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Although the recently predicted topological magnetoelectric 
effect1 and the response to an electric charge that mimics an 
induced mirror magnetic monopole2 are fundamental attri-
butes of topological states of matter with broken time-rever-
sal symmetry, so far they have not been directly observed in 
experiments. Using a SQUID-on-tip3, acting simultaneously 
as a tunable scanning electric charge and as an ultrasensi-
tive nanoscale magnetometer, we induce and directly image 
the microscopic currents generating the magnetic monopole 
response in a graphene quantum Hall electron system. We 
find a rich and complex nonlinear behaviour, governed by 
the coexistence of topological and non-topological equilib-
rium currents, that is not captured by the monopole models2.  
Furthermore, by imaging the equilibrium currents of indi-
vidual quantum Hall edge states, we reveal that the edge 
states, which are commonly assumed to carry only a chiral 
downstream current, in fact carry a pair of counterpropagat-
ing currents4, in which the topological downstream current in 
the incompressible region is counterbalanced by a non-topo-
logical upstream current flowing in the adjacent compressible 
region. The intricate patterns of the counterpropagating equi-
librium-state orbital currents provide insights into the micro-
scopic origins of the topological and non-topological charge 
and energy flow in quantum Hall systems.

Magnetic monopole is a hypothetical elementary particle repre-
senting an isolated source of magnetic field with only one magnetic 
pole (N without S, or vice versa) and a quantized magnetic charge. 
Although modern particle theory predicts its existence, experimen-
tal searches for magnetic monopoles have so far been unsuccess-
ful. Condensed matter systems, however, offer a natural platform 
for studying magnetic monopole-like excitations or response in 
materials like spin ice5,6 or topological insulators owing to their 
topological magnetoelectric effect (TME)1,7,8. The conventional 
magnetoelectric effect (ME) describes magnetization induced by 
an externally applied electric field in materials in which the time-
reversal symmetry is broken either by magnetic order or by an 
applied magnetic field9. This non-topological ME is distinctly local 
in nature—the local magnetization m is proportional to the local 
electric field E through mi = αijEj, where αij is the so-called Lifshitz 
tensor9. In recent decades this ME has enabled key advances in 

spin-based information processing and has been exploited in fast- 
access magnetic memory, which is of keen practical interest10.

The advent of topology has led to the notion that topological 
systems can exhibit a magnetoelectric effect of an entirely differ-
ent nature with two fundamentally different characteristics—non-
locality and the topologically quantized response1,7,8. This TME is 
predicted to arise in three-dimensional (3D) magnetic topological 
insulators and in 2D electron systems with quantized Hall conduc-
tivity. In these systems, topological currents may flow in the ground 
state. They are expected to generate an exotic response in the form 
of a mirror magnetic monopole characterized by the Chern num-
ber, C (refs. 2,11,12). One can depict this TME by considering a point 
charge Qe placed at r = 0 and height z0 above the topological surface 
(Fig. 1a). In this case, the induced circulating topological surface 
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produces a magnetic field, above the topological plane, equiva-
lent to that of a mirror magnetic monopole positioned at a mir-
ror-symmetric point with a universal value of induced magnetic 
charge of α=′Q C cQm e (ref. 2). Here α ≈ 1/137 is the fine-structure 
constant and c is the speed of light. Note that this response has 
been termed the magnetic monopole2, even though ′Qm is not a real 
monopole because the induced magnetic field in Fig. 1a is point-
ing outwards above the plane and inwards below the plane such 
that ∇ ⋅ B = 0. Nonetheless, the magnetic monopole-like response 
has unique properties reflecting its topological nature that are fun-
damentally different from a conventional magnetic response. In 
particular, the induced local magnetization mz(r), found from the 
relation = ∇ × ̂m zJ z

T , is proportional to the local electric potential 
V, mz(r) = σyxV(r), which represents a non-local relation between 
surface magnetization and electric field E(r) = −∇V(r), which has 
no counterpart in non-topological systems. Here σyx = Ce2/h is 
the quantum Hall (QH) conductance, e is the elementary charge 
and h is Planck’s constant. A striking manifestation of this non-
locality is that the total magnetic moment induced by the point 
electric charge, ∫ ∫= = φ
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equation (1), becomes infinite, a behaviour that is in sharp contrast 
to the conventional ME response. Remarkably, infinite magnetic 
moment also implies infinite energy U = −M ⋅ B, which is required 
to generate the magnetic monopole response, which is cut off in 
reality by the proximity to the backgate, the system size and by  
disorder, as we show in the following. Here, = ̂BzB  is the applied 
magnetic field.

The TME and the corresponding magnetic monopole response 
have so far eluded direct microscopic observation11–14. The techni-
cal challenges lie in the need to bring a controllable electric charge 
into close proximity to a topological surface and in measuring the 
resulting minute local magnetic response. We accomplished this by 
utilizing a nanoscale superconducting quantum interference device 
(SQUID) fabricated on the apex of a sharp pipette (SQUID-on-tip, 
SOT)3. Here, Pb SOTs have been deployed with a typical diameter 
of d = 60 nm and scanned at a height of h ≈ 30 nm above the sam-
ple surface at T = 300 mK. They possess magnetic field sensitivity 
of 30 nT Hz−1/2 and spin sensitivity of 0.5 μB Hz−1/2 in a background 
applied magnetic field of B ≈ 1 T (Methods section ‘SOT fabrication 
and characterization’).

Our topological system of choice is hexagonal boron nitride 
(hBN)-encapsulated graphene in the QH state (Methods sections 
‘Device fabrication’ and ‘Transport data’ and Supplementary Figs. 1 
and 2). Such van der Waals heterostructures have the advantage of 
exhibiting low disorder, large Landau level (LL) energy spacing, and 
well resolved QH states even at moderate B (refs. 15,16). This system 
offers exceptional density tunability and the electronic states are in 
close proximity to the sample surface. With the help of backgates, 
p–n junctions can be formed and the Chern numbers can be tuned 
in situ17,18. This is not possible in magnetic topological insulators, 
which so far support only C = ±1 (refs. 19,20).

