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Mapping the twist-angle disorder and 
Landau levels in magic-angle graphene

A. Uri1,9, S. Grover1,9, Y. Cao2,9, J. A. Crosse3,4, K. Bagani1, D. Rodan-Legrain2, Y. Myasoedov1,  
K. Watanabe5, T. Taniguchi5, P. Moon3,4,6,7, M. Koshino8, P. Jarillo-Herrero2 ✉ & E. Zeldov1 ✉

The recently discovered flat electronic bands and strongly correlated and 
superconducting phases in magic-angle twisted bilayer graphene (MATBG)1,2 crucially 
depend on the interlayer twist angle, θ. Although control of the global θ with a 
precision of about 0.1 degrees has been demonstrated1–7, little information is available 
on the distribution of the local twist angles. Here we use a nanoscale on-tip scanning 
superconducting quantum interference device (SQUID-on-tip)8 to obtain 
tomographic images of the Landau levels in the quantum Hall state9 and to map the 
local θ variations in hexagonal boron nitride (hBN)-encapsulated MATBG devices with 
relative precision better than 0.002 degrees and a spatial resolution of a few moiré 
periods. We find a correlation between the degree of θ disorder and the quality of the 
MATBG transport characteristics and show that even state-of-the-art devices—which 
exhibit correlated states, Landau fans and superconductivity—display considerable 
local variation in θ of up to 0.1 degrees, exhibiting substantial gradients and networks 
of jumps, and may contain areas with no local MATBG behaviour. We observe that the 
correlated states in MATBG are particularly fragile with respect to the twist-angle 
disorder. We also show that the gradients of θ generate large gate-tunable in-plane 
electric fields, unscreened even in the metallic regions, which profoundly alter the 
quantum Hall state by forming edge channels in the bulk of the sample and may affect 
the phase diagram of the correlated and superconducting states. We thus establish 
the importance of θ disorder as an unconventional type of disorder enabling the use 
of twist-angle gradients for bandstructure engineering, for realization of correlated 
phenomena and for gate-tunable built-in planar electric fields for device applications.

Strong electronic correlations arise in twisted bilayer graphene when 
the low energy bands become exceedingly narrow in the vicinity of the 
magic angle1–7, θM ≈ 1.1°. Initial estimates of the bandwidth of these flat 
bands assumed a rigid and uniform rotation between the two graphene 
sheets, leading to a moiré pattern10–13. Recent bandstructure calcula-
tions have shown, however, that twist-angle relaxation within a single 
supercell (about 13 nm for θ ≈ 1.1°), results in electronic reconstruction 
that substantially modifies the bandstructure14,15. Because the band-
structure of the flat bands is determined on a scale of several super-
cells, twist angle gradients—similarly to the predicted strong effects of 
heterostrain16,17—should modify the single-particle bandstructure and 
induce symmetry breaking, possibly leading to properties that have not 
yet been considered. Moreover, as correlated phenomena may occur 
owing to electronic interactions on distances larger than the supercell, 
twist-angle variations may affect the stability of the competing orders, 
enriching the phase diagram of the correlated states.

Scanning tunnelling microscopy studies have shown that the local 
twist angle can vary substantially in the same sample; these studies 
have also observed stacking faults and structural defects18–24. Large 

inhomogeneities and extensive networks of stacking faults in bilayer 
graphene have also been observed by transmission electron micros-
copy15,25–27. In this work, we provide high-resolution maps of θ(r) in 
hBN-encapsulated MATBG devices (here r = (x, y) is the position within 
the sample). The results reveal sizeable twist-angle gradients that con-
stitute an unconventional type of disorder that strongly affects both the 
stability of correlated phases and magneto-transport characteristics 
in twisted bilayer graphene.

We present here local studies of two samples (devices A and B, 
see Methods), fabricated using the ‘tear-and-stack’ technique28,29. 
Their global transport data show characteristic MATBG features1–7 
including superconductivity, correlated insulator states at integer 
fractions of ns (four electrons per moiré supercell), and Landau fans, 
from which a global twist angle θ = 1.06° is derived (device B, Fig. 1b). 
We derive local maps of θ(r) by imaging the structure of the Landau 
levels throughout the sample. In a conventional quantum Hall state, 
alternating compressible and incompressible strips are formed near 
the sample edges, where the Fermi energy εF correspondingly resides 
within the Landau levels or in the energy gaps between them. These 
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strips respectively carry counterpropagating nontopological (INT) 
and topological (IT) equilibrium currents, as demonstrated recently 
in graphene9. By contrast, in MATBG these strips are found in the bulk 
of the sample instead of along the edges (Fig. 1a).

We image these currents using a superconducting quantum interfer-
ence device fabricated on the apex of a sharp pipette8,9 (SQUID-on-tip, 
SOT; Fig. 1a). The Pb SOT, with a typical diameter d ≈ 200 nm, is scanned 
at a height of hSOT ≈ 30 nm above the sample surface at T = 300 mK in 
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Fig. 1 | Comparison between the global and local quantum Hall signatures 
in flat and dispersive bands in MATBG. a, Experimental setup schematics 
with SOT scanning over MATBG (blue and magnified view) encapsulated in hBN 
(light blue). A voltage V V+bg

dc
bg
ac  is applied between the PdAu backgate and the 

grounded MATBG. The twist-angle gradient ∇θ induces an internal electric 
field and counterpropagating equilibrium quantum Hall topological IT and 
nontopological INT currents in narrow incompressible (red) and wider 
compressible (blue) strips, respectively, flowing along equi-θ contours and 
detected by Bz

ac. V bg
ac  causes the strips to oscillate in their position with 

amplitude rac. b, Global R xx versus electron density ne and Ba for device B, 
showing insulating states at integer fillings ne/(ns/4), Landau fans and 
superconductivity. c, R xx(ne) at Ba = 1.08 T (extracted from b along the dashed 

purple line). A global value θ = 1.06° is determined from the transport data.  
d, Bz

ac measured at a point in the bulk of device B versus ne at Ba = 1.08 T. The 
sharp Bz

ac peaks reflect IT in incompressible strips with the sign determined by 
σyx, the magnitude by the energy gap of the Landau level and the separation by 
the Landau level degeneracy (red bars). The dispersive bands are shaded in 
yellow, the signal in the flat bands is amplified three times, and the p-band 
signal is multiplied by −1 for clarity. From the position of the Bz

ac peaks the local 
twist angle is determined to be θ = 1.053 ± 0.005°. e, Calculated bandstructure 
with flat (white) and dispersive (yellow) bands indicated. Blue and red 
represent the two valleys. f, Magnified Bz

ac peaks in the dispersive bands for 
device A at Ba = 1.19 T, illustrating the procedure for determining the local ns and 
the corresponding local θ. The p-band signal is multiplied by −1.
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an out-of-plane magnetic field, Ba ≈ 1 T. We apply a small a.c. excitation, 
V bg

ac  onto the d.c. backgate voltage, V bg
dc, which causes a small a.c. dis-

placement rac of the position of the IT strips along the direction of the 
twist-angle gradient, ∇θ(r) (see Fig. 1a. Henceforth, ∇ = (∂x, ∂y) repre-
sents the two-dimensional gradient in the x–y plane). The correspond-
ing a.c. Biot–Savart magnetic field, B z

ac, is directly proportional to the 
local current density, eliminating the need for current reconstruction 
(see Methods). B z

ac shows a sharp peak whenever the narrow (approxi-
mately 50-nm width) incompressible strips pass under the tip (Fig. 1a 
and Extended Data Fig. 4), providing very sensitive means for nanoscale 
imaging of the Landau levels.

Figure 1d shows a sequence of these B z
ac peaks versus the local carrier 

density ne for device B, acquired at a fixed SOT position, in comparison 
with the corresponding trace of the longitudinal resistance Rxx (Fig. 1c) 
at Ba = 1.08 T. The position and magnitude of these peaks provide a 
wealth of information. An incompressible quantum Hall strip appears 
at location r in the sample when the local carrier density precisely 
matches an integer number N of full Landau levels, |ne(r)| = gN|Ba|/ϕ0, 
where g is the Landau level degeneracy and ϕ0 = h/e (e is the elementary 
charge, h is Planck’s constant). Hence, the spacing Δne between adjacent 
peaks reveals the degeneracy g of the Landau levels. The height of the 
B z

ac peaks is proportional to IT = σyxΔεn/e (where σyx = νe2/h is the quantum 
Hall conductance and ν = gN is the integer filling factor), and thus reflects 
the energy gap between the adjacent Landau levels, Δεn = ε|n|+1 – ε|n|,  
where n = 0, ±1, ±2… is the Landau level index (see Methods).

