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ABSTRACT

Two-dimensional (2D) layered materials offer a materials platform with potential applications from energy to information processing
devices. Although some single- and few-layer forms of materials such as graphene and transition metal dichalcogenides have been realized
and thoroughly studied, the space of arbitrary layered assemblies is still mostly unexplored. The main goal of this work is to demonstrate pre-
cise control of layered materials’ electronic properties through careful choice of the constituent layers, their stacking, and relative orientation.
Physics-based and AI-driven approaches for the automated planning, execution, and analysis of electronic structure calculations are applied
to layered assemblies based on prototype one-dimensional (1D) materials and realistic 2D materials. We find it is possible to routinely gener-
ate moir!e band structures in 1D with desired electronic characteristics such as a bandgap of any value within a large range, even with few
layers and materials (here, four and six, respectively). We argue that this tunability extends to 2D materials by showing the essential physical
ingredients are already evident in calculations of two-layer MoS2 and multi-layer graphene moir!e assemblies.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0044511

I. INTRODUCTION
Fostering innovation in nanotechnology relies on the continuous

development of nanostructures with exceptional properties as active
materials. Graphene and other two-dimensional (2D) materials such as
transition metal dichalcogenides constitute structurally simple, but nev-
ertheless fascinating, examples of materials that could redefine informa-
tion processing, communication, energy storage, and a host of other
technologies.1,2 In particular, precise and rapid stacking of single-layer
units from an ever-expanding library of layered materials to form 2D
layered assemblies with target properties is expected to significantly
reduce barriers to device development and commercialization.3,4

Manipulating the properties of 2D layered assemblies through
their twist angle has emerged as a new paradigm in materials
design.5–7 Recently, Cao et al.8,9 reported the experimental observation
that when two sheets of graphene are stacked together and twisted at a
small, so-called magic, angle, the resulting superlattice can become
either an insulator or a superconductor. Layered assemblies of gra-
phene, hexagonal boron nitride (hBN), molybdenum disulfide (MoS2),
and other 2D materials are now routinely fabricated in the lab.10–12

Notably, the work of Masubuchi et al.4 introduced an approach to the

high-throughput robotic assembly of 2D crystals for designer multi-
layer moir!e superlattices.

However, even with a small number of materials (or, within the
context of 2D layered assemblies, atomically thin single-layer units or
building blocks; Fig. 1), screening the resulting configuration space for
structures with potentially interesting physical behavior becomes time-
consuming and resource-demanding, if not an unattainable goal, due
to the combinatorial nature of the design problem, i.e., the exceedingly
large number of possible stacking sequences and layer orientations.
Not only do electronic transport measurements depend sensitively on
the twist angle, but typically only a small number of materials can be
prepared and measured over relevant time frames due to the delicate
nature of their fabrication.

In contrast, high-throughput materials calculations introduce the
capability to investigate large libraries of materials, both for elucidating
the physical processes that govern their electronic, optical, magnetic,
and other properties, and for the discovery of novel structures.6,13–17

The in silico screening and design of 2D layered materials has become
an increasingly attractive option, owing in no small part to the con-
tinuing development of novel theoretical concepts and methods for
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the study of their atomic and electronic structure.5,18,19 For instance,
theoretical treatment of layered assemblies of graphene has established
features such as low-dispersion (or flat) electronic bands in the single-
particle band structure as indicators of interesting electronic behav-
ior.5,7 A concise review of electronic structure methods based on den-
sity functional theory (DFT), tight-binding (TB) Hamiltonians, and
continuummodels for moir!e superlattices is provided in Carr et al.20

However, to the best of our knowledge, there is still no universal
approach suitable for the calculation of arbitrarily stacked layered
materials. Thus, within the context of selection and design of materials,
an important question remains: Is it possible to design a layered
assembly that could exhibit any desirable electronic properties?
Although the assumption of electronic tunability permeates much of
current research in the field of layered materials, we know no examples
of specific conclusive evidence. The main goal of this work is then to
demonstrate precise control of the electronic properties of layered
materials through careful choice of the constituent layers, their stack-
ing, and relative orientation.

Recent advances at the forefront of machine learning and auto-
mation, combined with the continuing expansion of computing
resources, have paved the way for a paradigm shift in materials
research and development toward seamlessly closing the loop between
hypothesis formulation and evaluation. For instance, Kusne et al.21

relied on a closed-loop, active learning-driven autonomous system for
the investigation and discovery of phase-change materials; Attia
et al.22 combined a predictive model and a Bayesian optimization algo-
rithm to efficiently optimize fast-charging protocols for maximizing
battery cycle life; Burger et al.23 used a mobile robot to search for
improved photocatalysts for hydrogen production; and the work of
Montoya et al.24 presented a computational system for optimization in
large search spaces of materials by adopting an agent-based approach
to deciding which experiments to carry out. Here, we use agent-based
simulation for exploring large libraries of layered materials and the
degree of electronic tunability therein.

More specifically, we introduce physics-based and AI-driven
approaches for the automated planning, execution, and analysis of
(virtual) materials measurements, and apply them to investigate trends
in the electronic structure of layered assemblies based on prototype
one-dimensional (1D) materials, motivated by realistic 2D materials.
We find that these prototype heterostructures offer a wide range of
electronic band structure properties, with indirect band gaps covering
the entire spectrum between 0 to 2.0 eV, and moir!e miniband band-
widths and gaps spanning more than three orders of magnitude. This
result stems from two important properties of layered materials: (1)
each unique sequence of layers generates a unique bandgap and inter-
layer moir!e potential, and (2) these potentials are smoothly tunable by
changing the moir!e length. These two necessary points regarding elec-
tronic tunability are then validated in candidate 2D materials, using
calculations of bilayer MoS2 to show smooth twist angle dependence
of electronic properties, and multi-layer graphene moir!e assemblies as
evidence of the band diversity caused by different numbers and loca-
tions of twisted interfaces.