We use three different strategies to create an electric charge and 
the corresponding spatially dependent electric fields to explore the 
various regimes of the ME. The first method exploits native disorder 
such as charged impurities and potential variations in the sample, 

which induce a ME response that is spatially imaged with the SOT. 
This approach can provide essential information on the structure of 
the disorder but lacks controllability. The second method makes use 
of the creation of tunable local potential in a lateral p–n junction 
induced by two separate backgates17,18. We use it to directly image 
the microscopic equilibrium currents of the QH edge states. The 
third method is based on the application of a non-zero voltage Vtg to 
the SOT, creating controllable charge or potential at the tip apex and 
measuring the local ME response using the SOT.

We first discuss the TME arising due to native disorder, for 
example a point charge Qe localized at the hBN top surface (Fig. 2a). 
This charge, located at (0,0,z0), generates a radial electric field in the 
graphene plane in the incompressible QH state, =
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(ε is the effective permittivity), which in turn induces a circulat-
ing current σ=φJ r E r( ) ( )yx

T
r  (Methods section ‘TME response to 

a point charge’) and the corresponding mirror magnetic monopole 
′Qm according to equation (1). The numerically calculated φJ r( )T  is 

presented in Fig. 2b versus the global filling factor ν, controlled by 
the backgate voltage Vbg (Methods section ‘Semiclassical numerical 
simulations’ and Supplementary Fig. 10). As expected, φJ r( )T  decays 
with r and is present only in the incompressible states with integer 
filling factors ν = C = ±2, ±6, ±10,… when the Fermi level ϵF resides 
within the LL energy gaps. The magnitude of the current grows 
with the Chern number |C| (as ~ ∣ ∣C ; Supplementary Section 1) 
and is of opposite chirality for electrons (C > 0) and holes (C < 0). 
In the compressible metallic regime, in contrast, Er(r) is screened 
and hence the topological currents are eliminated entirely. Note that 
these topological currents are usually referred to as chiral QH edge 
state currents and are commonly assumed to be the only currents 
flowing in the system. However, as we show below, the equilibrium 
QH edge states, rather than carrying these downstream currents 
along the chirality direction, carry pairs of counterpropagating 
downstream and upstream currents. These currents originate from 
two different mechanisms pertaining to the topological and non-
topological MEs, respectively, and we will refer to them as JT and JNT, 
respectively. Note that in the literature these currents are vaguely 
termed ‘bulk current’ and ‘edge current’, respectively4.

To detect the microscopic currents, we attach the SOT to a quartz 
tuning fork (TF) and oscillate the SOT parallel to the graphene sur-
face with a small amplitude xac along the ̂x direction (Fig. 2a and 
Methods section ‘Tuning fork’). The SOT thus measures the corre-
sponding = ∂ ∕∂ ∝B x y x B x y x J x y( , ) ( , ) ( , )z z y

TF
ac  (Fig. 2h) and provides 

a direct visualization of the y component of the local current Jy(x,y) 
(Methods section ‘Modulation techniques’ and Supplementary  
Fig. 3). Figure 2i shows profiles of B x( )z

TF  on sweeping Vbg through 
the compressible and incompressible QH states. At integer filling 
factors ν = C, the data provide a direct local observation of the TME 
and a unique nanoscale rendering of the equilibrium topological 
currents. The observed behaviour is in good qualitative agreement 
with the described model (Fig. 2b), displaying σ=J x E x( ) ( )y yx x

T  of 
varying sign with x, which grows with |C| and changes the overall 
sign on crossing the zeroth LL.

Strikingly, in addition to the topological currents in the incom-
pressible states, large currents are also observed in Fig. 2i in partially 
filled LLs, as further exemplified in the 2D image in Fig. 2h. Naively, 
no currents are expected in this compressible, metallic regime, due 
to screening of the in-plane electric field. Surprisingly, these cur-
rents are of opposite polarity to those in the incompressible state 
(see the colour inversion) and of comparable amplitude. Note that 
partial screening of the electric field due to finite compressibility 
will result in weaker currents, and cannot explain the observed 
polarity inversion, because the polarity of σyx and the direction of 
the external electric field will not change. We now show that these 
observed equilibrium currents are of an entirely different nature 
than the topological currents4 and manifest a non-topological ME. 
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Fig. 1 | Magnetic monopole response and the topological and non-
topological magnetoelectric effects. a, Schematic of an electric point 
charge Qe (blue) creating an in-plane radial electric field Er (blue arrows) 
in an incompressible QH ground state of a graphene monolayer. The TME 
gives rise to circulating topological currents σ=φJ r E r( ) ( )yx r

T  (green) that 
decay as 1/r2. These currents generate a magnetic field above the graphene 
(red arrows) of a mirror magnetic monopole with charge ′Qm (transparent 
red). b, The same configuration as in a, but in a compressible QH state in 
which Qe induces a mirror electric charge ′−Qe (transparent blue) and an 
out-of-plane electric field (blue arrows). Because in this case the in-plane 
electric field is screened (Er = 0), one expects no circulating currents. 
Yet, counter-circulating non-topological currents JNT (green) arise due 
to the non-topological ME generating an opposite magnetic field that 
corresponds to a magnetic dipole rather than a monopole.
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These JNT currents apparently do not couple directly to transport 
measurements21 and, moreover, because they do not arise from the 
relation J = σE, they are invisible to scanning probe techniques that 
do not measure currents directly, such as the Kelvin probe22, scan-
ning single-electron transistor23 and scanning capacitance24. As 
a result, even though their existence was predicted theoretically4, 
these currents have remained undetected so far. Our scanning 
SQUID-on-tip technique allows direct nanoscale imaging of these 
equilibrium currents.