We start by inspecting high dopings, |ne| > ns, for which the Fermi 
level εF resides in the dispersive bands (yellow in Fig. 1e). Figure 1f pre-
sents a magnification of the four lowest Landau levels in the electron-like 
(n) and hole-like (p) dispersive bands for device A at Ba = 1.19 T. The 
spacing between neighbouring peaks is Δne = 1.15 × 1011 cm−2 = 4Ba/ϕ0, 
showing that these Landau levels are fourfold degenerate. The spacing 
between the corresponding p and n Landau levels is 2(ns(r) + 4N|Ba|/ϕ0), 
as illustrated in Fig. 1f. The IT peaks are very sharp, and so high-accuracy 
determination of the local ns(r) and thus of the local twist angle 

r rθ a n( ) = 3 ( )/8s  (a = 0.246 nm is the graphene lattice constant) is 
obtained with an absolute accuracy of ±0.005° and a relative accuracy 
between different locations of ±0.0002° (see  Methods). In the 
two-dimensional (2D) scanning mode described below, we attain a 
sensitivity of 0.007° per Hz1/2 and provide θ(r) maps with relative accu-
racy better than ±0.002°.

Instead of measuring at a fixed location, Fig. 2a shows B z
ac in device A 

acquired upon scanning the SOT along the white dashed line in Fig. 3a 
and sweeping Vbg, revealing that the Landau levels vary in space, form-
ing rich patterns. Moreover, the degeneracy of the higher Landau lev-
els toggles between fourfold and eightfold as a function of position, 
and a pronounced asymmetry between the Landau level structure in 
the n and p dispersive bands is observed.

As in Fig. 1f, by tracing the spacing between the lower Landau levels 
we derive the local ns(x) = C[Vns(x) – V−ns(x)]/2, where Vns(x) and V−ns(x) 
are the backgate voltages corresponding to the local filling of the flat 
bands |ne(x)| = ns(x) (dashed yellow curves in Fig. 2a), and C is the back-
gate capacitance (see Methods). The obtained ns(x) (Fig. 2b) varies by 
about 2.4 × 1011 cm−2, corresponding to a local variation in θ(x) of 3.9%, 
from 1.124° to 1.169° over the 2.7-μm-long path (Fig. 2c). In addition to 
the twist-angle disorder, which shifts the p and n Landau levels antisym-
metrically, we also derive the local charge disorder nd(x), which shifts 
all the Landau levels symmetrically through variation of the local charge 

neutrality point (CNP), nd(x) = CVCNP(x) = [Vns(x) + V−ns(x)]/2. The derived 

charge disorder δnd(x) = nd(x) − nd  (Fig. 2d) has a standard deviation 
(s.d.) = 0.8 × 1010 cm−2, which is substantially smaller than the variation 
in ns(x), showing that the dominant source of disorder in this MATBG 
device arises from variations in θ(r), as evidenced in Fig. 2a by the 
antisymmetric bending of the dispersive p and n Landau levels.

To derive full maps of the local twist angle θ(r) and the charge disor-
der δnd(r), we acquired rB ( )z

ac  (Supplementary Videos 1–4) by incre-
menting Vbg through the bottom of the dispersive bands. Figure 3a 
displays one frame from Supplementary Video 2 showing a large-area 
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Fig. 2 | Structure of the Landau levels and derivation of the twist angle 
along a line scan. a, B x( )z

ac  versus Vbg for device A acquired along the dashed 
line in Fig. 3a. The top axis denotes ne/(ns(x)/4) for x = 0 and the separation 
between the yellow dashed lines describes the evolution of ns(x). The 

dispersive-band regions are marked in yellow. The signal in the flat bands is 
amplified seven times and multiplied by −1 for p doping such that 
incompressible strips are bright. b–d, The derived position-dependent ns(x) 
(b), θ(x) (c) and the charge disorder δnd(x) (d).
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scan of device A (dashed rectangle in the inset), and Supplementary 
Video 1 presents a magnification of the central region (dashed rectan-
gle in Fig. 3a). The red stripes reveal incompressible regions carrying 
IT and the dark blue regions mark the compressible areas carrying the 
counterpropagating INT. As Vbg varies, the quantum Hall states move 
and change their shape in an intricate manner. Notably, the quantum 
Hall edge states are present in the bulk of the sample and do not flow 
parallel to the sample edges as would be expected. Moreover, large 
parts of the sample do not show Landau levels at all. These are the 
regions that are either highly disordered or may have a twist angle that 
is very different to the magic angle, with θ either close to zero or θ > 1.5° 
such that the dispersive bands are reached at a Vbg outside our range. 
Thus, the magic-angle behaviour appears only in a limited central 
region of the sample and does not fully extend to the edges. By com-
parison, device B displays quantum Hall states over most of its area as 
revealed by the image of B z

ac in Fig. 3e. Supplementary Videos 3 and 4 
show the evolution of the Landau levels in the central part of the Hall 
bar structure (dashed rectangle in the inset) in the p and n dispersive 
bands, respectively.

Using these data we generate a three-dimensional (3D) tomographic 
rendering of the Landau levels throughout the samples (see Methods), 
which can be inspected interactively online30. Figure 3d shows a slice 
of the tomographic data of device A (see Supplementary Video 5), 

revealing the layered structure of incompressible (light blue/red) and 
compressible (dark blue) quantum Hall regions. Notably, the Landau 
levels display steep slopes and numerous small jumps in the bulk of 
the sample, revealing that at any value of Vbg (represented by a hori-
zontal tomographic plane) several different Landau levels cross εF in 
the bulk of the sample, never forming a well defined single quantum 
Hall state. This observation explains the absence of clear conductance 
oscillations and quantization in the global Rxx data in the dispersive 
bands in Fig. 1c, despite the presence of fully developed Landau levels 
as observed locally in Fig. 1d.

Applying the procedure of Fig. 1f to the tomographic data, we derive 
2D maps of the charge disorder (Fig. 3h; see discussion in Methods) 
and of the twist angle θ(r) in devices A and B (Fig. 3b, f). The grey-blue 
colour in Fig. 3b reflects areas where no quantum Hall states were 
detected within the measured span of Vbg. These regions correlate with 
the locations of bubbles (black outlines) as revealed by atomic force 
microscopy (AFM) of device A (Fig. 3a, inset). Magic-angle behaviour 
is apparently absent within the bubbles and in their surrounding areas, 
up to 0.5 μm from the bubble edges. The Landau levels are also absent 
in additional regions where no particular features were observed by 
AFM. The map in Fig. 3b also shows that the magic-angle regions in 
device A do not create a percolation path between the contacts. This 
is consistent with our transport measurements, which do not show 
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fully developed superconductivity, although correlated insulating 
states are present in this device. By contrast, in device B four-probe 
transport measurements showed high-quality correlated insulator 
states at multiple integer filling factors, and a zero-resistance super-
conducting state (see Methods) consistent with the observation that 
the magic-angle area extends over the entire length of the central part 
of the device and shows a more uniform θ(r) (Fig. 3f).

The magic-angle regions show substantial twist-angle disorder 
(Fig. 3i, histogram). θ(r) spans a range of 0.13° (1.05° to 1.18° with 
s.d. = 0.025°) in device A (Fig. 3b) and 0.10° in device B (0.98° to 1.08°, 
s.d. = 0.022°, Fig. 3f). Moreover, the topography of θ(r) is nontrivial, 
with numerous peaks and valleys as well as saddle points. Because the 
Landau levels in the dispersive band follow the bottom of the band, 
n θ a= 8 /( 3 )s

2 2 , they appear first at the minimum of the θ(r) landscape, 
which for device A occurs in the lower-right corner (dark brown in 
Fig. 3b). This behaviour is clearly visible in Supplementary Video 1, in 
which arc-like incompressible strips (bright) first appear at this corner 
and upon increasing |Vbg| ‘climb’ the amphitheatre-like θ(r) landscape 
following the equi-θ(r) contours. Similar behaviour is observed in other 
regions, with interesting dynamics occurring at the saddle points, as 
described in Methods.

The θ(r) derived in Fig. 3b, f is smooth with typical gradients of around 
0.05° μm−1. Figure 3c, g (which shows the gradient maps |∇θ(r)|), reveals 
that variations in θ(r) partially occur through a network of small steps of 
variable sizes, reaching a maximum step size of about 0.01°. The derived 
patterns strongly resemble the stacking-fault networks in bilayer gra-
phene observed by transmission electron microscopy15,25–27. These 
steps cause the stepwise jumps in the Landau levels that are visible 
in the tomographic view in Fig. 3d and Extended Data Fig. 8a, c. This 
finding implies that the smooth variations in θ(r) are accompanied by 

occasional small, abrupt changes across stacking faults that relax the 
tensile and shear stress.