The manuscript is organized as follows: Sec. II introduces theo-
retical methods for the calculation of the electronic structure of low-
dimensional moir!e assemblies and a computational framework for
automated materials discovery and design using agent-based simula-
tion. Computational, algorithmic, and implementation details are pro-
vided therein. In Sec. III we demonstrate it is possible to routinely
generate moir!e band structures with desired characteristics within a
multi-layer and multi-material space of moir!e assemblies with the aid
of model 1D materials. The feasibility of applying these obtained
insights to realistic 2D systems is then explored in Sec. IV by calcula-
tions of two-layer MoS2 and multi-layer graphene moir!e assemblies.
Finally, Sec. V examines the implications of the current work and pro-
poses directions for future research.

II. CONCEPTS, MODELS, AND METHODS
In this section, we introduce concepts, models, and methods for

the investigation of layered assemblies.

A. Theoretical framework
Many experimentally relevant materials properties can be derived

from single-particle band structures, and as such, calculations of elec-
tronic bands will be the focus of this work. All electronic structure cal-
culations were performed using TB models of moir!e assemblies, owing
to their favorable balance between explanatory power, accuracy, and
computational complexity.

To illustrate the central idea of our TB approach for low-
dimensional moir!e assemblies in a simple context, we introduce a gen-
eral 1D chain model.25 This is described by an empirical interlayer
coupling functional that allows the study of how different material
combinations control the electronic properties of moir!e band struc-
tures. The interlayer couplings, tij, between orbitals i and j of neighbor-
ing 1D layers are given by

tij ¼ !e" jDrijj=R0ð Þ2; (1)

where Drij is the relative distance between the orbitals, !¼ 1 eV, and
R0 ¼ 2:5 Å. These values are selected to mimic primarily the strength
and length-scale for electronic interlayer coupling in the transition
metal dichalcogenides, a popular family of 2D semiconductors.26 The

FIG. 1. Atomistic representation of an arbitrarily stacked multi-layer assembly in
which some layers are rotated with respect to the others. The (counterclockwise)
rotations about the stacking direction are described by the twist angles h.
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size of the corresponding Hamiltonians increases at an order of mag-
nitude less than those required for 2D systems.

It is possible to design moir!e assemblies based on 1D chains with
band structures that mimic what is seen in twisted 2D layered assem-
blies by deliberately choosing their TB coefficients. Figure 2 shows the
band structures of six such prototype 1D semiconductors. Their TB
Hamiltonians have slightly different band energies for the valence and
conduction edges, as well as different band gaps. Without loss of
generality, three (m1, m2, and m3 in Fig. 2) are analogous to hBN, a
common 2D insulator, having two orbitals per unit cell but differing
on-site energies. The sublattice symmetry-breaking opens a gap at the
k ¼ p=2 point. The other three (m4, m5, and m6), with more than
two orbitals per cell, have more complicated band structures and were
constructed to mimic 2D semiconductors like the transition metal
dichalcogenides.

For the 1D systems, the moir!e patterns are generated using lattice
mismatch as an analogue of twist angle. The central idea of the 2D
moir!e patterns is that twisting causes a new effective periodicity k to
appear in the multi-layer structure. An identical procedure can be
implemented in 1D by varying the lattice constants, similarly to the
study of moir!e patterns of graphene on aligned hBN.27,28 The lattice
mismatch is described using variable H, where one set of layers is
uncompressed with unit (1) lattice constant, and the other set are com-
pressed with lattice constant of 1"H. To ensure periodicity of the
superlattices, we used the generating function

HN ¼
1

2ð1þ NÞ
;

with N an integer in the interval 1 & N & 9. These values for N allow
for a wide range of moir!e pattern sizes without compromising compu-
tational speed by ensuring the TB model of the largest 1D superlattice
considered in this work does not exceed 400 orbitals.

In contrast to the 1D materials, the calculation of the 2D systems
MoS2 and graphene rely on the Wannier transformation of electronic
states obtained from DFT calculations.29,30 By sampling multiple
stacking configurations between two single layers of the same 2D
material, the twisted system’s TB Hamiltonian can be generated with
accurate intra- and interlayer couplings. Additional details are pro-
vided in the works of Fang et al.26,31

Since arbitrary rotations generally involve incommensurate
superlattices for which a periodic atomistic representation (as would

be required to avoid spurious effects from the edges of finite structural
models such as flakes) does not exist, we calculated only commensu-
rate superlattices. 2D superlattices were identified based on the formal-
ism of Uchida et al.32 for the twist angle h, in radians,

hN ¼ cos"1
cðNÞ þ 1
cðNÞ þ 2

! "
;

where cðNÞ ¼ 6NðN þ 1Þ. Specifically, we investigate twisted layered
assemblies in the interval 1 & N & 32, which corresponds to a set of
32 discrete values for the twist angle in the range 1:02' & h& 21:79'.

The values of H for the 1D superlattices are comparable to those
of the twist angle h, for the 2D layered structures: for example,
H ¼ 0:05 (compressive strain, or lattice mismatch, of 5%) corre-
sponds to h ¼ 0:05ð180'=pÞ ¼ 2:8'. Although the calculation of
twisted layered assemblies in 2D relies on DFT inputs to describe
materials realistically, important features in their electronic structure
can be understood with fewer complications using 1D model struc-
tures. Moreover, these structures are directly comparable to striped
moir!e patterns in 2D interfaces, which can occur during the experi-
mental fabrication of a twisted interface.33 A detailed discussion
provided in Carr et al.25 posits an intimate connection between the 1D
and 2D moir!e assemblies, justifying the use of these 1D models in the
exploration of trends in the electronic structure of twisted 2D
materials.