The following semiclassical picture is instructive to distin-
guish the origin of the non-topological and topological currents 
(Supplementary Section 1). In strong magnetic fields and in the 
absence of an in-plane electric field, the electron or hole cyclotron 

orbits can be described semiclassically as an array of circles result-
ing in zero average current (Fig. 2e). In the incompressible state, 
an in-plane electric field along the x direction, Ex = −∂V/∂x, causes 
the orbitals to convert into spirals drifting along the y direction and 
generating the current σ=J Ey yx x

T , as shown schematically in Fig. 2f. 
The topological nature of these equilibrium currents manifests itself 
in the fact that σyx is quantized. On the other hand, in the compress-
ible regime, carriers redistribute themselves and screen the in-plane 
electric field. As a result Jy

T vanishes, but at a cost of a non-zero  
gradient in carrier density, ∂ne/∂x (Fig. 2g). Because each orbital 
carries a magnetic moment25, μe  ħ= − ∣ ∕ ∣ ̂v e n B z2F , which results 
in local magnetization m = |ne|μe (vF being the Fermi velocity and n  
the LL index), the induced ∂ne/∂x causes gradients in m, and hence 

a
SOT

0

VbgVV

x

xacxx Qe

Graphene Q ḿ
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Fig. 2 | Topological and non-topological equilibrium currents in graphene in the presence of charge disorder. a, Schematic set-up showing an  
impurity charge Qe (blue) inducing a response magnetic field B (red) in a form of mirror magnetic monopole ′Qm in the incompressible state. The  
backgate voltage Vbg controls the graphene global filling factor ν. b, Numerical simulation of φJ r( )T  versus global ν for a charge Qe = −0.5e positioned on  
top of the hBN surface 15 nm above the graphene. The plot shows the cross-section of J x( )y

T  through the origin. c, Same as in b but for φJ r( )NT , which  
flows only in the compressible states with opposite chirality. d, The total current = +φ φ φJ J JT NT. e, Semiclassical picture of cyclotron orbits of holes with 
mutually cancelling neighbouring currents resulting in zero total current. f, In the presence of an in-plane electric field Ex (indicated by + and − signs), 
the cyclotron orbits acquire a drift velocity resulting in a non-zero Jy

T in the incompressible state. g, In the compressible regime, the external in-plane 
electric field is screened by establishing a charge density gradient, giving rise to Jy

NT flowing in the opposite direction (cyan arrows). h, Experimental 
∝B x y J x y( , ) ( , )z y

TF  for ν ≈ 28.5 compressible state, revealing equilibrium JNT due to native charge disorder. The colour bar in h applies to h–j. i, Experimental 
∝B x J x( ) ( )z y

TF  versus Vbg, revealing alternating bands of JT and JNT due to native disorder. Right axis labels indicate the corresponding bulk values of C.  
j, Numerically calculated B x( )z

TF  versus ν induced by the four charges in k. Curly brackets and arrows indicate bands of JNT and JT, respectively. k, Illustration 
of the four impurity charges on the hBN surface used for calculations in j. For parameters, see Methods section ‘Measurement and simulation parameters’ 
and Source data.
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produces equilibrium currents through4 JNT = ∇ × m. This accounts 
for a non-zero μ= ∂ ∣ ∣∕∂J n xy

NT
e e  in Fig. 2g, which flows in the direc-

tion opposite to the topological current Jy
T in Fig. 2f. Alternatively, 

Jy
NT can be understood as arising from uncompensated contributions 

to the current from neighbouring orbitals in the presence of a gradi-
ent in the orbital density (Fig. 2g). The JNTs resemble magnetization 
currents in magnetic materials. Note, however, that here they do not 
arise as a diamagnetic or paramagnetic response to an applied mag-
netic field but rather as a non-topological magnetoelectric response 
to an applied electric field and hence can be of either polarity and 
of controllable magnitude. The corresponding quantum mechanical 
origins of both JT and JNT are described in Supplementary Section 1,  
with JNT arising from the non-homogeneous distribution of the 
expectation value of the quantum mechanical current operator 

Ĵ⟨ ⟩x( )  (Supplementary Fig. 4). Figure 2c depicts JNT generated by 
the point charge configuration of Fig. 2a, while the total current, 
Jtot = JT + JNT, is plotted in Fig. 2d. Figure 2j presents an example of 
calculated B x( )z

TF  along a line crossing four point charges (Fig. 2k 
and Supplementary Fig. 10a), showing the evolution of alternating 
JT and JNT stripes, in qualitative agreement with the experimental 
data in Fig. 2i.

The topological and non-topological magnetoelectric effects in 
the QH regime display a remarkable duality (Fig. 1). An external 
charge Qe induces a mirror electric charge − ′Qe in a compressible 
state (Fig. 1b) and a mirror magnetic charge α=′Q C cQm e in the 
incompressible phase (Fig. 1a). Both types of mirror charge give rise 
to circulating currents: JNT(r) originates from an out-of-plane com-
ponent of the electric field Ez(r) that determines ne(r) and ∇ne(r), 
while JT stems from the in-plane component Er(r). However, the two 
types of current are fundamentally different. In the non-topological 
case the magnetoelectric response to the charge Qe induces cur-
rents that decay as JNT(r) ∝ r−4, generating a total magnetic moment 

∫ μ= π = − ∕
∞

M J r r r Q e( ) dNT

0

NT 2
e e , which is finite and local in 

nature. In contrast, the topological response creates JT(r) ∝ r−2, 
resulting in infinite magnetization MT for any electric charge Qe. 
This non-local diverging response is the hallmark of a topologi-
cal phase with a broken time-reversal symmetry and accounts for 
the appearance of a mirror magnetic monopole rather than a mag-
netic dipole. Depending on the parameters, JT and JNT may become 
comparable (Supplementary Section 1 and Supplementary Fig. 5), 
but they are always of opposite chirality, as shown in the numerical 
simulations (Fig. 2b–d,j) and clearly observed in the experimental 
data in Fig. 2i. As Vbg is varied, the measured patterns in the adja-
cent compressible and incompressible bands have comparable mag-
nitude but are of opposite sign, and the overall magnitude of JT and 
JNT grows with n (Supplementary Section 1). Remarkably, the zeroth 
LL shows essentially no non-topological JNT in Fig. 2i, as indeed  
predicted theoretically (Supplementary Section 1 and Fig. 2c,j).