The revealed twist-angle disorder and gradients ∇θ(r) may have 
substantial implications on the phase diagram and transport proper-
ties of MATBG. Connecting regions of different θ (Fig. 4a) is akin to 
connecting materials with different work functions (Fig. 4b), resulting 
in band-bending and creation of internal electric fields (Fig. 4c–e). 
The backgate voltage, Vbg, imposes a nearly uniform carrier density, 
ne ≈ CVbg. Locations with different θ(r), and hence a different density 
of states (DOS), translate this ne into a different chemical potential 
μ(r). At thermal equilibrium the Fermi level must be uniform, εF = 
μ + qV = 0 (where the last equality reflects the grounding of the device; 
q = ±e is the charge of the carriers), and so variation in the chemical 
potential μ(r) imposes band-bending—that is, it imposes variation in 
the electric potential V(r) = −μ(r)/q and creates an in-plane electric 
field E|| = −∇V that cannot be screened. Using the DOS derived from 
bandstructure calculations (see Methods), Fig.  4c–e presents a 
self-consistent numerical calculation of V(x), E(x) and δne(x) = ne(x) − ne 
at Ba = 0 for the case of linearly varying θ(x) with ∇θ = 0.025° μm−1 com-
parable to the measured average gradients in Fig. 3c, g. A large electric 
field E ≈ 0.4 kV m−1 is formed in the region of varying θ(x), whereas the 
accompanying charge redistribution remains negligible, 
δne(x)/ne ≈ ±3 × 10−5. Note that for Vbg = 0, the twist-angle disorder has 
essentially no effect (Δμ(r) = 0 and E|| = 0) and its impact grows with 
increasing ne .

In the presence of a magnetic field, Landau levels are formed as 
depicted by the blue lines in Fig. 4f (see Methods). At high doping, 
|ne| > ns, gradients in θ(r)—and therefore in ns(r)—induce variation in 
the dispersive band occupation, |ne| − ns(r), because ne = CVbg is approxi-
mately constant. As a result, an unusual quantum Hall state emerges 
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in which instead of being restricted to the edges, the quantum Hall 
edge states are formed in the bulk, creating interlaced compress-
ible and incompressible strips with different integer filling factors 
(Fig. 4g–i). This absence of a well defined quantum Hall state provides 
an explanation for the Shubnikov–de Haas (SdH) oscillations with-
out full conductance quantization that are commonly seen in MATBG 
magnetotransport1–7.

In contrast with conventional quantum Hall behaviour, in which 
the edge states must form closed loops, here the edge states seem to 
terminate in the bulk upon reaching apparently disordered metallic 
regions (Supplementary Videos 1–4). Moreover, instead of the constant 
carrier density that is usually required in incompressible regions, in the 
presence of a θ gradient the density varies following the variation in 
ns(r) (Fig. 4i). ∇θ(r) also causes accidental Landau level crossings (for 
example, indicated by the red circle in Fig. 4f) giving rise to occasional 
eightfold degenerate Landau levels in the dispersive bands, as observed 
in Figs. 1d, 2a and Extended Data Fig. 6. Figure 4g also shows large elec-
tric fields (approximately 105 V m−1) formed in the incompressible strips, 
giving rise to very narrow channels of persistent current IT (Fig. 4h), 
consistent with the experimental data (Extended Data Fig. 4g). The 
typical width of the channels (around 50 nm) along with the local |∇θ(r)|, 
determines the spatial resolution of our θ(r) mapping (see Methods).

Finally, we discuss the rich structure observed in the flat bands in 
Figs. 1, 2. In contrast to transport measurements that resolve SdH oscil-
lations at high fields where some of the degeneracies may be lifted, 
we probe the Landau levels locally at relatively low fields. The zeroth  
Landau level at the charge neutrality point is apparently eightfold 
degenerate, followed by fourfold degenerate Landau levels on both 
sides (Fig. 1d). It has been argued that such degeneracy indicates break-
ing of C3 symmetry31,32, which may in turn be triggered by the observed 
θ gradients. Figures 1d, 2a show that these Landau levels are sometimes 
observed to extend beyond ns/4 on both the p and n sides, although at 
other locations new, irregular Landau levels seem to emerge for n dop-
ing above ns/4, as visible in Fig. 1d. The Landau levels clearly reappear 
above ns/2 for both dopings, showing a degeneracy of 2 (Fig. 2a and 
Extended Data Fig. 7). We occasionally observe single-fold Landau 
levels above 3ns/4 for both dopings, as seen in Fig. 1d and Extended Data 
Fig. 7. We also observe that the amplitudes of the IT peaks stemming 
from different integer fillings often follow a smooth envelope. Since 
the amplitudes of the IT peaks are proportional to the energy gaps Δεn, 
this signifies that the energy gaps between consecutive Landau levels 
are of similar (not alternating) magnitudes, indicating full lifting of a 
degeneracy. Importantly, Figs. 1d, 2a and Extended Data Fig. 7 show 
that the Landau levels near ns/4 and ns/2 are discontinuous and that 
those above 3ns/4 appear only at a few locations, indicating the extreme 
fragility of the correlated states to twist-angle disorder.

Twist-angle disorder as we have described here is a previously unrec-
ognized type of disorder. It is fundamentally different to other, more 
common disorders, owing to its ability to change the local bandstruc-
ture and to induce large unscreened electric fields. The growth of its 
effect with the carrier density |ne| explains the higher visibility of the 
Landau fan near the charge neutrality point in transport measure-
ments. The charge disorder in graphene is commonly characterized 
by the width of the resistance peak at the charge neutrality point. This 
width, however, bears almost no information on twist-angle disorder. 
Instead, our results suggest that the twist-angle disorder should be 
quantified by analysing the width of the resistive peak at ns and the vis-
ibility of the Landau fans at |ne| > ns. Our finding that the quantum Hall 
state is strongly altered by the twist-angle gradient suggests that other 
correlated phases in MATBG—including magnetism and supercon-
ductivity—may also be fundamentally transformed by the twist-angle 
disorder. The gate-tunable intrinsic in-plane electric fields generated 
by the twist-angle gradients may also be of practical importance for 

photovoltaic and thermoelectric applications of atomically thin twisted 
van der Waals materials.
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Methods

Device fabrication
The MATBG devices were fabricated using the previously reported ‘tear 
and stack’ technique28,29,33. We first exfoliated monolayer graphene and 
hBN of 10- to 50-nm thickness on SiO2/Si substrates, annealed at 350 °C 
(for hBN only) and selected using optical microscopy and AFM. Only 
flakes without wrinkles and bubbles were used. A PC/PDMS polymer 
stack on a glass slide mounted on a micro-positioning stage was used 
to pick up an approximately10-nm-thick hBN flake. The edge of the hBN 
flake was then used to tear a graphene flake. The substrate was rotated 
by 1.1° to 1.2°, followed by pickup of the other piece of graphene. The 
resulting stack was encapsulated with another hBN flake of thicknesses 
of 30–70 nm that had been put onto a metallic gate made of evaporated 
Cr/PdAu. The device geometry was defined by electron-beam lithogra-
phy and reactive ion etching, keeping only the relatively clean regions. 
Electrical contacts to the MATBG were made by the one-dimensional 
edge-contact method34.

Optical images of devices A and B are shown in Extended Data 
Fig. 1a, b, respectively. Device A was fabricated on a degenerately doped 
Si substrate with 300-nm SiO2. The MATBG resides partly on SiO2 and 
partly on the evaporated metallic backgate (light brown in Extended 
Data Fig. 1a). In this work, only the metallic backgate has been used for 
varying the carrier concentration ne and a constant voltage V bg

Si  = 50 V 
was applied to the Si backgate for keeping the rest of the sample con-
ductive during the transport measurements. Device B was fabricated 
on an intrinsic Si substrate with a metallic backgate extending over the 
full size of the device (light blue in Extended Data Fig. 1b).

