dependence on system size, indicating that
the algebraic decay could be the asymptotic thermody-
namic behavior. In the ergodic phase with W = 1, LE
decays at least exponentially with time, and the function

− logL(t)
t does not decay for times in which the decay

of LE is not affected by finite size effects (inset Fig. 3
(a)). Figure 3 (b) also shows an intermediate disorder

value W = 2, at which the function − logL(t)
t develops

a plateau with respect to t, like in the extended phase,
after which a slower decay sets in. This plateau is enlarg-
ing with increasing system size, which may indicate that
in the thermodynamic limit ergodicity will be completely
restored and the LE will decay exponentially with t.

We now study the effects of perturbations in the dy-
namics of local observables by studying DLDP. Figure
4 shows D(t) in the interacting model for two values of
W . We give evidence that the behavior of D(t) in the
ergodic phase for long time is drastically different from
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L
as function of L, it decays

exponentially fast with L, D∞
L
∼

(
L
N

)−γ
.

the non-interacting case: D(t) is not a monotonic func-
tion of t (inset, Fig. 4 (a)). For short times, D(t) grows
to a maximum value from which it starts to decay to a
finite L-dependent value. The non-monotonic behavior
is intimately connected with the thermalization of the
system. Indeed, the long time expectation values of local
observables for thermal systems at infinite temperature
should be unchanged if the system is locally perturbed.
The average time in which the decay of D(t) starts de-
fines a time scale τ ; this is roughly the time at which
D(t) changes concavity and starts to decrease. For times
much larger than τ , the expectation value of a local ob-
servable is given by the expectation value over a many-
body random state (ETH at infinite temperature), so

that |δρ(x, t� τ)| ∼
(
L
N

)−γ ∼ e−(γ log 2)L.

In the localized phase, the finite size-effects become
more important, and for smaller system sizes it could
seem that D(t) [49] has an unbounded slow growth sim-

ilar to the localized phases for the non-interacting mod-
els. However, a careful analysis shows that the saturation
value is merely an exponential decay such as in the ex-

tended phase, consisted with D∞ ∼ L
(
L
N

)−γ
(inset, Fig. 4

(b)). Compared with the ergodic phase, in the localized
phase the exponent γ is small, so that for the consid-
ered system sizes, the behavior of D∞ is dominated by
the linear prefactor L. In the thermodynamic limit we
expect that the final shape will be similar to the one in
the ergodic phase, so that D(t) will eventually also de-
cay with time at long times. Note that the time scale at
which this decay will take place is extremely large; the
limitation on system size does not allow us to estimate an
upper bound of the time scale τ , which leaves open the
possibility that τ might shift to infinity with increasing
L. The behavior of D∞ in the localized phase is remi-
niscent of the long time “volume-law” saturation of the
entanglement entropy S(t) after a quantum quench. The
distinction between the ergodic and the MBL phase lies
only in the numerical value of the prefactor in front of
the saturation value of S(t) [50, 51], while the scaling
with L is the same in both phases (volume law).

Conclusion—In this work, we probed the effects of lo-
cal perturbations on the dynamics of several disordered
systems by studying the Loschmidt echo (LE) and the dif-
ference of the local density profile (DLDP). First, with a
combination of analytical arguments and exact numerical
simulations, we showed that the LE in the localized phase
decays algebraically in time. Furthermore, we found, for
the non-interacting models, that the exponent of the al-
gebraic decay is proportional to the single-particle lo-
calization length, which diverges at the metal-insulator
transition. In the extended phase, the LE decays expo-
nentially fast with time. The faster exponential decay in
the extended phase compared with the algebraic decay
in the localized phase implies that time-irreversibility is
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more strongly manifested in the extended phase than in
the localized phase, at least for local perturbations. Sec-
ond, we studied the DLDP for the same models, and we
found that the long-time behavior saturates algebraically
with system size in the extended phase of the Aubry-
André-Harper model, while it never relaxes for the non-
interacting localized phase. For the DLDP in the spin-
less disordered t-V chain, the relaxation is exponential in
system size in both phases: in the ergodic phase this is
due to thermalization, while in the MBL phase it could
be due to the interaction-induced dephasing mechanism
which is also explains the long-time saturation values of
the entanglement entropy after a quantum quench. The
study of the change in the expectation values of local ob-
servables when the system is perturbed, gives a different
perspective concerning time-irreversibility as opposed to
the LE. Indeed, the long-time expectation value of local
observables in a thermal system at infinite temperature
should be unchanged if the system is locally perturbed.
We give numerical evidence that this also happens in the
MBL phase.