B. Computational framework
Materials science and engineering have markedly benefited from

the ability to identify working combinations of such technologies as
high-performance computing, automation, and machine learning.
Although a number of computational frameworks exist for leveraging
high-performance computing to streamline materials calculations,34,35

they generally rely on extensions for optimization and decision-
making in materials selection and design. Previously, we introduced
the unifying conceptual framework of an in silico Quantum Expert
(QE) for organizing materials calculations and directing the collection
and analysis of data,6 here implemented as a knowledge-based system
with three key components [Fig. 3(a)]:

• an inference engine that uses available materials information to
plan measurements,

Prototype 1D Materials 2D Materials

M K M K

E
(e

V
)

10

5

0

-5

-10
M M M M M M M M M M M M

FIG. 2. (left) Tight-binding band structures of monolayers for six prototype 1D semiconductors (symbols m1–m6) that mimic what is seen in twisted 2D layered assemblies:
m1–m3 are analogous to hBN, and m4–m6 are analogous to 2D semiconductors like the transition metal dichalcogenides. (right) Tight-binding band structures of monolayers
for the 2D materials graphene and MoS2. (center) Example 1D and 2D moir!e patterns with moir!e length k. The moir!e patterns are generated using lattice mismatch in 1D as
an analogue of twist angle in 2D.
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• a workflow engine for materials measurements to augment the
knowledge base, and

• a database system as the storehouse of materials data and infor-
mation (the knowledge base).

Lacking a closed-form solution to the problem of tailored design
of moir!e assemblies, we draw inspiration from the field of AI and use
instances of the QE abstraction as information-sharing intelligent
agents for simulation-based exploration of materials spaces [Fig. 3(b)].
Each QE instance will:

1. Generate a ranking of candidate materials according to how
likely is their calculation to improve predictions of one or more
properties across the entire materials space. For our application,
the search agent effectively responds to the following question:
“What layered assembly or assemblies should be calculated next
to best improve predictions, given all previous outcomes?”

2. Solicit rankings from connected search agents, each generated
based on their own scoring criteria while seeking to improve pre-
dictive models for the same or different properties. Pass own
ranking to connected search agents.

3. Choose one or more materials for calculation and analysis while
balancing exploitation, guided by its own ranking, and explora-
tion, guided by external recommendations.

4. Calculate the selected materials to augment the knowledge base. For
our application, the search agent calculates materials by executing
one or more predefined workflows in a high-throughput fashion.

5. Return to step 1, and the cycle repeats.

The simulation starts with a random sampling of the materials
space and finishes when uncertainty in predictions is reduced below a
predetermined value or after a specified number of cycles. Our
approach is positioned alongside global search methods that make
minimal assumptions about the search problem (e.g., size of materials
space, correlations among properties, derivative information),24,36–38

while exploiting uncertainty information to improve the search.
Therefore, it is particularly suitable for assessing the scope of novel
materials concepts, the discovery of novel materials, or, for our appli-
cation, exploring large libraries of complex moir!e assemblies and
examining the degree of electronic tunability therein.

Briefly, the computational workflows (step 4 above) entail four
main tasks:6

a. Parse a string representing the layered assembly to be
calculated.39

b. Generate and solve a TB model (see Sec. II A).
c. Analyze the calculated electronic energy levels, for example, to

construct measures of band flatness or extract such informa-
tion as band gaps for electronic transitions.

d. Insert the electronic band structure and any post-processing
meta-data into the database. For our application, we rely on a
document-based data model, as implemented in the
document-oriented (NoSQL) database MongoDB.

In summary, the above workflow transforms a string represent-
ing a layered assembly into descriptions of its electronic structure by
means of setting up and solving a TB model. We have used established
electronic structure methods and open source libraries for implemen-
tation. We provide specific implementation details in Sec. III.

To be able to name, catalogue, and discuss the studied materials
in an unambiguous fashion (see also step a above), we relied on a
domain-generic layered assemblies notation corresponding to a theo-
retical materials concept of layer-by-layer robotic assembly of layered
structures using a sequence of vertical stacking, rotation, or strain
operations on individual layers.39 For example, the string G/G@1.10
describes a bilayer of graphene (often referred to in the literature as
TBG) with counterclockwise twist angle h ¼ 1:10', the string
G/G@1.50/G/G@1.50 [or the shorter 2(G/G@1.50)] describes an alter-
nating twist quadruple-layer of graphene (ATMG) with h ¼ 1:50',
and so on, with G the symbol for an extended graphene layer.
Likewise, the string m1/m1#0.01 describes a 1D superlattice in which
one layer of the material m1 is associated with H ¼ 0:01 (compressive
strain of 1%).

III. ARBITRARILY STACKED MULTI-LAYER
SUPERLATTICES

We proceed to apply these concepts, models, and methods to
study the electronic structure of arbitrarily stacked multi-layer super-
lattices and to obtain quantitative insights into electronic tunability
within the materials space. To the best of our knowledge, there is no

FIG. 3. (a) Schematic of an in silico Quantum Expert, a unifying conceptual framework for guiding the collection and analysis of materials data. Key components are a planning
inference engine, a workflow engine for measurements, and a database system. (b) Modus operandi for closed-loop exploration of materials spaces using coupled instances
of (a) as autonomous search agents. Each search agent is biased toward its own findings (exploitation) as well as promising regions of the search space discovered by the
rest (exploration).
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universal approach based on TB that is suitable for the calculation of
arbitrarily stacked 2D superlattices. Compiling a library of TB parame-
ters for selected materials is feasible, but nevertheless a daunting task.
Furthermore, the calculation of materials more complicated than the
prototypical graphene (which requires just two pz orbitals for its basis)
becomes significantly more resource-demanding beyond two layers
due to the large matrix size of the resulting Hamiltonian.