Transport characteristics
Four-probe resistance measurements of the samples at T = 300 mK are 
shown in Extended Data Figs. 2, 3. Both devices exhibit the common 
transport characteristics of correlated physics in MATBG1–3,5–7, includ-
ing Rxx peaks at ns and its integer fractions, and Landau fans at elevated 
magnetic field. The slopes of the Landau fans in Extended Data Fig. 2a, b 
were used to extract the backgate capacitances C of 3.07 × 1011 cm−2 V−1 
(49.23 nF cm−2) for device A and 2.31 × 1011 cm−2 V−1 (37 nF cm−2) for device B, 
consistent with the evaluated dielectric thickness of the underlying hBN. 
The origins of the Landau fans were used to derive the global ns and the 
corresponding global θ = 1.15° for device A and θ = 1.06° for device B, in 
good correspondence with histograms of the local twist angle in Fig. 3i. In 
device A the global θ correlates with the average of the θ(r) distribution, 
whereas in device B it is close to the upper end of the distribution func-
tion. Consistently, the four-probe transport measurements in device B 
probe the central part of the Hall bar structure (Extended Data Fig. 1b), 
where θ(r) is at its highest and is considerably more uniform (Fig. 3f), 
whereas the low end tail of θ(r) distribution arises from regions that are 
not probed by transport measurements.

In addition, in device B we observe the superconducting state in 
the vicinity of p-doped ns/2 with zero Rxx; this superconducting state 
becomes suppressed by small magnetic field (Extended Data Fig. 3b). 
The critical current in the superconducting state reaches about 100 nA, 
as determined by the differential dV/dI characteristics (Extended Data 
Fig. 3c), and depends sensitively on the carrier density ne. The observa-
tion of fully developed superconductivity in device B is consistent with 
the finding of a continuous magic-angle region between the voltage 
contacts in Fig. 3f. Suppression of the resistance was also observed in 
device A (Extended Data Fig. 3a), but the lowest Rxx was 328 Ω, sugges-
tive of the presence of some superconducting regions but absence of 
a percolation path between the voltage contacts, consistent with the 
θ map in Fig. 3b.

SOT fabrication and characterization
The Pb SOTs were fabricated as described in ref. 8 with diameters rang-
ing from 220 to 250 nm, and they included an integrated shunt resistor 

on the tip35. The SOT readout was carried out using a cryogenic SQUID 
series array amplifier36–38. The magnetic imaging was performed in a 3He 
system39 at 300 mK, at which the Pb SOTs can operate in magnetic fields 
of up to 1.8 T. At the fields Ba ≈ 1.2 T used in this study, the SOTs displayed 
flux noise down to 250 nΦ0 per Hz1/2 (where Φ0 is the superconducting 
flux quantum, Φ0 = h/2e ≈ 2 × 10−7 G cm−2), spin noise of 10μB per Hz1/2 
(μB, Bohr magneton), and field noise down to 10 nT per Hz1/2. For height 
control, we attached the SOT to a quartz tuning fork, as described 
in ref. 40. The tuning fork was electrically excited at the resonance 
frequency of ~33 kHz. The current through it was amplified using a 
room-temperature custom-built trans-impedance amplifier, designed 
based on ref. 41 and measured using a lock-in amplifier. The scanning 
was performed at a constant height of 20 to 100 nm above the surface 
of the top hBN.

Technique for direct imaging of the current and evaluation of 
the current in the incompressible strips
To avoid the 1/f noise of the SOT that is present at frequencies below 
~1 kHz, an a.c. signal from backgate modulation was acquired instead 
of measuring the local d.c. Bz(r). We applied a small a.c. excitation to 
the backgate (Fig. 1a), Vbg = V V πft+ sin(2 )bg

dc
bg
ac , where f ≈ 3 kHz, and the 

corresponding B V B V= ∂ /∂z z
ac

bg
ac

bg was then measured by the SOT using 
a lock-in amplifier. Another major advantage of this modulation is that 
it provides a convenient method for direct imaging of the local current 
density J(r). To demonstrate its principle, consider a θ gradient in the 
x direction that gives rise to a narrow strip of current of width Δx posi-
tioned at x0, and carrying a current density Jy in the y direction with a 
total current Iy = ΔxJy (Extended Data Fig. 4a). The magnetic field Bz(x) 
generated by the current and measured at a height hSOT above it is 
described by the Biot–Savart law (Extended Data Fig. 4b). For heights 
hSOT > Δx, Bz(x) is largely governed by only the total current Iy in the strip, 
independent of Δx. Bz(x) is an antisymmetric function with a steep 
slope above the current strip. Its spatial derivative ∂Bz/∂x has a sharp 
peak at the strip location (Extended Data Fig. 4c), with a height pro-
portional to Iy, and thus can provide a good means for direct imaging 
of the current-density distribution Jy(x) if this distribution can be 
modulated in space in the x direction. The backgate voltage V bg

ac provides 
this spatial modulation, as follows. In the presence of potential gradi-
ents, the quantum Hall edge channels flow along equipotential contours 
(given by equi-θ contours in the absence of charge disorder). A small 
V bg

ac  thus shifts the location of the channel by x V x V= ∂ /∂0
ac

bg
ac

0 bg in the 
direction parallel to the gradient and perpendicular to the current flow. 
So regardless of the gradient direction x�, the measured signal will be 
given by B x B x x J x= − ∂ /∂ ∝ ( )z z y

ac
0
ac

0
ac , thus providing direct imaging of 

the local current density. Extended Data Fig. 4d–f presents a simulation 
of three counterpropagating current strips demonstrating the B z

ac 
imaging for this case.

The sharpness of the B z
ac peak is determined by Δx, hSOT, x0

ac and the 
SOT diameter. In Fig. 2a, the scanning height above the MATBG is 
hSOT = 70 nm (including hBN) and the effective SOT diameter is 220 nm; 
hence the spatial resolution is largely determined by the SOT diameter. 
For these parameters and a root mean square (r.m.s.) x0

ac = 54 nm, 
Extended Data Fig. 4c shows that a current strip that is narrower than 
~150 nm will result in a resolution-limited B z

ac peak (compare the solid 
and dashed lines).

We now use this numerical procedure to analyse the data in Fig. 2a, 
which presents the B z

ac signal along the white dashed line in Fig. 3a; this 
dashed line is aligned along the twist-angle gradient in a region of 
largely smooth θ(r) behaviour (light brown region in the top-left corner 
of Fig. 3b, see also Supplementary Video 1). Extended Data Fig. 4g pre-
sents an example of the B z

ac data from Fig. 2a at Vbg = −10.54 V displaying 
the B z

ac peak (blue). The data at consecutive Vbg values show that the 

peak position x0 shifts with Vbg at a rate of ∂x0/∂Vbg = 1.54 μm V−1, cor-

responding to a twist-angle gradient  






C= /θ
x

x
V

n
θ

∂
∂

∂
∂

∂
∂

0

bg

s  = 0.0374° μm−1 
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(where =

n
θ

θ

a

∂
∂

16

3
s

2 ). The data were acquired with an r.m.s. voltage, 

V bg
ac  = 35 mV, inducing an r.m.s. x V=

x
V0

ac
bg
ac ∂

∂
0

bg
 = 54 nm. The red curve in 

Extended Data Fig. 4g shows a numerical fit to the data using these 
experimental parameters and a current-strip width of Δx = 50 nm, result-
ing in IT = 1.3 μA. The good fit shows that the experimental results are 
consistent with our simulations presented in Fig. 4f–i, although the 
exact value of Δx cannot be determined because the experimental B z

ac 
peak is resolution-limited by the diameter of the SOT.

The extracted value IT = 1.3 μA is not sensitive to precise Δx. Because 
IT = σyxΔεn/e = νΔεne/h, and ν = −12 in Extended Data Fig. 4g, we obtain 
Δεn = 2.8 meV, comparable to the values derived from bandstructure 
calculations (Extended Data Fig. 10a). Using Δx = 50 nm we obtain 
(in the incompressible region) an in-plane electric field of E|| = Δεn/
(eΔx) = 56 kV m−1 comparable to the simulation values in Fig. 4g.