Note—In completing the manuscript we have become
aware of related works on LE in the MBL phase [52, 53].
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FIG. 5. −logL(t) for different values of ε for the AAH-model
in the localized phase (W = 2.5). The time as been rescaled
by ε as is suggested by the equation in main text |φj(0)|2tε ≈
1.

Supplemental material to Characterizing
time-irreversibility in disordered fermionic systems

by the effect of local perturbations

Dependence of L(t) on the initial state and ε

In this section, we show the dependence of L(t) on ε
and the initial state |ψ〉. Figure 5 shows L(t) for sev-
eral values of the perturbation strength ε for the AAH-
model in the localized phase (W = 2.5). L(t) decays
algebraically, and, as predicted in the main text, the ex-
ponent of the decay β does not depend on ε. Moreover,
as suggested by the expression |φj(0)|2tε, the time has
been properly rescaled to make the curves collapse to-
gether. Figure 6 shows that the same rescaling for the
time (t → tε) also holds in the the interacting case. To
check that our results are qualitatively independent of the
choice of the initial product state, we also averaged the
LE over random product states of the form

∏N
s=1 c

†
is
|0〉

(for any random configuration we calculate L(t) for 25
random product states), as shown in Fig. 7 (the aver-
age over random product states is indicated with 〈·〉).
Figure 7 shows that the behavior of L(t) is similar to the
Neel state, and the same scaling with the microscopic pa-
rameter W works still relatively well, and the deviations
become relevant for long times (t > 104). Figure 8 shows
the behavior of LE averaged over random product states
and disorder configurations for the interacting t-V chain
for two different values of W , in the ergodic (W = 1)
phase L(t) ∼ e−Γt and in the localized (W = 6) phase
L(t) ∼ t−β .
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FIG. 6. The panels show − logL(t) averaged over disorder
configurations for the interacting spinless t-V chain in the
localized phase (W = 6) for a fixed system size L = 14 for
several values of the perturbation strength ε.
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FIG. 7. The panels show − logL(t) averaged over random
product states and disorder configurations for the AAH-model
and for the Anderson model. L(t) and t has been rescaled as
in the main text.

− logL(t) v.s. -logL(t)

Figure 9 shows for the non-interacting Anderson
model and for different disorder strengths −logL(t) and
− logL(t). As expected from the inequality between the
arithmetic mean and the geometric mean, −logL(t) ≥
−logL(t). Moreover −logL(t), being the logarithm of
the typical value of L(t), is less noisy than the logarithm
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FIG. 9. The panels shows −logL(t) (left) and − logL(t)
(right) for the non interacting Anderson model for different
values of W .

of the arithmetic mean − logL(t). Nevertheless, to some
extent the scaling of the algebraic decay β and of the
time are the same for both ways of performing the disor-
der average. As shown in Fig. 10, there is not qualitative
but only quantitative difference between the typical and
average values also for the interacting t-V chain.

LA(t)

In this section, we show the derivation of the approxi-
mate formula LA(t). The main assumptions will use are
the following: First, the perturbation modifies only the
eigenenergies of Hε but not its eigenfunctions, which are
the same as those of the unperturbed Hamiltonian H.
It is easy to see that the contribution to the change of
the eigenfunctions is second order in the strength of the
perturbation ε. Second, the behavior of LE is indepen-
dent of the initial choice of the product state. Using the

spectral representation for the time evolution

L(t) =

∣∣∣∣∣∑
n,m

〈ψ|n〉〈n|mε〉〈mε|ψ〉e−it(En−E
(ε)
m )

∣∣∣∣∣
2

, (9)

With the use of the first approximation 〈n|mε〉 = δn,m,

L(t) ≈

∣∣∣∣∣∑
n

|〈n|ψ〉|2e−it(En−E
(ε)
n )

∣∣∣∣∣
2

, (10)

and using the second approximation,

L(t) ≈

∣∣∣∣∣ 1

2L

∑
n

e−it(En−E
(ε)
n )

∣∣∣∣∣
2

, (11)

Using first-order perturbation theory in ε to estimate the

energy difference as En − E(ε)
n , we get

L(t) ≈
∣∣∣∣∑n e

−i2tε〈n|n̂0|n〉

2L

∣∣∣∣2 (12)

Moreover 〈n|n̂0|n〉 =
∑L
j=1 a

(n)
j |φj(0)|2, where {φj(0)}

are the single particle wave-functions evaluated in the

center of the the chain and a
(n)
j takes only two values

{1, 0} depending on whether the single-particle eigen-
state labeled with j is occupied or not in the state |n〉.
Finally,

L(t) ≈

∣∣∣∣∣∣
L∏
j=1

e−i2tε|φj(0)|2 + 1

2

∣∣∣∣∣∣
2

=

L∏
j=1

cos2
(
ε|φj(0)|2t

)
(13)

The last expression is essentially a perturbation expan-
sion in ε, L(t) = LA(t) +O(ε2).