As discussed in Sec. IIA, 2D materials with twist-induced moir!e
patterns are directly comparable to the lattice-mismatch moir!e pat-
terns in 1D. We use six prototype 1D semiconducting materials as
building blocks for 1D moir!e assemblies (Fig. 2). By combining them,
we compile an extended library of structures, a total of(200; 000 two-
, three-, and four-layer assemblies, as required for reliably extracting
broadly applicable physical insights. From a computational point of
view, these have very low computational cost (a few seconds per calcu-
lation on a personal computer). We limit our investigation to a single
value for H for each moir!e assembly: each layer has either lattice con-
stant 1 or 1"H, preventing multiple incommensurations in three-
and four-layer structures.40 For all material combinations, the inter-
layer separation is set to 3 Å, a choice whose primary purpose is to
limit the maximum possible value of the interlayer coupling.

With regard to characterization of the electronic structure, at
least five direct properties and two derived properties are of interest:

• the bandgap for the moir!e assembly, Eg,

• the bandwidths of the valence and conduction (flat) bands, wv

and wc,
• the moir!e (direct) band gaps between the valence or conduction
band and the next nearest band, Ev and Ec, and, derived from
these,

• the ratios between the bandwidths and moir!e band gaps for the
valence and conduction bands, rv ¼Ev= wv and rc ¼Ec= wc.

The direct properties are indicated in Fig. 4 for a selected 1D
moir!e assembly’s band structure. Figure 4 also contains maps of all
properties, as derived from the analysis of the TB band structure of
each layered assembly, for all structures considered. In our calcula-
tions, materials without direct band gaps, either Eg or Ev,c, yield nega-
tive values for the gaps, and although they are still tabulated, they are
omitted from the plots.

Two examples of moir!e assemblies with flat bands, an indicator
of interesting electronic behavior,5,7,8 are shown in Figs. 4(a)–4(b).
The first of these, m3=ð2 m6=m1Þ#0:071, is a typical four-layer
assembly: it has a bandgap that is smaller than any of the original 1D
monolayers and non-identical band flattening occurring between
the valence and conduction edges. However, the second example,
m1=m4#0:125=m4=m2, is representative of an important group of out-
lier band structures: one band, which is significantly flatter than any
other, seems to have moved into the middle of the bandgap. Looking
at Fig. 2, the likely origin of this effect is the proximity of m2’s valence
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FIG. 4. Properties calculated by analysis of tight-binding band structures of model 1D moir!e assemblies. (a, b) Example electronic band structures for 1D superlattices with
(nearly) flat electronic bands. The bandgap, Eg, valence bandwidth, wv, and conduction moir!e gap, Ec, are indicated in (a). (c) Number of moir!e assemblies with a given
bandgap. Yellow, orange, and blue points and bars are associated with two- (2 L), three- (3 L), and four-layer (4 L) assemblies, respectively. (d) Bandwidths of the valence and
conduction (flat) bands, wv, and wc. (e) Moir!e (direct) band gaps between the valence or conduction flatband and the next nearest band, Ev and Ec. (f) Ratios between the
bandwidths and moir!e band gaps for the valence and conduction bands, rv and rc. Bandwidths and band gaps are reported in electron voltage. The colored marks next to the
assembly formulas (a, b) match the arrows in (d–f), indicating their location on the plots.

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 8, 031401 (2021); doi: 10.1063/5.0044511 8, 031401-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/are


band with the vacuum-level Fermi energy. Combined with a strong
effective interlayer moir!e potential at the twisted interfaces, the associ-
ated flatband separates from the surrounding electronic states. In this
case, the definitions of Eg and Ev;c become interchangeable under add-
ing or removing one electron from the moir!e superlattice, and these
large values of Ev;c explain many of the outlying large values of rv,c.

Focusing on trends, we identify a positive correlation between the
bandwidths of the valence and conduction bands, spanning four
orders of magnitude, with many stacks having (nearly) flat electronic
bands. It is also possible to identify structures with any combination of
moir!e band gaps, over four orders of magnitude as well. We find
many structures associated with large ratios rv and rc: such combina-
tion of properties would provide, for example, a clear optical signal by
preventing additional unwanted peaks near the primary flatband to
flatband transition. Showing large gaps but small bandwidths is also
important for correlated phases. For example, if the effective Hubbard
parameter for the flatband is larger than the moir!e gap, then candidate
Mott insulating states will necessarily mix the next set of moir!e bands,
possibly preventing a correlated ground state.

One exceedingly promising result, which is expected to apply to
2D materials as well, is that we find layered assemblies with almost
any electronic bandgap for electronic transitions, direct or indirect,
between a practically continuous range (between 0 and 2.0 eV) from
combinations of only six unique materials. The origin of this phenom-
ena can be understood by looking at the layer-scaling of the band-
coverage in Fig. 4(c). The gaps of the two-layer structures do not
densely cover any range, while the three- and four-layer structures
become progressively denser in their coverage of bandgap energies.
Each constituent layered material has its own bandgap, but when it is
combined with another material the interlayer coupling causes hybrid-
ization at the conduction and valence band edges, generally reducing
the bandgap of the layered assembly. This gives every unique assembly
its own “composite” bandgap, even in the absence of a moir!e pattern.
Strain (or the twist angle in 2D) then provides fine-tuning of the effec-
tive interlayer coupling’s strength and generally causes gaps to widen
(this effect will be studied in detail in Sec. IV A for MoS2). As the num-
ber of layers in the assembly increases, the number of unique assem-
blies with their own unique bandgap grows quickly: with just four
layers, complete coverage of the spectrum is possible.