Topological and nontopological currents in the incompressible 
and compressible quantum Hall strips
Gradients in the twist angle ∇θ give rise to gradients in the chemical 
potential ∇μ and to alternating compressible (when μ resides within a 
Landau level) and incompressible (μ in the energy gap between Landau 
levels) quantum Hall strips (Fig. 4f–i). Both regions carry current42; 
however, usually only the currents in the incompressible strips, JT = σE, 
which are of topological nature, are considered, whereas the nontopo-
logical currents in the compressible strips, J zμ n= ∇ ×NT

e e �, are com-
monly ignored (here μe = ϵk/B is the magnetic moment of the orbiting 
electron and ϵk is its kinetic energy)43. The following semiclassical 
picture is instructive in describing JT and JNT. Under strong magnetic 
fields and in the absence of in-plane electric fields, the charge carriers 
follow cyclotron orbits that can be described semiclassically as an array 
of circles, resulting in zero average bulk current (Extended Data Fig. 5a). 
Applying an external in-plane electric field along the x direction to an 
incompressible state (Ex = −∂V/∂x) causes the circular orbitals to convert 
into spirals drifting along the y direction, generating a current J y

T = σyxEx 
(Extended Data Fig. 5b). Alternatively, applying the same external elec-
tric field to a compressible strip will result in carrier redistribution that 
screens the in-plane electric field. As a result the drift current vanishes, 
but at the cost of a non-zero gradient in the carrier density, ∂ne/∂x 
(Extended Data Fig. 5c). Because each orbital carries a magnetic 
moment μe = μe

�z, giving rise to a local magnetization m = |ne|μe, the 
induced ∂ne/∂x causes gradients in m, and hence produces equilibrium 
currents through42 JNT  =  ∇  ×  m. This accounts for a non-zero 
J y

NT = μe∂|ne|/∂x (cyan arrows in Extended Data Fig. 5c), which flows in 
the direction opposite to the topological current J y

T in Extended Data 
Fig. 5b. Since a full band does not contribute to current, ne in the above 
expression refers only to carriers in a partially filled band. Alternatively, 
J y

NT can be understood as arising from uncompensated contributions 
to the current from neighbouring orbitals in the presence of a gradient 
in the orbital density (Extended Data Fig. 5c).

The total current carried by the drifting orbitals in an incompressible 
strip residing between two compressible regions is given by I y

T = ∫ J xdy
T  = 

σyxΔεn/e, where Δεn = ε|n|+1 – ε|n| is the Landau level energy gap between 
adjacent compressible states and σyx = νe2/h is the quantum Hall con-
ductance of the incompressible state (see Fig. 4). For a more extensive 
description of JT and JNT see ref. 9.

Determination of twist-angle measurement accuracy and 
spatial resolution
θ accuracy. The local twist angle is determined by the local ns(r) via 
θ(r) = ra n3 ( )/8s . The incompressible IT current and the correspond-
ing peak in the B z

ac signal appear at specific locations where N Landau 
levels in the dispersive bands (N = 1, 2, 3,…) are exactly fully occupied, 
corresponding to a density |nN| = C V V−N

bg bg
CNP  = ns + 4N|Ba|/ϕ0 for four-

fold degenerate Landau levels, where V N
bg is the backgate voltage that 

corresponds to the Nth peak. Measuring the N− and N+ peaks in the p 
and n dispersive bands, respectively, allows derivation of ns(r) = 

( )C V V+ /2N N
bg
+

bg
−  − 4N|Ba|/ϕ0 and therefore of θ(r). The absolute angle 

accuracy is thus determined by the accuracy of C, Ba and V N
bg
± . Determin-

ing C is possible through global transport measurements and more 
accurately through local measurement of the spacing between any two 
incompressible peaks V V−N N

bg
+1

bg = g|Ba|/(ϕ0C), where g is the degener-
acy of the Landau level considered. From this we estimate our overall 
absolute accuracy of determining ns to be about ±1%, thus giving an 
absolute θ accuracy of δθ = ±0.005°.

In this study, however, we are particularly interested in the relative 
accuracy of θ(r) for comparing different locations r and deriving the 
angle gradients ∇θ. The relative accuracy is determined primarily by 
the measurement precision of V N

bg
± . The sharpness of the IT peaks and 

the good signal-to-noise ratio of the B z
ac signal allow high-precision 

measurement of V N
bg
±  as demonstrated in Extended Data Fig. 6. In the 

stationary measurement in Extended Data Fig. 6a (magnification of 
Fig. 1f), Vbg was swept with increments ΔVbg = 4.7 mV, demonstrating 
that the V N

bg
=−3 and V bg

N =−4 peak positions can be determined to an accu-
racy better than ±ΔVbg, (one step size), corresponding to 
δV V/ ≈ 4 × 10N N

bg
=−4

bg
=−4 −4 . θ ∝  ns , and so we have δθ/θ ≈ 2 × 10−4, or a 

relative θ accuracy of δθ = ±0.0002°. In Supplementary Video 1 (which 
was used to construct the full θ(r) map of device A; see Fig. 3b), larger 
increments ΔVbg = 40 mV were used (Extended Data Fig. 6b), corre-
sponding to a θ accuracy of δθ = ±0.002°. Supplementary Videos 3, 4 
used ΔVbg = 45 mV constructing the θ(x, y) map of device B (Fig. 3f) with 
similar accuracy. Supplementary Videos 3, 4 contain 87 frames of 
68 × 184 = 12,512 pixels each, which were acquired over a total of 42 h. 
The Vbg trace of each pixel therefore took t = 12 s to acquire. The 
δθ ≱ ±0.002° accuracy, normalized by the pixel acquisition time, indi-
cates that the relative θ sensitivity per pixel in the imaging mode is 
better than S t θ= δθ

1/2  = 0.007° per Hz1/2.

Spatial resolution of θ(r) mapping. Our electrostatic simulations 
show that the typical width of the incompressible IT strips is about 
50 nm (Fig. 4f, h) and should be smoothed by the wavefunction width, 
of the order of magnetic length lB =  ħ eB/  ≈ 25 nm. The position r of 
the incompressible strip provides a very accurate determination on 
the local ns(r) and θ(r), and so the width of the strip essentially deter-
mines the spatial resolution, which can be smaller than the SOT diam-
eter. The actual spatial resolution δr is determined by the accuracy δVbg 
to which the Vbg value can be assigned to the IT peak at a location r, δr = 
δVbg∂r/∂Vbg, where ∂r/∂Vbg is the change in the position of IT per change 
in Vbg. Since IT appears at Vbg(r) = [ns(r) + 4N|Ba|/ϕ0]/C, the space depend-
ence enters only through ns(r) = ns(θ(r)), and thus ∂r/∂Vbg = C(∂θ/∂r)−1

(∂ns/∂θ)−1, where ∂ns/∂θ = 16θ/ 3 a2. Using characteristic values C = 
2.5  ×  1011  V−1  cm−2, δVbg  =  45  mV in the scanning mode and 
∂θ/∂r = 0.05° μm−1 gives a resolution δr = 50 nm. Smaller ∂θ/∂r gradients 
result in larger δr. However, in such a case, a lower spatial resolution is 
required because θ varies slowly in space. The estimated δr is compa-
rable to the pixel size in the videos (57 nm in Supplementary Video 1 
and 43 nm in Supplementary Videos 3, 4). We thus conclude that the 
spatial resolution δr of the attained θ(r) maps is of the order of 4–5 
moiré supercells (13 nm each).

Local quantum Hall measurement in device A
Extended Data Fig. 7 presents the local B z

ac measurement with the SOT 
at a fixed position, along with the global transport Rxx measurement 
in device A at Ba = 1.19 T. Alternating compressible and incompressible 
states in the region under the tip leads to a series of peaks in B z

ac, with 
sharp peaks corresponding to incompressible strips carrying IT. The 
sign of the incompressible peaks is determined by the sign of σyx, with 
B z

ac > 0 (B z
ac < 0) for electron (hole) doping. In Figs. 1d, 2a the B z

ac signal 
for p doping is multiplied by −1 for clarity. The spacing between adjacent 



peaks reflects the degeneracy of the Landau level. The dispersive band 
(shaded yellow), exhibits a sequence of fourfold and eightfold degen-
eracies. In the flat band we find fourfold degenerate levels around ne = 0, 
twofold degeneracy near ne = ±ns/2, and 1-fold degenerate levels near 
ne = −3ns/4 (see Fig. 1d for 1-fold degenerate levels near ne = +3ns/4). 
Evaluation of the local ns allows the extraction of the local twist angle, 
θ = 1.136 ± 0.005°, as described below. In contrast to the sharp local B z

ac 
peaks, oscillations in Rxx are barely visible, owing to θ(r) disorder and 
the fact that the magic-angle regions in device A do not extend over 
the entire device area.

Landau level tomography and twist-angle mapping
To map the local twist angle, a series of rB ( )z

ac  area scans were performed 
while varying Vbg. This results in a 3D dataset with two spatial dimen-
sions and one Vbg (or equivalently, ne) axis. Each energy gap between 
adjacent Landau levels forms a 2D manifold in this 3D space with a peak 
in the B z

ac signal (bright regions in Extended Data Fig. 8). The manifolds 
of the lowest Landau levels in the dispersive bands trace the manifold 
of the bottom of the dispersive band, ns(r), and are displaced vertically 
from it by the degeneracy of the Landau levels, thus providing the means 
for mapping the local ns(r) and hence the local θ a n( ) = 3 ( )/8sr r . The 
3D space was mapped with pixel size of ~50 nm and Vbg spacing between 
successive scans, ΔVbg ≈ 40 mV, which enables us to map θ(r) with an 
accuracy of δθ = ±0.002° (see Methods).

