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Abstract

Quantum confinement endows two-dimensional (2D) layered materials with exceptional physics
and novel properties compared to their bulk counterparts. Although certain two- and few-layer
configurations of graphene have been realized and studied, a systematic investigation of the
properties of arbitrarily layered graphene assemblies is still lacking. We introduce theoretical
concepts and methods for the processing of materials information, and as a case study, apply them
to investigate the electronic structure of multi-layer graphene-based assemblies in a
high-throughput fashion. We provide a critical discussion of patterns and trends in tight binding
band structures and we identify specific layered assemblies using low-dispersion electronic bands
as indicators of potentially interesting physics like strongly correlated behavior. A combination of
data-driven models for visualization and prediction is used to intelligently explore the materials
space. This work more generally aims to increase confidence in the combined use of physics-based
and data-driven modeling for the systematic refinement of knowledge about 2D layered materials,

with implications for the development of novel quantum devices.

1. Introduction

The successful isolation of graphene has motiv-
ated sustained efforts to elucidate the properties and
functionality of graphene and graphene-like nano-
structures [1]. Quantum confinement endows these
two-dimensional (2D) layered materials with excep-
tional physics and novel properties compared to their
bulk counterparts. Over the years, the library of 2D
materials has expanded significantly to encompass
a broad range of electronic behavior from metals
to insulators, with promise to induce transforma-
tional advances in applications from energy storage
to quantum computing [2].

Atomically thin, single-layer forms of layered
materials constitute building blocks for layered
assemblies held together by weak but important
interactions between the individual layers [1, 3-5].
The capability to fabricate 2D architectures with spe-
cific combinations of stacking or layer orientations
presents almost unlimited possibilities for devices
with novel functionality emerging from the coupling
of layer-specific elementary excitations. Manipulating

© 2020 IOP Publishing Ltd

the electronic properties of two-dimensional layered
structures through their twist angle has emerged as
a new paradigm in controlling the behavior of 2D
layered materials and devices; this new field has been
named ' twistronics "' [6]. For example, 2D superlat-
tices created by layers of graphene twisted relative to
each other (figure 1) have provided a platform for the
study of complex electronic phenomena—including
correlated electrons and superconductivity in bilayer
graphene when the two layers are twisted at the spe-
cial, namely the “magic”, angle of ~ 1.1° [7, 8].
There remain severe barriers that hinder the
development and deployment of quantum techno-
logy based on layered graphene. An important chal-
lenge is related to the high sensitivity of electronic
transport properties and current-voltage characterist-
ics of devices on the twist angle [9]. Although cer-
tain two- and few-layer configurations of graphene
have been realized and studied [10, 11], the physics
and properties of layered graphene assemblies remain
largely unexplored: the configuration space quickly
becomes enormous even with a restricted number of
layers since the twist angle is a continuous parameter
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Figure 1. (a) Atomistic representation of a model twisted
layered assembly of graphene (counterclockwise twist angle
0 for any rotated layers). (b) Brillouin zone of isolated
layers (brown and purple outline), and twisted superlattice
(grey outline) with high-symmetry points I', K, and M.

that critically controls measured properties. In addi-
tion, the evaluation of a novel assembly design can
be resource intensive, but it remains a more tractable
task compared to the inverse problem of identifying
specific layered assemblies with desirable electronic
behavior. Fundamental understanding of the micro-
scopic processes that govern the electronic properties
of these quantum materials is often difficult to obtain
solely by electronic transport measurements.