Overall, Fig. 4 illustrates how the stacking of two- (yellow points
and bars), three- (orange), or four- (blue) layers results in properties
with an increasingly wider and smoother distribution of values as the
number of layers increases, with four layers sufficient to cover a large
range in a continuous fashion. Therefore, by enumeration we infer
that it is possible to design moir!e assemblies with finely tuned elec-
tronic properties even with a small number of materials and layers, in
this case, six and four, respectively. Such complete control has clear
technological benefits for the development of tailored layered materials
for photovoltaics, energy storage, quantum information, and other
technologies.

Nevertheless, due to the very large number of structures, per-
forming an exhaustive search of such large materials spaces is an
impractical task, especially when objective evaluations are expected to
be limited, due to finite resources (computational or otherwise).
Masubuchi et al.4 introduced an approach to the high-throughput
robotic assembly of 2D crystals for designer multi-layer assemblies.
Consider a simulator of such automated system that relies on virtual

high-throughput measurements (calculations) of layered materials
assembled from a finite set of single-layer building blocks. We instanti-
ate the QE abstraction for this simulation, using multiple instances as
information-sharing search agents that follow the protocol of Sec. II B,
with the aim to obtain a reliable surrogate model of all properties of
interest while drastically reducing needed calculations. Specifically,
each QE instance will:

1. Generate a ranking for 1D moir!e assemblies for one property of
interest, based on the sampling score a. For a not-yet-calculated
structure S, the sampling score is calculated as

a S½ * ¼ 1
2
r S½ * þ 1

2
@l S½ *
@H

:

For predictions, a fully connected neural network with a dropout
layer is used. By applying the same input to the neural network
many times, an empirical distribution over the property is
deduced, which is used to obtain a mean value, l, and the corre-
sponding standard deviation, r. The first of the two terms in the
sampling score (each normalized to the range [0,1]) aims to
improve overall prediction accuracy by directing the sampling
toward material subspaces associated with relatively high uncer-
tainty in the predicted property, whereas the second term aims to
improve predictions within each configuration with respect to the
single most important “local” feature, the parameter H. In this
scheme, the higher a½S* is for a structure S, the more likely this
structure will be chosen for calculation. The neural network com-
prises two hidden layers of 100 and 20 nodes. A dropout layer
that randomly sets inputs from the first hidden layer to 0 with a
50% probability is introduced to avoid overfitting during training
and for quantifying uncertainty in predictions. Feature vectors
are constructed using a distinct one-hot encoding of each assem-
bly, augmented with a list describing lattice mismatch (0 or H).

2. Solicit rankings from connected search agents tasked to improve
estimations of other properties. Pass own ordered list of candi-
dates to connected search agents as a recommendation.

3. Choose for calculation and analysis either structure Si if

uij < 1" be"a Si½ *

be"a Si½ * þ ð1" bÞe"a Sj½ * ;

or structure Sj otherwise, with random number uij 2 ½0; 1*. The
parameter b controls the balance between exploitation (b¼ 0)
and exploration (b¼ 1). The indices describe the internal (i) and
solicited (j) rankings, from which pairs of candidate materials
(Si, Sj) are drawn. For instance, for a pair with a½Si* " a½Sj* ¼ 0:5
and b ¼ 1=2, there is a 38% chance that the search agent will be
forced to choose Sj, despite its preference according to its own
ranking. For a½Si* ¼ a½Sj*, the probability is b, i.e., 50% chance
for b ¼ 1=2. For our application, a batch of twenty-five moir!e
assemblies are identified and scheduled at each cycle for calcula-
tion (less than 1/10 000th of all possible combinations).

4. Calculate and analyze the band structure of the selected struc-
tures using TB.

5. Return to step 1, and the cycle repeats.

The simulation starts with a random sampling of the materials
space and finishes after a specified number of cycles. For our application,
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each search agent is connected to one other for receiving a solicitation
and a different one for passing recommendations, both of which are
assigned at random at the start of each cycle. This setup is reasonable,
given that changes in the band structure near the Fermi level that
induce change in one property may be associated with changes in
other properties as well. Likewise, the choice of neural networks as
predictive models is not unique, but we leverage them as universal
approximators and use the same generic architecture for all search
agents without assuming a priori knowledge about the materials space
or properties (e.g., correlations between them). To the casual materi-
als scientist, the network of QE instances functions as a virtual
research lab with its devices working interactively to continuously
refine a surrogate model of structure-property relationships within
the space of the 1Dmoir!e assemblies.

For b ¼ 1=2, after only 3% of the materials space has been sam-
pled, the network of QE instances has collectively learned to predict
the five electronic structure properties of interest across the entire
space within a typical mean squared error (MSE) of less than 0.01 eV2,
with an average coefficient of determination R2 ¼ 0:63. The good per-
formance can be attributed in part to the smooth evolution of the elec-
tronic bands with respect to the parameter H (see also Fig. 5), but also
to the exchanges among search agents, which favor the reuse of a cal-
culated material for the prediction of more than one property.

We also performed simulations in the limiting cases b ¼ f0; 1g,
with b ¼ 0 forcing each search agent into closed-loop feedback, and
b ¼ 1 forcing each search agent to rely solely on external recommen-
dations. In both cases, the predictive capabilities of the search agents
deteriorated, with 15% and 100% higher MSE (20% and 65% smaller
R2) for b ¼ 0 and b ¼ 1, respectively, demonstrating the benefit of
carefully balancing exploration with exploitation. A comparison with a
random search and additional performance evaluation data are pro-
vided in the supplementary material.

Therefore, we arrive at the conclusion that it is possible to target
any value for important electronic structure properties through careful
choice of the constituent materials and their stacking geometry, and
that the identification of such a structure should be computationally
tractable even for very large material spaces. We expect these findings
(pertaining to multiple materials, layers, and properties) will carry
over from 1D superlattices to the case of 2D layered materials: band

flattening and corresponding correlated phases in twisted 2D materi-
als, or the electronic tunability seen in the 1D systems here, are not
specific to the dimensionality of the crystal. Rather, both of these phe-
nomena are caused by the effective superlattice generated by relative
strain between the stacked layers. The tunable length-scale of such
superlattices allows for the engineering of electronic modes across a
wide range of energy scales.