For device A, the tomographic imaging was acquired for the p dis-
persive band for Vbg spanning −8.58 V to −11.50 V with ΔVbg = 40 mV 
(Supplementary Video 1). The spacing between adjacent fourfold lev-
els at Ba = 1.22 T was 0.39 V ≈ 10ΔVbg. In this device, the spatial variation 
of the charge neutrality voltage V r( )bg

CNP  was found to be very small 
(Fig. 2a) and therefore ns(r) was derived from the 3D data assuming a 
constant V bg

CNP. Representative slices of the 3D dataset are shown in 
Extended Data Fig. 8a, b. At Vbg = −8.5 V, the Fermi level resides in the 
flat band for all points in space, and at Vbg = −11.5 V, εF is in the dispersive 
band. As εF moves through the bottom of the dispersive band, it crosses 
four fourfold degenerate Landau levels above ns, followed by an eight-
fold degenerate Landau level. The black line in Extended Data Fig. 8a 
traces the N = −4 incompressible IT peak revealing gradients with occa-
sional small jumps in the twist angle. We note that at the jump positions 
the intensity of the signal is suppressed, owing to pinning of the Landau 
levels at the steps, which reduces the amplitude of the spatial a.c. dis-
placement x0

ac and hence the intensity of B z
ac (see Methods section 

‘Technique for direct imaging of the current and evaluation of the cur-
rent in the incompressible strips’).

We note that at any value of |Vbg| > ns/C several different Landau lev-
els cross εF in the bulk of the sample. Thus, despite the fact that fully 
developed Landau levels are present locally, no well defined quantum 
Hall state in the dispersive bands can be observed globally. The same 
is true for the Landau levels of the correlated states, which are also 
influenced by variations in ns(r). This explains why MATBG magne-
totransport commonly shows SdH oscillations without displaying 
full conductance quantization, with the exception of the CNP Landau 
fan1–7. At high enough field, the quantum Hall quantization should be 
recovered when the Landau level degeneracy 4Ba/ϕ0 exceeds the ns(r) 
variations.

Device B exhibited stronger charge inhomogeneity and hence the 
3D tomographic imaging was acquired for both the p and n disper-
sive bands (Supplementary Videos 3, 4) and ns(r) was derived from 
the separation between the corresponding Landau levels in the two 
bands as described schematically in Fig. 1f. The tomographic data of 
both samples has been published online30.

The observation of superconductivity in devices with twist-angle 
disorder of ~0.1° may be explained by either a tolerance of the supercon-
ducting state to the exact θ or by percolating paths along very specific 
θM. Both of our devices show superconductivity—despite having only a 
small overlap in their histograms in Fig. 3i—which supports the former 

explanation. Figure 2a shows, however, that Landau levels near ns/4 
and ns/2 are discontinuous and those above 3ns/4 appear only at a few 
locations, indicating the extreme fragility of the correlated states to 
twist-angle disorder.

Mapping of the charge disorder
Similarly to the mapping of the twist angle disorder through ns(r) = 
C[Vns(r) – V–ns(r)]/2, the tomographic imaging also allows mapping of 
the charge disorder δnd(r)  =  nd(r)  −  nd, where nd(r) =  C[Vns(r) +   
V–ns(r)]/2, as presented in Fig. 3h for device B. Extended Data Fig. 9 
shows the histogram of δnd(r) along with a Gaussian fit with a standard 
deviation Δnd = 2.59 × 1010 cm−2, which is comparable to high-quality 
hBN-encapsulated monolayer graphene devices44 and substantially 
lower than in graphene on SiO2

45. Note that in contrast to 
hBN-encapsulated graphene, the MATBG fabrication process is cur-
rently incompatible with thermal annealing procedures for disorder 
reduction. We observe that the charge disorder in device B is notably 
larger than in the magic-angle regions in device A (Fig. 2d), which we 
ascribe to the fact that in contrast to device A, device B did not undergo 
surface residue cleaning by AFM.

Note that the tomographic method allows mapping of the twist-angle 
and charge disorders only in the magic-angle regions, where Landau 
levels are present. In device A, a large part of the sample did not show 
magic-angle physics (Supplementary Videos 1, 2 and Fig. 3a, b), whereas 
the magic-angle regions revealed very low charge disorder with an esti-
mated standard deviation Δnd ≈ 1.3 × 1010 cm−2 as attained by several 1D 
scans, such as in Fig. 2a, d. We therefore performed tomographic imag-
ing of only the p dispersive band, which does not permit extraction of 
the full 2D map of δnd(r) in device A. Neglecting this low level of charge 
disorder introduces an error in the derived θ(r) map of device A of 
δθ ≱ 0.0015°, which is negligible compared to the span of θ(r) in Fig. 3b.

Bandstructure calculations and Landau level crossings
The bandstructure of twisted bilayer graphene can be computed from 
an effective continuum Hamiltonian11,12,46–48:
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Here, u = 0.0797 eV and u′ = 0.0975 eV are coupling constants49 that 
give the strength of the interaction between like (A ↔ A, B ↔ B) and 
opposing (A ↔ B) sublattices in the two layers, the difference of which 
accounts for out-of-plane corrugation, ω = e2πi/3, and U† is the Hermitian 
conjugate of U. The moiré reciprocal lattice vectors, G a a= −j j j

m (1) (2), are 
given by the difference between the reciprocal lattice vectors in the 
upper (a j

(1)) and lower ( j
(2)a ) layers.

Magnetic field effects can be included by making the substitution 
k → k + eA/ħ in the effective Hamiltonian. Here, A is the vector potential, 
which is related to the static magnetic field via B = ∇ × A. In general, the 
bandstructure in a magnetic field cannot be computed because the 
addition of a spatially dependent vector potential breaks translational 
invariance. However, at certain values of the magnetic field—specifi-
cally when SB/(h/e) = p/q, where p and q are co-prime integers and S is 
the area of the unit cell—a ‘magnetic’ unit cell can be introduced 
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whereupon it becomes possible to solve the Schrödinger equation 
using the corresponding ‘magnetic’ Bloch conditions50. It is then pos-
sible to construct a Hamiltonian matrix in the basis of the monolayer 
graphene Landau levels51,52. Although the Landau levels basis is 
unbounded, the Hamiltonian matrix can be truncated at an energy 
where the higher-energy Landau levels only weakly affect the 
low-energy spectrum. This cut-off energy must be much larger than 
the interlayer coupling characterized by the coupling constants u and 
u′. The resulting finite matrix can then be diagonalized. This results in 
a bandstructure diagram in terms of p/q that is directly related to the 
strength of the magnetic field and indirectly related to the twist angle, 
because the moiré unit cell area, S =  a θ3 /[8sin ( /2)]2 2 , depends on θ. 
For a varying magnetic field or twist angle the bands are computed for 
each individual parameter value assuming that these values are homo-
geneous throughout the material.

Level crossings in the bandstructure are observed as the mag-
netic field or the twist angle are varied. These occur as a result of the 
‘Rashba-like’ splitting of the dispersive bands. In general, this type of 
splitting leads to two Landau level series, largely overlapping in energy, 
which cross as a function of magnetic field53 (Extended Data Fig. 10a), 
and as a function of θ (Extended Data Fig. 10b), as is the case in the 
experimental data. These are due to the evolution of the Rashba-like 
splitting with θ (Extended Data Fig. 10c–e).

Origin of the internal in-plane electric field and numerical 
electrostatic simulations
The origin of the internal electric field in presence of twist-angle gra-
dients can be understood intuitively as follows. An external in-plane 
electric field applied to graphene—for example, by charge disorder in 
the substrate—exerts a force on the electrons. Thermal equilibrium 
conditions require zero net force on the carriers, and so charge redis-
tribution will occur, creating an opposing electric field and leading to 
screening of the external field, thus achieving the required zero net 
force. This is the common situation in metals. In the case of MATBG, 
the backgate voltage induces a nearly uniform carrier density, while the 
twist-angle disorder induces a variable chemical potential μ(r) (Fig. 4b), 
which exerts an in-plane force on the carriers, F|| = −∇μ. To attain zero 
net force in thermal equilibrium, an in-plane electric field E|| = ∇μ/q 
must therefore be generated by carrier redistribution. Thus, in con-
trast to common charge disorder, in which the system tends to screen 
external electric fields, in the case of twist-angle disorder the system 
counterintuitively spontaneously generates internal electric fields to 
counterbalance the force produced by the variable chemical potential. 
These internal fields do not generate current at zero magnetic field; 
however, in a finite magnetic field transverse topological and nontopo-
logical currents will be induced in the ground state.