Rather than relying on the static native disorder, we can create a 
variable potential by adding a graphite backgate Vbg

L  to the left half of 
the sample (Fig. 3a). By varying Vbg

L  and the Si backgate Vbg
R , we can 

create a p–n junction with a tunable in-plane electric field Ex. Due 
to the charge density gradient, alternating compressible and incom-
pressible stripes should thus be formed across the junction4,22,26. 
Utilizing this setting, we present here direct nanoscale imaging of 
the equilibrium currents in the QH edge states. Figure 3b–e shows 
a sequence of images of ∝B x y J x y( , ) ( , )z y

TF  as the filling factors νL 
and νR are increased with opposite polarities by sweeping Vbg

L  and 
Vbg

R  (see Supplementary Section 2 and Supplementary Video 1 for 
the full sequence). For |νL|,|νR| < 2, both sides of the junction are 
in the n = 0 LL (Fig. 3b) and no edge currents are present (in con-
trast to higher LLs; Supplementary Fig. 6). Once the n = ±1 LLs are 
reached, an incompressible strip carrying topological current IT 
is formed on each side. The two incompressible strips carry IT in 

opposite directions, following the downstream chirality of the QH 
edge states as expected (blue arrows, Fig. 3c). As the potential dif-
ference across the junction is increased they move towards the cen-
tre. The remarkable observation, however, is that, as νL and νR are 
further increased, counterpropagating currents adjacent to IT are 
formed (red arrows, Fig. 3d). These currents, which flow upstream 
against the QH chirality, are the result of the non-topological mag-
netoelectric contribution and are commonly ignored. This pair of 
counterpropagating equilibrium currents, IT and INT, nearly can-
cel each other, so that the total edge current does not grow with 
further addition of LLs but merely oscillates (Fig. 3e). This mixed 
topological and non-topological magnetoelectric behaviour is more 
clearly resolved by inspecting line cuts across the junction (Fig. 3f),  
which show a tree-like pattern of IT and INT pairs moving towards 
the centre with increasing filling factor difference across the junc-
tion, in agreement with the numerical simulations in Fig. 3g–j. 
Previous scanning probe studies could differentiate between com-
pressible and incompressible regions22,24,27,28, but the presence  
of INT was never uncovered.

By depleting carriers in the left side of the sample (νL = 0) we can 
form fully controllable electrostatically defined QH edge states. This 
allows us to directly image the evolution of IT and INT within indi-
vidual QH edge states by varying Vbg

R , as presented in Methods sec-
tion ‘Electrostatically defined QH edge states’, Supplementary Fig. 7 
and Supplementary Video 2. Edge states in the context of transport 
studies are usually considered to be formed when a fully occupied 
LL with a gap above it crosses the Fermi level. This happens on 
approaching the sample edge where the carrier density is gradually 
depleted to zero (Supplementary Fig. 7g). Each edge state consists 
of an incompressible region with varying electric potential carry-
ing downstream IT followed by a compressible strip with constant 
electric potential that carries an upstream INT. Thus, in contrast to 
the common notion, each QH edge state under equilibrium condi-
tions carries a pair of counterpropagating currents of comparable 
magnitude (Supplementary Section 1 and Supplementary Fig. 7g). 
In presence of an external bias, the global out-of-equilibrium trans-
port current is carried by the overall net IT, while the net INT should 
remain zero (Methods section ‘Electrostatically defined QH edge 
states’). Locally, however, we expect the external bias to change the 
magnitude and the distribution of both JT and JNT within the indi-
vidual QH edge states. This non-equilibrium change in the balance 
between the two counterpropagating currents provides important 
insight into the microscopic structure and dynamics of the QH edge 
states and may provide means (Methods section ‘Electrostatically 
defined QH edge states’) for local microscopic visualization of  
out-of-equilibrium processes of edge reconstruction and energy 
equilibration in integer and fractional QH states.

Employing the gained insight into the structure of the edge states 
we now address the general case of the monopole-like response 
induced by a variable charge or potential Vtg applied to the SOT  
(Fig. 4a). To generate a mirror magnetic monopole response, the 
entire sample has to be in an incompressible state. Hence, the poten-
tial drop along the graphene between the SOT location and far away, 
ΔV = V0 − V∞ = Qe/4πεz0, where z0 is the height of the tip above the 
graphene surface, should not exceed the energy gap between the 
LLs, eΔVmax = ΔEn = En + 1 − En, where ħ= ∣ ∣E n e v Bnsign ( ) 2n F

2 . This 
requirement imposes an upper bound on the allowable Qe on the tip, 
equal to ε= π Δ ∕Q z E e4 nmax

T
0 . Equivalently, for the non-topological 

magnetoelectric effect, the maximum induced charge density varia-
tion should not surpass the density of states of a single LL, resulting 
in = π ∕Q Be z h8max

NT 2
0
2 . Remarkably, for our experimental configura-

tion, Qmax
T  and Qmax

NT  are both of the order of just a single electron 
charge e (Methods section ‘Monopole fragility’ and Supplementary 
Fig. 8). When Qe exceeds this value, the linear topological and non-
topological magnetoelectric effects break down, giving rise to a 
regime where both effects are mixed. This mixed magnetoelectric 
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effect (MME) exhibits a nonlinear response and a rich phase dia-
gram beyond the mirror magnetic monopole framework2,12, which 
has not been explored so far.