IV. 2D LAYERED ASSEMBLIES
In this section, we investigate two key ingredients of findings per-

taining to 1D moir!e structures in realistic 2D systems, namely, band
tunability through the twist angle and diversification of interface cou-
plings, as enablers of precise control of material properties for targeted
design of multi-layer assemblies.

A. A bilayer of molybdenum disulfide
For twisted 2D semiconductors, a typical model system is the

twisted bilayer MoS2 (MoS2/MoS2@h). We focus on a key property
that mirrors the H-tunability associated with the 1D assemblies, the
twist angle(s) at which the dispersion of one or more electronic bands
near the band edges significantly reduces. Alongside layered graphene,
layered 2D semiconductors like MoS2 exhibit non-trivial physical
behavior that depends sensitively on the number and relative orienta-
tion of the constituent layers.5,41–43 Another member of this techno-
logically important class of materials, tungsten diselenide (WSe2), was
recently observed to host correlated insulating states in its two-layer
assembly,44,45 joining graphene as a strongly correlated moir!e
material.

We used atomistic structural models of superlattices consisting of
two sheets of MoS2 in AA stacking with an in-plane lattice constant of
3.18 Å, and interlayer distance fixed at 6.145 Å, to calculate all com-
mensurate superlattices between MoS2/MoS2@21.79 and MoS2/
MoS2@1.02. A sequence of thirty-two commensurate bilayers of MoS2
were calculated (Fig. 5).

The low-energy band structures for large twist angles resemble
that of an isolated MoS2 layer, with little effective interaction between
the two layers. As the twist angle decreases, strong interlayer hybridi-
zation leads to smooth splitting and flattening of electronic bands near
the valence band maximum. Figure 5 shows TB band structures

FIG. 5. (a) Low-energy electronic band structure (valence bands only) for twisted bilayers of MoS2 at relative small twist angles, obtained using an ab initio tight-binding model.
The shaded area marks occupied electronic states. At h ¼ 2:1', an electronic band with nearly zero bandwidth coexists with a pair of almost degenerate flat bands at slightly
lower energy. (b) (grey) The first Brillouin zone of each MoS2 layer and (orange) the twisted superlattice at angle h with high-symmetry points C, K, and M.
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(valence bands only) of MoS2 bilayers near the critical h ¼ 2:9', the
corresponding Brillouin zone of isolated layers (grey), and twisted
superlattice (orange). At h ¼ 2:1', an electronic band with nearly zero
bandwidth coexists with a pair of almost degenerate flat bands at
slightly lower energy, while the next three bands have begun to flatten
out. This sequence of flat bands follows the degeneracies of the 2D
quantum harmonic oscillator, as predicted by continuum models,
which consider the moir!e patterns as a periodic network of potential
wells for the bilayers’ electrons.25,43,46 Such separation of sets of bands
is often desirable in an experimental setup because it enables con-
trolled modulation of transport properties via the application of exter-
nal fields. Nonetheless, since the electronic bands evolve smoothly
with respect to the twist angle, the small parameter space in the simple
case of the twisted bilayer of MoS2 leaves little room for electronic tun-
ability: more layers are needed to obtain a larger range of accessible
electronic behavior and properties.

B. Twisted multi-layer graphene assemblies
Graphene-based moir!e assemblies, regarded by many scientists

and technologists as the quintessence of 2D layered materials, continue
to be investigated by transport measurements, theoretical modeling,
and computation.6,8,47–49 Driven by the hypothesis that increasingly
complex 2D moir!e assemblies enable more precise control of elec-
tronic properties and functionality, we next extend our investigation
to a much larger set of structures than previously, i.e.,moir!e superlatti-
ces of two to six AB-stacked sheets of graphene. We specifically exam-
ine the effect of an assembly’s complexity (size, stacking order, and
type of interfaces) on the twist angle(s) at which the dispersion of one
or more electronic bands near the Fermi level significantly reduces.

We limit our investigation to moir!e assemblies with a single twist
angle for any rotated layers, including a twisted graphene monolayer
encapsulated by two or more additional sheets such as 2G/G@h/2G,
alternating relative twist angle assemblies such as 2(G/G@h)/G, and a

twisted trilayer of graphene on another trilayer, 3G/3G@h. We
employed rigid atomic sheets of graphene, with an in-plane lattice
constant of 2.47 Å, and interlayer distance fixed at 3.35 Å, to obtain
single-particle band structures for 640 unique commensurate superlat-
tices of twisted graphene sheets in total.

To identify patterns across the entire materials space, we generate
a single 2D visualization of the database in a state that contains all cal-
culated band structures. This is achieved with a convolutional neural
network that implements an autoencoder (encoder-decoder) architec-
ture with multiple filter sizes, shown in Fig. 6(a), treating each band
structure as an image (see the supplementary material for implementa-
tion details). Convolutional networks are central to state-of-the-art
approaches in computer vision and image processing for detecting
important features without any supervision.50,51 Most importantly, the
use of different types of convolutional filters here aims to handle fea-
tures at multiple scales better with parallel gains in performance, as in
Inception-motivated architectures for image classification.50 For our
application, this approach has the advantage of being immune to artifi-
cial band crossings in the calculated TB band structures, which might
complicate less sophisticated data analysis using simple descriptors,
while retaining information about electronic bands further from the
Fermi level.