For the results presented in Fig. 4, simulations (using the COMSOL 
Multiphysics analysis software) were used to solve electrostatic  
equations for the potential V and charge density ρ = −ene at Ba = 0 and 
in the quantum Hall state at Ba = 1.22 T. The simulations included a 
backgate electrode at a constant electric potential Vbg and a grounded 
MATBG in a 3 × 0.5 μm2 x–z box, assuming translation invariance along 
the y axis, with boundary conditions of E⟂ = 0 on the external surfaces 
of the box. An iterative self-consistent solution for V(x, y, z) and 
ρ(x, y) was obtained, satisfying the following conditions: (1) V depends 
on ρ through ∇·E  =  ρ/εrε0 and E  =  −∇V, where εr is the relative  
permittivity (we took εr = 4 for hBN) and ε0 is the vacuum permittivity 
(here ∇ = (∂x, ∂y, ∂z) is the three dimensional operator); and (2) ρ 
depends on V through the integrated DOS N μ θ( ; )e , where 
μ(x, y) = −qV(x, y) and q = ±e is the carrier charge (negative sign for 
μ > 0). The integrated DOS N μ θ( ; )e  was calculated for B = 0 and B ≠ 0 
as described in the Methods section ‘Bandstructure calculations and 
Landau level crossings’.

Once V(x, y, z = 0) and ρ(x, y) were found in the plane of the MATBG, 
the incompressible surface currents were calculated using JT = −σ∇V, 

where σxy(x, y) = −σyx(x, y) = −ν(x, y)e2/h, and σxx = σyy = 0 are the compo-
nents of the conductivity tensor σ.

Measurement parameters
All the measurements were carried out at T = 300 mK in an out-of-plane 
applied magnetic field Ba.

Figure 1b and Extended Data Fig. 2b. Device B, Iac = 10 nA (r.m.s.), 
Vbg = −15 V to 15 V.

Figure 1d. Device B, Ba = 1.08 T, SOT diameter 250 nm, scan height 
40 nm, V bg

ac  = 20 mV (r.m.s.), ΔVbg = 6.25 mV, acquisition time 6 s per 
point, total acquisition time 8 h.

Figure 1f and Extended Data Figs. 6a, 7. Device A, Ba = 1.19 T, SOT di-
ameter 220 nm, scan height 100 nm, V bg

ac  = 15 mV (r.m.s.), Vbg = 4.7 mV, 
acquisition time 6 s per point, total acquisition time 12 h.

Figure 2. Device A, Ba = 1.22 T, SOT diameter 220 nm, scan height 60 nm, 
V bg

ac  = 35 mV (r.m.s.), pixel size 26 nm, 160 ms per pixel, total acquisition 
time 21.4 h.

Figure 3a and Supplementary Video 2. Device A, Ba = 1.16 T, SOT di-
ameter 220 nm, scan height 110 nm, V bg

ac  = 80 mV (r.m.s.), pixel size 
60 nm, 60 ms per pixel, acquisition time 60 min per frame.

Supplementary Video 1 and Extended Data Figs. 6b, 8a, b. Device A, 
Ba = 1.22 T, SOT diameter 220 nm, scan height 60 nm, V bg

ac = 35 mV (r.m.s.), 
pixel size 57 nm, 60 ms per pixel, acquisition time 30 min per frame.

Figure 3e. Device B, Ba = 1.08 T, SOT diameter 250 nm, scan height 
140 nm, V bg

ac  = 60 mV (r.m.s.), pixel size 50 nm, 60 ms per pixel, acquisi-
tion time 33 min.

Supplementary Videos 3, 4 and Extended Data Fig. 8c, d. Device B, 
Ba = 1.08 T, SOT diameter 250 nm, scan height 70 nm (Video 3) and 80 nm 
(Video 4), V bg

ac  = 60 mV (r.m.s.), pixel size 43 nm, 60 ms per pixel, acqui-
sition time 25 min per frame.

Extended Data Fig. 2a. Device A, Iac = 10 nA (r.m.s.), Vbg = −17 V to 17 V, 
Si backgate 50 V.

Extended Data Fig. 3a. Device A, Iac = 5 nA (r.m.s.), Vbg = −6 V to −3.5 V, 
Si backgate 50 V.

Extended Data Fig. 3b. Device B, Iac = 4 nA (r.m.s.), Vbg = −7 V to −4 V.

Extended Data Fig. 3c. Device B, Iac = 10 nA (r.m.s.), Vbg = −6.5 V to 
−4.7 V, Ba = 0 T.

Data availability
The data that support the findings of this study are available from the 
corresponding authors on reasonable request.
 
33.	 Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer 

graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).
34.	 Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 

342, 614–617 (2013).
35.	 Anahory, Y. et al. SQUID-on-tip with single-electron spin sensitivity for high-field and 

ultra-low temperature nanomagnetic imaging. Nanoscale 12, 3174–3182 (2020).
36.	 Huber, M. E. et al. DC SQUID series array amplifiers with 120 MHz bandwidth. IEEE Trans. 

Appl. Supercond. 11, 1251–1256 (2001).
37.	 Finkler, A. et al. Scanning superconducting quantum interference device on a tip for 

magnetic imaging of nanoscale phenomena. Rev. Sci. Instrum. 83, 073702 (2012).
38.	 Finkler, A. et al. Self-aligned nanoscale SQUID on a tip. Nano Lett. 10, 1046–1049 (2010).
39.	 Lachman, E. O. et al. Visualization of superparamagnetic dynamics in magnetic 

topological insulators. Sci. Adv. 1, e1500740 (2015).



40.	 Halbertal, D. et al. Nanoscale thermal imaging of dissipation in quantum systems. Nature 
539, 407–410 (2016).

41.	 Kleinbaum, E. & Csáthy, G. A. Note: a transimpedance amplifier for remotely located 
quartz tuning forks. Rev. Sci. Instrum. 83, 126101 (2012).

42.	 Geller, M. R. & Vignale, G. Currents in the compressible and incompressible regions of the 
two-dimensional electron gas. Phys. Rev. B 50, 11714–11722 (1994).

43.	 Kim, P. Graphene and relativistic quantum physics. In Dirac Matter (eds Duplantier B., 
Rivasseau V. & Fuchs J. N.) 1–23 (Birkhäuser, 2017).

44.	 Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. 
Nanotechnol. 5, 722–726 (2010).

45.	 Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning 
single-electron transistor. Nat. Phys. 4, 144–148 (2008).

46.	 Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Graphene bilayer with a 
twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007).

47.	 Kindermann, M. & First, P. N. Local sublattice-symmetry breaking in rotationally faulted 
multilayer graphene. Phys. Rev. B 83, 045425 (2011).

48.	 Koshino, M. & Moon, P. Electronic properties of incommensurate atomic layers. J. Phys. 
Soc. Jpn. 84, 121001 (2015).

49.	 Koshino, M. et al. Maximally localized Wannier orbitals and the extended Hubbard model 
for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018).

50.	 Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. 
Phys. 82, 1959–2007 (2010).

51.	 Bistritzer, R. & MacDonald, A. H. Moiré butterflies in twisted bilayer graphene. Phys. Rev. B 
84, 035440 (2011).

52.	 Moon, P. & Koshino, M. Energy spectrum and quantum Hall effect in twisted bilayer 
graphene. Phys. Rev. B 85, 195458 (2012).

53.	 Mireles, F. & Schliemann, J. Energy spectrum and Landau levels in bilayer graphene with 
spin–orbit interaction. New J. Phys. 14, 093026 (2012).

Acknowledgements We thank A. Stern and E. Berg for valuable discussions and M. F. da Silva 
for constructing the COMSOL simulations. This work was supported by the Sagol WIS–MIT 
Bridge Program, by the European Research Council (ERC) under the European Union’s Horizon 
2020 research and innovation programme (grant no. 785971), by the Israel Science Foundation 
(ISF, grant no. 994/19), by the Minerva Foundation with funding from the Federal German 
Ministry of Education and Research, and by the Leona M. and Harry B. Helmsley Charitable 

Trust grant no. 2018PG-ISL006. Y.C., P.J.-H. and E.Z. acknowledge the support of the MISTI (MIT 
International Science and Technology Initiatives) MIT–Israel Seed Fund. Work at MIT was 
supported by the National Science Foundation (NSF, grant no. DMR-1809802), the Center for 
Integrated Quantum Materials under NSF grant no. DMR-1231319 and the Gordon and Betty 
Moore Foundation’s EPiQS Initiative through grant no. GBMF4541 to P.J.-H. for device 
fabrication, transport measurements and data analysis. This work was performed in part at the 
Harvard University Center for Nanoscale Systems (CNS), a member of the National 
Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the 
National Science Foundation under NSF ECCS award no. 1541959. D.R.-L acknowledges partial 
support from Fundaciò Bancaria ‘la Caixa’ (LCF/BQ/AN15/10380011) and from the US Army 
Research Office grant no. W911NF-17-S-0001. M.K. acknowledges the financial support of JSPS 
KAKENHI grant no. JP17K05496. J.A.C. and P.M. were supported by the Science and 
Technology Commission of Shanghai Municipality grant no. 19ZR1436400, the NYU–ECNU 
Institute of Physics at NYU Shanghai and New York University Global Seed Grants for 
Collaborative Research. J.A.C. acknowledges support from the National Science Foundation of 
China grant no. 11750110420. This research was carried out on the High Performance 
Computing resources at NYU Shanghai. K.W. and T.T. acknowledge support from the Elemental 
Strategy Initiative conducted by the MEXT, Japan, A3 Foresight by JSPS and the CREST 
(JPMJCR15F3), JST.