Figure 4b presents the numerically calculated Bz signal at the 
SOT position versus Vbg and Vtg and reveals a complex mixed 
magnetoelectric phase diagram in the form of tiled diamonds. 
The widely searched for topological mirror magnetic monopole 
state2,11–14 is present only at singular points at the vertices of the dia-
monds in Fig. 4b in the limit of Vtg → 0 (Supplementary Section 3 
and Supplementary Fig. 9). The remainder of the phase diagram is 
dominated by the MME phase, in which each diamond corresponds 
to a different state classified by two quantum numbers (n1,n2), 
describing the LL numbers at infinity and below the tip, respectively  
(Fig. 4c). The middle row of diamonds with n1 = n2 describes the 

non-topological magnetoelectric phase in which the entire sample 
is compressible. In the neighbouring diamonds with n2 = n1 ± 1, the 
mixed magnetoelectric effect produces a response in the form of a 
magnetic dipole made up of a narrow ring of current IT enclosed by 
counterpropagating current rings of INT, as illustrated in Fig. 4d–h.  
The following rows of diamonds originate from an increasing 
number of concentric rings of IT and INT (Supplementary Fig. 9).  
Of particular interest are diamonds with n2 = −n1, corresponding to 
circular p–n junctions, where electron (hole) islands are formed in 
a hole (electron) doped sample. In this case concentric rings of IT 
of opposite chirality appear, constituting magnetic quadrupole-like 
and higher order moments (Supplementary Fig. 9). The quantum 
mechanical calculation of the MME phase diagram (Supplementary 
Section 4) is presented in Supplementary Fig. 11 and shows good 
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general agreement with the semiclassical results. Figure 4h shows 
a comparison of Jtot calculated by both methods. The quantum 
mechanical QH wavefunction extending over a few magnetic lengths 

ħ= ∕ ≈l eB 25 nmB  causes smoothing of the sharp current varia-
tions seen in the semiclassical calculation, emphasizing the common 
quantum mechanical origin of JT and JNT (Supplementary Fig. 12).

To increase the signal-to-noise ratio, rather than measuring Bz, 
we measure = ∂ ∕∂B V B Vz z

ac
bg
ac

bg by adding a small a.c. modulation 
Vbg

ac to Vbg, as illustrated in Fig. 4a (Methods section ‘Modulation 
techniques’). The experimental data in Fig. 4i are in good agree-
ment with the calculated Bz

ac in Fig. 4c, revealing the complex phase 
diagram of the MME (Supplementary Section 3). In addition, some 
fine structure in Bz

ac is resolved within the diamonds in Fig. 4i,  

which can be ascribed to the bound electronic states within the 
tip-induced ‘wedding cake’ potential (Supplementary Section 4) 
recently observed in scanning tunnelling microscopy studies29–31.

The presented direct nanoscale imaging of the equilibrium cur-
rents provides a new perspective on the microscopic nature of the 
current flow in the QH state that cannot be gained from global 
measurements. In particular, the QH edge states are shown to carry 
pairs of counterpropagating currents in the incompressible and 
compressible regions that are the manifestation of the topological 
and non-topological magnetoelectric effects. Rather than being 
present only along the sample edges, these currents can flow any-
where in the sample in response to potential variations induced 
either by externally applied gate voltages or by charge disorder 
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within the sample. This microscopic description lays the framework 
for comprehension of unconventional QH states that are expected 
to arise in more complex systems with intrinsic variations in the 
local chemical potential like magic angle twisted bilayer graphene32, 
inhomogeneously or magnetically doped 2D topological insula-
tors33 or charged edge impurities34. Imaging equilibrium currents 
at the nanoscale has the potential to be used as a novel probe of 
the internal structure of the quantum mechanical currents and 
wavefunctions, and to shed light on the microscopic mechanisms 
of charge and heat transport in the QH edge states. The developed 
technique can be readily extended to imaging out-of-equilibrium 
currents for revealing transport mechanisms in quantum spin Hall, 
quantum anomalous Hall and equilibration processes in complex 
edge reconstruction structures in integer and fractional QH states.
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Methods
Device fabrication. Three graphene-based van der Waals heterostructures were 
measured (Supplementary Fig. 1). All devices consisted of a hBN/graphene/hBN  
stack placed on top of a 300-nm-thick SiO2 layer of a thermally oxidized doped 
silicon wafer, acting as a backgate. A graphitic layer was placed under part of 
the stack, serving as an additional backgate. The two backgates allowed us to 
induce an interface of two different filling factors, νL and νR, at the boundary of 
the graphitic layer (Fig. 3a). The van der Waals stacking of device A was carried 
out using the viscoelastic transfer method, as explained in ref. 35. Devices B and 
C were created with the Elvacite-based pick-up method reported in refs. 35,36. To 
minimize the SOT distance to the graphene, we used a relatively thin top hBN layer 
with a thickness of ~8 nm (devices A and C) or 11.5 nm (device B). The bottom 
hBN layer was 23 nm (device A) or 50 nm (devices B and C) thick. The graphite 
backgate layer had a thickness of ~5 nm. The heterostructures were annealed in an 
Ar/H2 forming gas atmosphere at 500 °C to remove bubbles and wrinkles before 
further processing. Patterning was performed using electron beam lithography 
and etching as described in ref. 37. Contacts and leads were fabricated by thermal 
evaporation of a 10-nm-thick Cr adhesion layer followed by a 50–70 nm Au layer. 
The SOT scanning studies require an exceptionally clean surface. To ensure this, 
extra cleaning steps were carried out. After liftoff, the devices were re-annealed at 
350 °C. Contact mode atomic force microscopy was deployed to sweep off PMMA 
residues38,39, at a scanning speed between 0.4 and 0.6 Hz and with a tip force 
between 50 and 150 nN, depending on the device shape and the residue height.