The transformation favors a clustering in which the smaller the
distance between any two points in the resulting abstract Cartesian
space is, the more similar the corresponding band structures are.
Figure 6(b) provides a concise picture of relationships across the entire
materials database that is not readily observable by means of enumera-
tion: points are color-coded with respect to the likelihood of interest-
ing electronic behavior (white for small; red for high), using the
flatness of electronic bands near the Fermi level in the TB band struc-
tures as a descriptor (for more details about this separate characteriza-
tion, also based on image analysis, see Tritsaris et al.6)

The primary ordering of the generated 2D embedding roughly
follows h, even though such information was not explicitly used to

FIG. 6. (a) Convolutional neural network with an autoencoder (encoder-decoder) architecture for compressing the calculated tight-binding band structures of multi-layer gra-
phene (see the supplementary material for implementation details). (b) Visualization of the resulting 2D embedding. Points in the right panel are color-coded with respect to the
likelihood of interesting electronic behavior (white for small; red for high), and the symbol size is proportional to the twist angle. The black arrows indicate where (selected) lay-
ered assemblies with low-dispersion bands can be found (see also Fig. 7).
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create it. Many layered assemblies at relatively small twist angles (cor-
responding to stronger relative interlayer hybridization) exhibit elec-
tronic bands of low dispersion. This observation can be rationalized by
noting the increased degrees of freedom thicker superlattices have, i.e.,
possible stacking and rotation combinations, which readily carries
from the case of 1D moir!e assemblies: corroborating our working
hypothesis, Fig. 6(b) demonstrates that electronic structure is smoothly
tunable, especially at smaller twist angles, within a space of multi-layer
assemblies even if only one material and a relatively small number of
layers are considered, with implications for electronic (band) structure
engineering.

Equivalently, simpler layered assemblies can be thought of as
building blocks whose electronic structure is perturbed when

embedded in more complex assemblies. The “building block” nature
of the moir!e interfaces can also be seen when examining the specific
TB electronic band structures. Those with demonstrably low-
dispersion bands (Fig. 7) are highlighted below for the five- and six-
layer moir!e assemblies. As structures with more than four layers are
uncommon in the current literature on twistronic graphene, many of
these assemblies are modeled here for the first time. In addition, these
calculations provide reference for experimental measurements such as
accurate estimations of magic angles:

4G/G@h. The twisted monolayer on a quadruple-layer of gra-
phene has a magic angle near h ¼ 1:2'. At the supercell K-point a
cone-like feature remains but has parabolic dispersion. This parabolic
dispersion of this feature is indicative of the presence of bulk

FIG. 7. Low-energy electronic band structure for twisted five- and six-layer assemblies of graphene with low-dispersion or almost-flat electronic bands (as indicators of interest-
ing electronic behavior), obtained using an ab initio tight-binding model. The shaded area marks occupied electronic states. A schematic with exaggerated twist angle is pro-
vided for each layered assembly (purple for rotated layers).
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Bernal-stacked graphitic band structure, e.g., there is a nearly undis-
turbed “AB” bilayer graphene band structure present.

3G/G@h/G. This configuration exhibits bands with low disper-
sion near h ¼ 1:5'. An outstanding feature is the coexistence of a
Dirac cone that resembles that of single-layer graphene. This
symmetry-protected cone is also observed in the “sandwich” configu-
ration G/G@h/G,52 and the parabolic “AB” bands that approach near
the Fermi level resemble the case of 2G/G@h/G.6

2G/G@h/2G. Similar to the previous configuration; however, the
parabolic “AB” bands are now symmetry-protected and thus are not
gapped at the K-point.

3G/2G@h. We identify a region of nearly flat bands at the Fermi
level near h ¼ 1:3' for a twisted bilayer on a trilayer. Compared to a
twisted double bilayer 2G/2G@h, this configuration also exhibits para-
bolic bands near the Fermi level,6 but the broken mirror symmetry has
opened up a sizable gap at the K-point for both the flat and parabolic
bands.

G/2(G/G@h). This configuration resembles the class of layered
assemblies of graphene with alternating relative twist angle, showing a
pair of Dirac bands at the K-point and flat bands at a relatively higher
magic angle approaching two times that of a twisted bilayer as the
number of layers increases.53 In this case, too, the z-mirror symmetry
breaking caused by the additional layer on the bottom of the stack has
caused band crossings near the K-point.

2G/2G@h/G. This layered assembly mostly resembles twisted
double bilayer 2G/2G@h;54 however, the additional top layer has
made some important changes: aside from the usual gap openings at
the K-point, there are also new flat bands away from the Fermi level.

G/G@h/G/G/G@h. Electronic bands with low dispersion are
identified near h ¼ 1:6'. This combination, owing to symmetry,
shows similar features to the encapsulated bilayer G/2G@h/G, and no
well-defined Dirac cones.

2(G/G@h)/G. The layered assembly of graphene with alternating
relative twist angle exhibits magic angle flat bands near h ¼ 1:9'. This
magic angle is higher than the related three- and four-layer configura-
tions G/G@h/G and 2(G/G@h/G), in agreement with the theoretical
work of Khalaf et al.,53 based on model Hamiltonians.

G/3G@h/G. For a twisted graphene trilayer encapsulated by
another two, well-defined and low-dispersion bands form near
h ¼ 1:1'. The TB electronic band structure exhibits mixed character
between that of a twisted bilayer G/G@h and a twisted monolayer on a
bilayer 2G/G@h. This structure can be thought of as two copies of the
twisted bilayer glued together weakly by a middle layer, causing more
band dispersion but keeping the same overall structure.

5G/G@h. As in the case of all other twisted monolayers on
graphite-like substrates, a twisted monolayer on a five-layer substrate
shows strong graphitic character with parabolic and Dirac-like bands
at the high-symmetry K-point. As the number of layers on the bulk-
like side increases, the band structure will show increasing numbers of
parabolic bands at the K-point, and eventually the band structure will
be better described by including an additional kz momentum (e.g., a
transition from a 2D to 3D band structure).