Materials modeling and computation have
provided atomistic insights into 2D layered materials.
In the prototypical case of twisted bilayer graphene,
electronic band structure calculations have been used
to identify electronic bands of low dispersion (or
almost flat) at the Fermi level as an indicator of inter-
esting electronic phenomena [7-9]. With regards to
materials discovery, it is highly desirable to be able
to efficiently search large materials spaces [12-16].
High-throughput (HT) techniques are particularly
useful for assessing the scope and limitations of novel
materials concepts and discovering new materials,
and various approaches have been developed tailored
for 2D layered materials. For instance, Mounet et al
[5] relied on HT calculations to assess the ease of exfo-
liation of single-layer forms of 2D layered materials
from their experimentally known bulk counterparts;
Bassman et al [17] combined a Gaussian regression
model with density functional theory (DFT) cal-
culations to identify layered assemblies with target
band gap; the work of Haastrup et al [18] used HT
ab initio calculations based on DFT and many-body
perturbation theory to establish a 2D materials data-
base for the computational modeling and design of
new 2D layered materials. This modality of materials
discovery for graphene-based layered assemblies is
now possible owing to the continuing development
of quantum mechanical methods for electronic struc-
ture calculations of layered graphene [7, 8, 19, 20]. In
contrast, a HT approach for the study and discovery
of layered assemblies remains impractical in the lab
due to the time required to fabricate and characterize
a device, with typical rates of production being only
few experiments on a new material in a month or
year.
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A HT computational approach necessitates dedic-
ated tools to efficiently and seamlessly execute, man-
age, and visualize hundreds or thousands of calcula-
tions. A sufficient number of computational frame-
works exist for HT materials calculation [21-23],
although they tend to rely on extensions to take
into consideration some important aspects of the
materials knowledge creation cycle such as optim-
ization and decision-making for materials selection
and design. In the paradigm of materials informatics,
data-driven approaches are used to extract broadly
applicable physical insights from large materials data
sets by identifying minimal sets of structural and
functional descriptors. They are also used to expand
the design space and produce informative visualiza-
tions of materials spaces for the accelerated discovery
of not-yet-developed materials systems [17, 24-28].

Here we introduce theoretical concepts and meth-
ods for the creation, combination, and use of
materials information and apply them to specific-
ally investigate the electronic structure of graphene-
based layered assemblies. To that end, we use work-
flows that combine physics-based (tight binding; TB)
and data-driven (e.g. machine learning) models to
obtain insights into the electronic structure of layered
graphene and intelligently search the space of multi-
layer assemblies for potentially interesting electronic
behavior.

The manuscript is organized as follows: section 2
introduces concepts, models and methods for the cre-
ation, combination, and use of materials informa-
tion. Algorithmic, computational, and implementa-
tion details are provided therein. Section 3 provides
a critical discussion of trends in the TB band struc-
tures of multi-layer assemblies of graphene, obtained
and analyzed using the methodology introduced
in section 2. We also attempt to identify specific
layered assemblies that might exhibit unusual elec-
tronic properties. Finally, section 4 summarizes find-
ings and proposes future research directions.

2. Concepts, models and methods

The creation of materials knowledge begins with
the introduction of a materials concept to be sub-
sequently evaluated. The findings are then codified
and combined with existing materials knowledge
to generate novel concepts, completing a cycle. At
the confluence of artificial intelligence and know-
ledge management, knowledge-based systems such as
decision support systems and expert systems consti-
tute a technology that seeks to facilitate the access-
ibility and dissemination of information within a
particular knowledge domain [29, 30]. We propose
the unifying conceptual framework of an in silico
Quantum Expert (figure 2) for the processing of
materials information, here implemented as a system
specifically for the study and design of 2D superlat-
tices of graphene.
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Figure 2. Schematic and modus operandi of an in silico
Quantum Expert for the creation, combination, and use of
materials information. Key components are an inference
engine for predictions, a workflow engine for calculations,
and a database system.

The key components are:

e an inference engine for materials predictions,

o a workflow engine for quantum mechanical calcu-
lations,

e and a database system for storing materials data
and information.

Figure 2 presents a schematic of the modus
operandi:

(a) The user queries the system for information
about one or more materials. For our particu-
lar application, the queries correspond to ques-
tions of the form: “what is the likelihood of low-
dispersion electronic bands near the Fermi level
in the single-particle band structure of a specified
layered assembly of graphene?”.

(b) The system responds with the requested
information, which in our test case is a pre-
diction for intresting electronic properties.
These predictions require prior calculation
and analysis of the low-energy band structures
of layered assemblies for which an atomistic
representation based on commensurate super-
cells exists (arbitrary rotations generally involve
incommensurate, i.e. not periodic, 2D lattices
even for layers of the same material) [31].

(c) If these calculations have not been already per-
formed, the system proceeds to execute a set of
predefined workflows for quantum mechanical
calculations and add the results to the know-
ledge base. In this application, the calculations
of layered assemblies consist of setting up and
solving an ab initio TB model.

We provide application-specific implementation
details for each component below.