D(t)

In this section, we show supplemental materials for
D(t). In the main text we give numerical evidence that
for the extended phase for the AAH model D∞ ∼

√
L.

Here we give an analytical argument based on a random
matrix approximation which will give a lower bound for
the L-scaling. Neglecting the time fluctuation of D(t) we
get a lower bound of D∞ (diagonal ensemble).

1

T

∫ T

0

D(s)ds ≥ 1

T

∑
x

∣∣∣∣∣
∫ T

0

δρ(x, s)ds

∣∣∣∣∣ (14)

Thus,

lim
T→∞

1

T

∣∣∣∣∣
∫ T

0

δρ(x, s)ds

∣∣∣∣∣ =



9

100 103 106

t

0.0

0.3

0.6

0.9

1.2

1.5

1.8

−
lo

g L
(t

)

W= 5

100 103 106

t

0.0

0.5

1.0

1.5

2.0

2.5
−

lo
gL

(t
)

W= 5

L= 10

L= 12

L= 14

L= 16

FIG. 10. The panels shows −logL(t) (left) and − logL(t)
(right) for the interacting t-V chain for W = 5.

=

∣∣∣∣∣∣
∑
α

′∑
s

|φα(x)|2|φα(s)|2 −
∑
α

′∑
s

|φεα(x)|2|φεα(s)|2
∣∣∣∣∣∣

∼

∣∣∣∣∣∣
∑
α

′∑
s

|φ̃α(x)|2|φ̃α(s)|2

L2
−
∑
α

′∑
s

|φ̃εα(x)|2|φ̃εα(s)|2

L2

∣∣∣∣∣∣
(15)

The sum over the index s runs over the index sites that
are occupied at the initial time (t=0). {φα(x)}L1 and
{φεα(x)}L1 as in the main text are the single particle
wave-functions of Ĥ and Ĥε respectively. In first ap-
proximation in the extended phase, the single particle

wave-functions can be approximated with { φ̃α(x)√
L
}L1 and

{ φ̃
ε
α(x)√
L
}L1 , where {φ̃α(x)}L1 and {φ̃εα(x)}L1 are indepen-

dent random variables with a fixed mean and variance
which does not scale with L, since its dependence on L
has been already taken care with the normalization fac-
tor 1√

L
. Using the central limit theorem, we can estimate

the scaling with L of the sum over the index s and α,

e.g.
∑′

s
|φ̃α(s)|2

L ∼ constant1 +O( 1√
L

) and
∑
α
|φ̃α(x)|2

L ∼
constant2 +O( 1√

L
). Since we have assumed that the per-

turbation does not change the statistical properties of the
single particle wave-functions, we have that the difference
of the local density profile |ρ(x, t→∞)| ≥ O( 1√

L
). This

gives the result D∞ ≥ O(
√
L). The argument can be

repeated for the non-interacting localized phase giving a

lower bound D∞ ≥ O(L). The difference is that now
the single particle wave-functions should be taken in first
approximation as box functions with a finite width ran-
domly displaced, (e.g. φα(x) ∼ χ[α−ξ,α+ξ]√

2ξ
).

In the following, we show some supplemental material
of D(t) for the interacting problem. Figure 11 shows
the behavior of D(t) for different system sizes in the
two phases of the t-V chain. For W = 2, the system
is in the ergodic phase, and D(t) exhibits the same non-
monotonic behaviour as a function of t as for the case
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FIG. 11. The top panel shows D(t)
L

for W = 2 (ergodic) and
W = 5 (localized) for the interacting t-V chain for several
system sizes L. The bottom panels show that in both phases
D∞
L
∼

(
L
N

)−γ
.

W = 1 (shown in the main text). For D(t) in the lo-
calized phase (W = 5), finite size effects are important.
Indeed, it is not possible to see the non-monotonic phase
even in the ergodic phase for system sizes smaller than
L ≤ 16. However, Fig. 11 gives evidence that in both

phases, D∞ ∼ L
(
L
n

)−γ
. In the ergodic phase for W = 2,

γ ≈ 0.26. In the localized phase for W = 5, the exponent
γ ≈ 0.1. The exponent is small so that for system size

L ≤ 16 the behavior of the function L
(
L
N

)−γ
is dominated

by the linear part L. Nevertheless, if this scaling persists
in the thermodynamic limit, D(t) in the long-time limit
will go to zero.
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