Transport data. Four-point transport measurements were performed using 
standard lock-in techniques with a bias current of I = 100 nA (r.m.s.) at 7 Hz. 
From low magnetic field data we calculated the mobility μ =

ρen
1

xxe
 and mean free 

path =
ρ

l
k

h
emfp

1
2 xxF 2 , where 











=
ρ −

n e
Be

d

d

1
xy  is the carrier density, ρ =xx
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x  is the 

longitudinal four point resistivity, ρ =xy
V

I
W
L

H  is the Hall resistivity, Vx and VH are 
the longitudinal and transverse voltages, respectively, L and W are the length and 
width of the sample between the relevant transport contacts, respectively, and 

π=k nF e  is the Fermi wavevector. Our devices showed a mean free path of lmfp of 
1–8 µm and mobility μ ≈ 105−106 cm2 V−1s−1 in the Si gated regions. The graphite 
gated regions displayed a lower mobility of μ ≈ 104–105 cm2 V−1 s−1 and lmfp of 
0.05–1 µm. Supplementary Fig. 2 shows a Landau fan diagram of device C in  
the Si gated region.

SOT fabrication and characterization. The Pb SOTs were fabricated as described 
in ref. 3 with diameters ranging from 50 to 80 nm and including an integrated  
shunt resistor on the tip40,41. Magnetic imaging was performed in a 3He system42,43  
at 300 mK, at which the Pb SOTs can operate in magnetic fields up to 1.8 T,  
directed along ̂z, perpendicular to the SQUID loop. At the fields of B ≈ 1 T used  
in this study, the SOTs displayed flux noise down to 50 nΦ0 Hz−1/2, spin noise  
of 0.5 µB Hz−1/2 and field noise down to 30 nT Hz−1/2. Here, Φ0 = h/2e is the  
two-electron flux quantum.

Tuning fork. For height control we attached the SOT to a quartz tuning fork 
as described in ref. 40. The tuning fork was electrically excited at a resonance 
frequency of ~33 kHz. The current through it was amplified using a home-built 
trans-impedance amplifier, designed based on ref. 44 and measured using a lock-in 
amplifier. The scanning was performed at a constant height of 20–50 nm above 
the surface of the top hBN. The tuning fork was vibrated along the ̂x direction, 
causing the SOT to vibrate with it with a controllable amplitude xac in the range of 
20–100 nm r.m.s. In addition to the height control, we exploited the SOT vibration 
to acquire the spatial derivative of the local Bz field, = ∂ ∕∂B x B xz z

TF
ac , using a  

lock-in amplifier as described below.

Modulation techniques. To avoid the 1/f noise of the SOT that is present at 
frequencies below ~1 kHz, we acquired a.c. signals due to two types of modulation 
instead of measuring the local d.c. Bz(x, y).

Backgate modulation Bz
ac. We applied a small a.c. excitation to the backgate 

(Fig. 4a), = + πV V V ftcos(2 )bg bg
dc

bg
ac , where f ≈ 5 kHz. The corresponding 

= ∂ ∕∂B V B Vz z
ac

bg
ac

bg was then measured by the SOT using a lock-in amplifier.

Spatial modulation Bz
TF allowing direct current imaging. The advantage of the 

tuning fork-induced spatial modulation of the SOT position xac is that it provides 
a convenient means for direct imaging of the ŷ component of the local current 
density Jy(x). Consider a current element Jy flowing in a long and narrow strip of 
width Δx carrying a total current Iy = ΔxJy in the ŷ−  direction (Supplementary  
Fig. 3a). The magnetic field Bz(x) generated by the current and measured at  
height h above the current plane is described by the Biot–Savart law. For heights 
h > Δx, Bz(x) is essentially governed only by the total current Iy in the strip, 
independent of Δx (Supplementary Fig. 3b). The Bz(x) is an antisymmetric 
function with a steep slope above the current strip. The spatial derivative ∂Bz/∂x 
has a sharp peak at the strip location with a height proportional to Iy and  
a width determined by the scanning height h (Supplementary Fig. 3c).  

Measuring = ∂ ∕∂B x B xz z
TF

ac  thus provides a convenient method for direct 
visualization of the spatial current distribution Jy(x) with a resolution limited by the 
scanning height and the SOT diameter, as demonstrated by the simulation of three 
counterpropagating current strips in Supplementary Fig. 3d–f.

Electrostatically defined QH edge states. Using the experimental set-up of Fig. 3a, 
setting νL = 0 and varying νR, we can create the situation of electrostatically defined 
edge states. Supplementary Fig. 7 and Supplementary Video 2 show the evolution 
of JT and JNT edge currents versus νR. Several recent studies have shown evidence 
of charge accumulation along the physical edges of graphene upon changing 
the carrier concentration with the backgate27,34,45–48. This charge accumulation 
apparently leads to complicated configurations of QH edge states and 
unconventional transport and dissipation27,34. An important finding here is that no 
such charge accumulation occurs in the case of our electrostatically defined edge. 
This is evidenced in Supplementary Fig. 7f by the monotonic upward bending 
of LLs visualized by the bright traces of the incompressible strips. In the case of 
charge accumulation at the edge, the LLs should have a non-monotonic behaviour 
with downward bending before the upturn towards the edge. We postulate that 
this absence of charge accumulation plays a central role in the improvement of the 
fractional QH effect in electrostatically defined devices49.

We now focus on the microscopic details of the QH edge evolution upon 
varying νR. Similar to the case of a p–n junction, a strip of JT appears when  
reaching νR = 2 (Supplementary Fig. 7c) and moves towards the gate-defined edge 
as νR is increased (Supplementary Video 2). It is followed by a counterpropagating 
JNT that increases with νR (Supplementary Fig. 7d). This sequence of advancing  
JT and JNT pairs repeats itself (Supplementary Fig. 7e) upon filling of every 
following LL, as clearly seen in Supplementary Fig. 7f. Note that every pair of  
full-valued JNT and JT for |n| ≥ 1 carries almost no net current (Supplementary  
Fig. 5). As a result, when the edge states become too dense we can no longer  
resolve them within our spatial resolution.