Inference engine. The inference engine uses avail-
able materials information to produce new informa-
tion. Multiple data-driven models are used to obtain
a prediction for interesting electronic properties for
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an input twisted layered assembly. Each model,
m= (e, h), is defined by an estimator, e, and a set of
hyperparameters, h, and relies on a measure of band
flatness in calculated TB band structures of (approx-
imate) commensurate supercells to provide predic-
tions for arbitrary twist angle # by means of quadratic
interpolation. As we explain in more detail below, one
estimator we employed relies on the Hough trans-
form and another on the standard deviation of band
energy eigenvalues. For each model m, a prediction
pm(0%) =1 is assigned to all twisted layered assem-
blies that maximize band flatness, and the prediction

is assigned to all twist angles near a magic angle 7.
The denominator 0.1° is fixed and chosen to reflect
the sensitivity of calculations and measurements with
respect to the twist angle. For each of the two estimat-
ors e, the average value, p,.(#), over the corresponding
h is calculated, and the prediction

p(@) = maxe(pe(e))

is assigned to the input layered assembly, in a blend
that purposefully favors false positives. In the limiting
case p.(#) =1{0, 1} such blending produces the same
results as the logical OR operation—another reas-
onable choice would have been p(6) =1—[,(1—
Pe(0)). The absolute difference between the two aver-
ages p.(0) is used to quantify uncertainty across
estimators in terms of precision.

Workflow engine. The function of this com-
ponent is to augment the knowledge base using
quantum mechanical calculations. In this work we
elect to use FireWorks (version 1.9.2) as the workflow
engine, a Python-based library for defining, man-
aging, and executing workflows in a decentralized
fashion on different types of high-performance com-
puting resources [21].

Materials calculations that are based on a
quantum mechanical description of electronic struc-
ture can be computationally demanding, but DFT
favorably balances computational cost with accur-
acy [32]. Even for superlattices of the same mater-
ial however a twist can render atomic-scale model-
ing and calculation practically intractable due to the
size of the resulting atomistic models. For example,
commensurate supercells of bilayer graphene with
twist angles near the magic angle comprise more
than 10,000 atoms. We use electronic structure cal-
culations based on an TB model using parameters
extracted from simple and accurate DFT calcula-
tions. The corresponding high-throughput workflow
entails four main tasks (see also figure 3):

(a) Parse a string representing an input layered
assembly into a list of rotations that is used to
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specify an atomistic model and the correspond-
ing TB Hamiltonian.

(b) Generate an effective TB model for in-plane (8
nearest neighbors) and inter-plane p, orbital
interactions, without any adjustable paramet-
ers, using a basis of maximally localized Wan-
nier functions. The electronic levels are then
calculated by efficient diagonalization of the
system’s Hamiltonian. The memory required
scales as O(N?), where N is the number of
atoms in the supercell. A detailed presentation
of the method is provided in the works of Fang
et al [20, 33]. Here we use 60 points to sample
the Brillouin zone along the direction connect-
ing the high-symmetry k-points I', M, and K.

(c) Analyze the calculated energy levels in a win-
dow of 0.30 eV centered at the Fermi level using
two different approaches to the detection of
(almost-)flat bands in the TB band structure,
generally with a bandwidth of a few meV. The
first approach relies on an image-based Hough
line transform, as implemented in OpenCV
(version 4.1.1), an open source computer vis-
ion and machine learning software library [34].
The Hough line transform converts the prob-
lem of detecting collinear points into the prob-
lem of finding concurrent curves. The sensit-
ivity of the algorithm depends on a so-called
accumulator threshold, here between 50 and
200 (the smaller this number is, the more lin-
ear segments are detected, maybe incorrectly).
The second approach relies on a calculation of
the contribution of each k-point to the standard
deviation of energy eigenvalues for each band. A
band is classified as flat if the standard deviation
is lower than a threshold value, here between
5 meV and 15 meV, after removing between
20% and 50% of k-points with the largest con-
tribution to the standard deviation. The out-
puts of the two methods are complementary
since the first circumvents the issue of artifi-
cial discontinuities in the electronic bands but
the latter considers information about overlap-
ping bands that is necessarily lost in a graphical
representation although important near degen-
eracies.

(d) Insert the electronic band structure and post-
processing meta-data into the database for later
access.

In summary, the above workflow transforms a
string representing a layered assembly into measures
of band flatness by means of efficient diagonalization
of a TB Hamiltonian and featurization of the calcu-
lated band structures.