2G/2G@h/2G. This is an alternating double-bilayer graphene
assembly and is the sandwich generalization of the twisted double
bilayer. Unlike G/G@h/G, no large enhancement in the magic angle is
observed, and overall, the band structure resembles that of the double
bilayer. This is because making the constituent elements of the

encapsulated double bilayers, instead of monolayers, means each suc-
cessive moir!e interface is only perturbatively coupled due to the rela-
tively weak interlayer coupling between aligned layers (roughly a
factor of 1/10 smaller than the in-plane coupling).

3G/3G@h. The low-energy bands in twisted trilayer graphene
show the largest bandwidth of the six-layer assemblies studied here.
Two bulk graphite slabs twisted on top of one another will still host
flat bands at the moir!e interface, but the localized modes tend to be
more dispersive than those of twisted bilayer graphene G/G@h or of a
twisted monolayer on bulk.55 However, reports of superconducting
behavior in pyrolytic graphite attributed to twisted interfaces precede
those of G/G@h.56,57 Therefore, although the bands of this structure
are not as flat as some of the other six-layer candidates, it should not
be discounted as a viable platform for studying strongly correlated
phases.

A discussion of trends across two-, three-, and four-layer assem-
blies is provided in earlier work of ours.6 Briefly, we previously identi-
fied the following magic-angle structures: G/G@1.1, 2G/G@1.1,
G/G@1.5/G, 3G/G@1.1, 2G/G@1.5/G, 2G/G@1.1, G/2G@1.7/G, and
2(G/G@1.7).

In summary, these findings indicate that increasingly thicker 2D
layered assemblies enable meaningful tunability of electronic proper-
ties, even when only one material and a relatively small number of
layers are considered. Moreover, we anticipate the high-throughput
computational approach demonstrated previously for 1D moir!e
assemblies to be as useful for large libraries of arbitrarily stacked 2D
multi-layer superlattices, once physics-based models become available
for their efficient and accurate calculation.

V. CONCLUSIONS AND OUTLOOK
We introduced concepts, models, and methods for the automated

planning and execution of (virtual) materials measurements and used
them to explore spaces of model moir!e assemblies in 1D, twisted two-
layer MoS2, and twisted multi-layer graphene. Insights obtained from
the study of 1D model systems were applied in the case of 2D layered
assemblies. Specifically, tight-binding band structures were obtained
and investigated with the primary aim to examine the degree that
increasingly complex layered assemblies, in terms of variety of constit-
uent single layers, number of layers, and type of interfaces, enable finer
control of electronic properties, with implications for the design of
active materials for devices.

A very important finding is that even a small set of materials is
sufficient for the engineering of tailored moir!e assemblies, at least
within a particular application domain. Effectively, the problem of the
(computational) design of moir!e assemblies is reduced to the problem
of identifying minimal sets of relevant single-layer building blocks, tai-
lored for the intended application. Moreover, the combination of
twisted 2D layers with intercalation or strain can provide the means
for spatial control over materials properties and an additional knob
with which to tune moir!e physics.58,59

Beyond broadly applicable physical insights, our study provides
specific information about the electronic structure of layered MoS2
and graphene, and serves as a useful reference for future study of these
materials. Calculations of two-layer assemblies of MoS2 reveal multiple
flat bands separated by tens of mega-electron volts below 3' twist, in
good qualitative agreement with previous modeling approaches of
bilayer transition metal dichalcogenides.25,43,46,60 The diverse array of
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band structures for five- and six-layer graphene assemblies show that
specific types of linear or parabolic band crossings within a magic-
angle flatband manifold can be engineered by careful combination of
simpler graphene stacks. Here, we do not account for the effect of
structural relaxation, which can modify the band structures signifi-
cantly, especially at lower twist angles.61 For that reason, we did not
consider 2D layered assemblies with very small rotations (h < 1').

Our computational framework, as described in Sec. IIB, is
completely general and should be applicable to the automated discov-
ery and design of other materials as well, describing such workflows a
uniform way.4,13,24 Depending on the details of the search problem,
various implementations can be pursued, including using multiple
search agents for the prediction of a single property of interest, a single
search agent for the prediction of multiple properties, on-the-fly
adjustment of the balance between exploration and exploitation (the
parameter b), and so on.

Combining virtual with physical experiments in a systematic
fashion is expected to also be beneficial for tailored design of layered
assemblies: consider a network of information-sharing virtual and
physical devices for screening of moir!e assemblies in a closed predic-
tion/verification loop. We hold the view that, presently, this is the
shortest route toward accelerating the transition from the formulation
of a novel materials concept to the development of a working proto-
type device with tailored functionality. On the one hand, despite the
fact that high-throughput experimentation is an established method
for exploring materials spaces, the combinatorial nature of the prob-
lem of designing twisted layered materials renders the approach virtu-
ally impractical. On the other hand, even a scalable, high-throughput
computational approach as ours may still require thousands of calcula-
tions, which can be resource-intensive for realistic structural models.
For example, commensurate structural models of bilayers of MoS2
with twist angles near the critical angle (Fig. 5) comprise (10 000
atoms, although these calculations remain tractable, especially when a
directed search of the space is conducted using predetermined targets
for the properties of interest.

To conclude, the conceptual frameworks, theoretical models, and
computational methods we have introduced in this and recent related
work6,20,25,39 collectively constitute building blocks for a solid founda-
tion of twisted multi-layer assemblies as a distinct field of inquiry at
the interface of materials theory and computational science within the
broader knowledge domain of complex surfaces and interfaces.

SUPPLEMENTARY MATERIAL
See the supplementary material for additional performance eval-

uation data related to the agent-based simulation and implementation
details of the convolutional autoencoder.
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