Supplementary Fig. 7g shows a simplified schematic diagram of the QH 
edge states26. Each edge state carries a pair of counterpropagating currents4: JNT 
flowing upstream in the outer compressible strip of the edge state and JT flowing 
downstream with the edge chirality along the inner incompressible region. Let 
us focus on the n = 2 QH edge state. Supplementary Fig. 7g depicts the situation 
in which the Fermi level εF is just below n = 3 LL. In this case the integrated 
currents are maximal, Imax

NT  and Imax
T , and because their magnitudes are comparable 

(Supplementary Fig. 5) the overall current flowing in the edge state is close to 
zero. INT arises from the fact that in the incompressible strip the carrier density in 
the n = 2 LL decreases from a fully occupied to an empty level. IT, in contrast, is 
caused by the potential difference across the incompressible region, which drives 
the current in all of the three underlying occupied LLs. On decreasing εF within the 
gap, IT decreases while INT remains unchanged. Because IT is proportional to εF − εn, 
where εn is the energy of the highest underlying occupied LL, measurement of the 
local IT thus provides direct information on the local value of the electrochemical 
potential, which becomes essential under non-equilibrium conditions, as discussed 
in the following. When εF reaches just above the n = 2 LL, the downstream IT in this 
QH edge state vanishes and only the upstream INT remains (Supplementary Fig. 7h).  
In this situation the total equilibrium current carried by the n = 2 QH edge state 
reaches its maximum value given by the upstream Imax

NT . Decreasing νR further will 
start depleting the n = 2 LL, correspondingly reducing INT until it vanishes upon the 
full depletion of the n = 2 LL. Similarly to IT, such local measurement of INT thus 
provides key information on the occupation level of the LL in a non-equilibrium 
case. The above process will then repeat itself for the n = 1 QH edge state. The net 
equilibrium current in the QH edge states thus oscillates periodically with Vbg. 
Note that the n = 0 QH edge state in graphene is an exception as it carries only IT 
while INT = 0. This absence of INT in the n = 0 LL is clearly seen in Supplementary 
Fig. 7f and Supplementary Video 2. This is not the case for a 2D electron gas of 
massive particles, for example in GaAs heterostructures, where all the LLs carry 
pairs of counterpropagating INT and IT (Supplementary Fig. 5).

One may ask what happens to the currents flowing along the artificial edge 
(Fig. 3c–e and Supplementary Fig. 7c–e) as they approach the physical sample 
edges, without violating charge conservation. JT and JNT follow equi-potential V 
and equi-density ne lines, respectively. Both V and ne are continuous manifolds that 
bend towards the sample edges. It is therefore expected that all the equilibrium 
currents form closed counterpropagating loops following the physical and artificial 
edges. Another possibility, however, is that steep potential and carrier density 
gradients, on a scale smaller than the magnetic length lB, or strong disorder that 
locally destroys the QH state, may cause JT and JNT to essentially disappear at some 
point in the sample. Considering JT and JNT separately, this may seem to violate 
charge conservation. However, considering them together, the charge conservation 
is restored because the current flowing in one of them is returned through the 
counterflowing path of the other. This situation apparently occurs in magic angle 
twisted bilayer graphene32.

The above description of counterpropagating currents that change their 
relative magnitude as a function of local electrochemical potential and carrier 
density, provides an important framework for exploring non-equilibrium 
phenomena. In the equilibrium case the total current integrated over the width 
of the sample must be zero for IT and for INT separately. In out-of-equilibrium 
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conditions in the presence of external bias, the total INT should still remain 
zero, because it is proportional to the difference in the carrier densities at the 
opposite edges of the sample, but the density at the sample edges always has to 
vanish. The total IT, in contrast, becomes finite due to the induced transverse 
net drop in the electrochemical potential. This information provided by global 
transport measurements, however, does not reveal the local microscopic out-
of-equilibrium processes. Under out-of-equilibrium conditions, each QH edge 
state generally has a different, position-dependent electrochemical potential and 
non-equilibrium carrier distribution driven by external voltage bias or by other 
external perturbations including thermal gradients and heat flow. The equilibration 
process due to electron–electron scattering within each state and between 
neighbouring edge states is a subject of extensive studies using spectroscopic 
transport measurements50–52. These measurements, however, provide information 
only at specific lithographically predefined locations. In addition, contacts 
may affect the current flow, making these measurements invasive. Because the 
local electrochemical potential and the carrier density determine the relative 
magnitude and distribution of JTand JNT within each individual edge state, our 
technique may thus provide a unique imaging tool to visualize and explore non-
equilibrium phenomena and the microscopic mechanisms of equilibration, edge 
reconstruction, and charge and heat transfer between individual QH edge  
states under various out-of-equilibrium conditions. This will be the subject  
of future work.

TME response to a point charge. We show that a point electric charge Qe placed  
at height z0 above a topological surface characterized by a quantized Hall 
conductance σyx induces a magnetic field above the surface identical to that of 
a magnetic monopole of charge ′Qm placed at height z0 below the surface. In 
the incompressible QH state the electric field E produced by the charge Qe is 
unscreened and its radial component Er along the topological surface is given in 
cylindrical coordinates by
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Q r
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field along the z axis is then obtained by integrating the Biot–Savart relation for 
concentric current rings with current dI(r) = Jφ(r)dr = σyxEr(r)dr:
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Here, σ ϵ′ = ∕Q Q 2yxm e 0. Using σyx = Ce2/h we obtain
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where α is the fine structure constant, c is the speed of light and C is the Chern 
number. Note that ′Qm flips sign with Bz. In the calculations above, we took Bz in the 
positive ̂z direction.