Author contributions A.U., S.G. and E.Z. designed the experiment. A.U., S.G. and Y.C. 
performed the measurements. A.U. and S.G. performed the analysis. Y.C., D.R.-L. and P.J.-H. 
designed and provided the samples and contributed to the analyses of the results. K.B. 
fabricated the SOTs. Y.M. fabricated the tuning forks. J.A.C. performed the tight-binding 
calculations with P.M. and M.K., and K.W. and T.T. fabricated the hBN. A.U., S.G. and E.Z. wrote 
the manuscript. All authors participated in discussions and in writing of the manuscript.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-
2255-3.
Correspondence and requests for materials should be addressed to P.J.-H. or E.Z.
Peer review information Nature thanks Emanuel Tutuc, Fan Zhang and the other, anonymous, 
reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-020-2255-3
https://doi.org/10.1038/s41586-020-2255-3
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | Optical image of MATBG devices. a, Optical image of 
device A showing hBN/MATBG/hBN (green), the underlying PdAu backgate 
(light brown) and the marked electrodes used for four-probe R xx 

measurements. b, Optical image of device B (cyan) on the PdAu backgate (light 
blue) with marked electrodes.



Extended Data Fig. 2 | Transport measurements at T = 300 mK. a, Four-probe 
measurement of R xx(Vbg) versus Ba in device A using an excitation current of 
10 nA with the corresponding traces of the Landau fan diagram at the bottom. 

The green solid lines show the segments that can be traced in the data and the 
dotted lines indicate their extrapolation to the origin. b, As in a for device B. 
The purple colour marks the regions where the R xx signal was slightly negative.
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Extended Data Fig. 3 | Transport measurements in the superconducting 
state at T = 300 mK. a, b,Colour rendering of R xx measured in the vicinity of 
–ns/2 versus Ba and ne at low fields using an r.m.s. excitation current of 5 nA in 
device A (a) and 4 nA in device B (b). A zero-resistance superconducting state 

(black) is observed in device B. c, dV/dI versus Idc characteristics at various 
carrier concentrations ne in the superconducting state in device B at Ba = 0 T 
using an r.m.s. a.c. excitation Iac = 10 nA.



Extended Data Fig. 4 | Numerical simulation demonstrating current 
imaging by measuring Bz

ac. a, Current distribution Jy(x – x0) of a 
Δx = 50-nm-wide channel carrying Iy = 1 μA in the yŷ̂ direction. b, Calculated 
−Bz(x – x0) at a height of 70 nm above the sample, convoluted with a 
220-nm-diameter SOT sensing area. c, Calculated B x x( − )0z

ac  for an r.m.s. 
x0

ac = 54 nm spatial modulation of the channel position. The dashed profile 
corresponds to a current strip of width Δx = 150 nm carrying the same current, 
showing that the spatial resolution is limited by the SOT diameter. d–f, As in a–c 
but for three counter-propagating currents spaced 150 nm apart. g, Analysis of 
the Bz

ac peak of an incompressible strip. B x( )z
ac  signal (blue) acquired along the 

line indicated in Fig. 3a for Vbg = −10.54 V (a single vertical line from Fig. 2a) 
showing the ν = −12 incompressible peak, along with a numerical fit (red). The 
fit uses the experimental values of V bg

ac , hSOT and the SOT diameter with a single 
fitting parameter of the total current in the incompressible strip resulting in 
IT = 1.3 μA. An incompressible strip of width Δx = 50 nm was used for the fit. The 
mean value of B x( )z

ac  was subtracted from the data. The asymmetry in B x( )z
ac  

away from the peak is caused by the presence of counterflowing 
nontopological currents INT of lower density in the adjacent compressible 
strips.
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Extended Data Fig. 5 | The origin of equilibrium currents in the 
compressible and incompressible quantum Hall states. a, Semiclassical 
picture of cyclotron orbits of holes with mutually canceling neighbouring 
currents, resulting in zero bulk current. b, In the presence of an in-plane 
electric field Ex (+ and − signs represent external charges) the cyclotron orbits 

acquire a drift velocity resulting in a non-zero J y
T in the incompressible state. c, 

In the compressible regime the external in-plane electric field is screened by 
establishing a charge-density gradient, giving rise to J y

NT flowing in the 
opposite direction (cyan arrows).



Extended Data Fig. 6 | Determination of the accuracy of the twist-angle 
measurement. a, Traces of B− z

ac versus Vbg in device A (from Fig. 1f) acquired 
with a step size ΔVbg = 4.7 mV and an r.m.s. V bg

ac  = 15 mV. The positions of the V N
bg

=−3 
and V N

bg
=−4 peaks can be determined to an accuracy better than ±ΔVbg (one step 

size), corresponding to a relative θ accuracy of δθ = ±0.0002°. b, As in a, taken 

from Supplementary Video 1 at a pixel position (x, y) = (2.53 μm, 5.9 μm) with 
step size ΔVbg = 40 mV and an r.m.s. V bg

ac  = 35 mV, resulting in a relative θ accuracy 
of δθ = ±0.002° in the imaging mode. The larger Bz

ac signal and the broader IT 
peaks in b compared to a are due to larger V bg

ac  excitation (see Methods section 
‘Measurement parameters’).
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Extended Data Fig. 7 | Resolving the local quantum Hall states in flat and 
dispersive bands in device A. Global R xx (purple, right axis) and local Bz

ac 
(blue, left axis) measured at a point in the bulk of device A versus the electron 
density ne at Ba = 1.19 T. The sharp Bz

ac peaks reflect the IT current in 

incompressible strips with sign determined by the sign of σyx, magnitude by the 
Landau level energy gap and separation by the Landau level degeneracy (red 
bars). The dispersive bands are shaded in yellow and the signal in the flat bands 
is amplified six times for clarity.



Extended Data Fig. 8 | Landau level tomography. a, Slices of the 3D dataset 

( )B x y V, , bgz
ac  along various planes for device A. The bright signals denote the 2D 

manifolds tracing the incompressible states. The black lines trace the N = −4 
incompressible manifold used to determine ns(x, y) and θ(x, y). It separates 
fourfold degenerate Landau levels below it from an eightfold degenerate 
Landau level above it (wide dark blue band). The region in the centre of the 
sample that shows no Landau levels corresponds to the grey-blue area in Fig. 3b 
where no MATBG physics is resolved. b, Representative horizontal slices of the 

data from Supplementary Video 1 showing the evolution of the Landau levels 
with Vbg. c, As in a, for device B. For the range of gate voltages shown, εF lies in 
the p dispersive band for the entire sample. The black lines show an example of 
a trace of the incompressible manifold lying above an eightfold degenerate 
Landau level. d, Representative horizontal slices of the data from 
Supplementary Video 3. An interactive interface for tomographic visualization 
of the data is available at ref. 30.
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Extended Data Fig. 9 | Histogram of the charge disorder in device B. Histogram of δnd(r) data from Fig. 3h along with a Gaussian fit (black) with a standard 
deviation Δnd = 2.59 × 1010 cm−2.



Extended Data Fig. 10 | Landau level crossings of the dispersive bands.  
a, Numerically calculated Landau level energies as a function of magnetic field 
for a fixed θ = 1.05°. An example level crossing is highlighted in red.  
b, Numerically calculated Landau level energies as a function of θ for a fixed 

Ba = 1.22 T. An example level crossing is highlighted in red. c–e, The Ba = 0 
bandstructure of bilayer graphene for θ = 1.05° (c), θ = 1.16° (d) and θ = 1.27° (e). 
The blue and red lines indicate the bands that arise from the positive and 
negative valleys, respectively.
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