Monopole fragility. To induce a magnetic monopole, the entire sample has to 
be in the incompressible state. Hence, the potential variation across the sample 
cannot exceed the energy gap ΔEn/e. Due to its low density of states and the 
linear dispersion, graphene possesses a much larger QH energy gap than any 
other known time-reversal-symmetry-broken topological system. For an applied 
magnetic field of B = 1 T, ΔE1 = 36.3 meV ≈ 420 K. Even for such a large gap, a 
single electron charge trapped on the surface of hBN or located on the scanning 
tip is sufficient to destroy the monopole state, as demonstrated numerically in 
Supplementary Fig. 8. In this case, an incompressible state throughout the sample 
that is required for inducing a magnetic monopole cannot be formed at any value 
of Vbg. In magnetic topological insulators the energy gap is estimated to be of the 
order of 0.5 K (refs. 53–55), and hence native charge disorder as low as 1 × 10−3 e 
is sufficient to prevent the formation of a magnetic monopole. Because the 
magnetically doped topological insulators are found to be highly disordered43,56, 
we conclude that the proposed observation of the induced magnetic monopole in 
them2 is unfeasible at present.

Semiclassical numerical simulations. COMSOL simulations were used for 
solving the electrostatic equations for the potential V and charge density ρ = −ene 
in graphene. The simulations included one or two metallic backgates, graphene, 
and the SOT acting as a metallic local top gate (Supplementary Fig. 10) in a 
2 × 2 × 2 µm3 volume with boundary conditions of E⊥ = 0 on the box surfaces and 
a constant electric potential on the backgate and SOT surfaces. We performed an 
iterative self-consistent solution for V(x,y,z) as follows.

Step 1: V(x,y,z) was calculated by solving ∇ ⋅ E = ρ/εrε0 and E = −∇V with given 
Vbg, Vtg and an initial charge distribution ρ(x,y) = ρ0 on graphene, where εr is the 
relative permittivity of the material (we took εr = 4 for hBN and 3.9 for SiO2) and ε0 
is the permittivity of vacuum.

Step 2: The solution for V(x,y,z = 0) was used as an input to a smoothed LL 
occupation function ν(V) (Supplementary Fig. 10d) defining the local charge 
density on the graphene, ρ(x,y) = eBν(V)/ϕ0. The resulting ρ(x,y) was then used as 
an input to step 1.

These steps were repeated until a self-consistent solution was attained. Once 
V(x,y,z = 0) and ρ(x,y) were found, the topological and non-topological surface 
currents in graphene were calculated using JT = −σ∇V and ρ= ∇ × ∣ ∣ ̂μ

zJ
n

e
NT ( )e , 

where σxy(x,y) = −σyx(x,y) = −ν(x,y)e2/h and σxx = σyy = 0 are the components of the 
conductivity tensor σ. The total current distribution Jtot = JT + JNT was then used to 
derive the induced magnetic field Bz(x,y,z) through the Bio–Savart relation.

Measurement and simulation parameters. Figure 2b–d simulation: B = 1.435 T, Si 
backgate distance from graphene 252 nm, bottom hBN thickness 37 nm, top hBN 
thickness 15 nm. Other parameters are included in the figure caption.

Figure 2j simulation: Same as for Fig. 2b–d and with SOT diameter 60 nm, scan 
height 35 nm (50 nm above graphene) and xac = 35 nm (r.m.s.).

Figure 2h: Device A, B = 1.03 T, SOT diameter 55 nm, scan height 70 nm, 
xac = 130 nm (r.m.s.), pixel size 55 nm, 100 ms per pixel.

Figure 2i: Device A, B = 1.05 T, SOT diameter 55 nm, scan height 60 nm, 
xac = 90 nm (r.m.s.), pixel size 95 nm, 60 ms per pixel.

Figure 3b–e and Supplementary Video 1: Device B, B = 1.06 T, SOT diameter 
50 nm, scan height 30 nm, xac = 35 nm (r.m.s.), pixel size 18 nm, 80 ms per pixel.

Figure 3f: Device B, B = 1.06 T, SOT diameter 50 nm, scan height 25 nm, 
xac = 35 nm (r.m.s.), pixel size 13 nm, 80 ms per pixel.

Figure 3g–j simulation: B = 1.45 T, SOT height 30 nm (32 nm above graphene), 
xac = 35 nm (r.m.s.), Si backgate distance from graphene 250 nm, graphite backgate 
distance from graphene 35 nm, top hBN thickness 2 nm.

Figure 4a,b simulation: B = 1.415 T, bottom hBN thickness 17 nm, SiO2 
thickness 218 nm, top hBN thickness 15 nm, SOT height 30 nm (45 nm above 
graphene), backgate excitation (Fig. 4b) =V 50 mVbg

ac  (r.m.s.).
Figure 4i: Device A, B = 1.03 T, SOT diameter 55 nm, scan height 30 nm, 

backgate excitation =V 70 mVbg
ac

p square wave at 5.15 kHz, 100 ms per point.
Supplementary Fig. 6: Device B, B = 1.06 T, SOT diameter 50 nm, scan height 

40 nm, xac = 30 nm (r.m.s.), pixel size 60 nm, 60 ms per pixel.
Supplementary Fig. 7b–e and Supplementary Video 2: Device C, B = 0.94 T, 

SOT diameter 69 nm, scan height 30 nm, xac = 25 nm (r.m.s.), pixel size 20 nm, 
80 ms per pixel.

Supplementary Fig. 7f: Device C, B = 0.94 T, SOT diameter 69 nm, scan height 
30 nm, xac = 55 nm (r.m.s.), pixel size 10 nm, 60 ms per pixel.

Data availability
The data represented in Figs. 2b–d,h–j, 3b–j and 4b–i are available with the online 
version of this paper. All other data that support the plots within this paper and 
other findings of this study are available from the corresponding author upon 
reasonable request.
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