Database system. This component serves as the
storehouse of materials data and information (the
knowledge base). In this work the database relies
on a document-based data model, as implemented
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in the document-oriented (NoSQL) database Mon-
goDB. Unlike relational databases, MongoDB is easy
to scale while allowing the content and size of docu-
ments to differ from one to another. To reduce main-
tenance burden, the same database is used to sup-
port workflow management as required by FireWorks
(e.g. workflow state and dependencies), and store the
inputs and outputs of materials calculations, includ-
ing structural details of the input layered assembly
(e.g. rotations), its calculated TB band structure (i.e.
a list of k-point dependent energy eigenvalues), and
accompanying meta-data.

Overall, our computational strategy is based on
scalable, parallelizable, decentralized materials cal-
culations and it is distinctly higher up on the lad-
der of abstraction compared to other frameworks for
computational materials science [21-23]. We note in
passing that although the conceptual framework of
Quantum Expert is useful for organizing materials
calculations and directing the collection and analysis
of data, it is not necessary for reproducing our spe-
cific findings. We also purposefully use only estab-
lished approaches and open source libraries.

Coupling and linking the various components
but also individual tasks within workflows pose chal-
lenges like devising systems and protocols for efficient
codification and exchange of materials information.
The first step in this direction is to be able to name a
specific layered assembly in an unambiguous fashion.
Despite the maturity of chemical language and nota-
tion such as SMILES and SMARTS for representing
chemical compounds [35, 36] these cannot describe
critical features of a layered assembly such as the twist
angle between two neighboring layers. Previously,
we introduced a flexible layered assemblies notation
(LAN) [37], which we use to enumerate structures in
the database, unambiguously describe trends across
layered assemblies of arbitrary relative orientations of
the constituting graphene layers, and construct struc-
tural descriptors for machine learning. The nota-
tion derives from a theoretical materials concept of
layer-by-layer assembly of layered structures using
a sequence of rotation, vertical stacking, and other
operations on individual 2D layers. For example, the
string ‘G/G@1.08 describes a bilayer of graphene
(often referred to in the literature as “TBG’) with
twist angle 6 = 1.08°, the string ‘(G/G)/(G/G)@1.23
(or the shorter 2G/2G@1.23’) describes a twisted
double bilayer of graphene (“TDBG’ or ‘TBBG’) with
f#=1.23°, and so on. The symbols /> and ‘@ are
used to describe the binary operations of the ver-
tical stacking of a layer or layered (sub)structure on
another, and counterclockwise rotation of a layer or
layered (sub)structure by some angle about the stack-
ing direction (in degrees; 360° =2), respectively.
The definition of the underlying grammar and basic
operations is provided in Tritsaris et al [37].

For the sake of simplicity, the queries to the
system are restricted to strings representing twisted
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Figure 3. Schematic of high-throughput workflow for physics-based calculation and data-driven analysis of the electronic band

structure of 2D layered assemblies.

layered assemblies and each response is restricted to
the corresponding predictions p(#). In a Bayesian
framework, the predictions p(f) constitute prior
probabilities to be updated after more careful exam-
ination. For the purpose of materials discovery, after
applying a cut-off value for p(6), the task reduces to
transforming a list of rotations (0 or #) into a yes/no
response for further consideration.

3. Results and discussion

We proceed to apply our concepts, models and meth-
ods to investigate the electronic structure of twisted
assemblies of graphene with two or more layers.

3.1. The simplest assembly

We first concentrate attention on the prototypical sys-
tem of twisted bilayer graphene, G/G@4. This config-
uration has been commonly used as a platform for
the study of non-trivial emergent physical behavior
that can be controlled with great precision with the
relative rotation between the two layers. When the
two layers are twisted at the magic angle of 1.1° it
is possible to reduce electrical resistance significantly
[7, 8]. Although elucidating the nature of supercon-
ductivity in graphene remains the goal of much ongo-
ing research, features such as low-dispersion elec-
tronic bands in the single-particle band structure have
been established as indicators of such unconventional
physics [9].

We begin by requesting predictions p(6) for
0.88° < # < 21.79°. For twist angles corresponding
to commensurate 2D superlattices, the band struc-
ture is calculated using TB on the basis of which pre-
dictions are obtained for the entire range of twist
angles. The twisted superlattices consist of alternating
AA- and AB-stacked regions, while the Brillouin zone
folds as shown in figure 1(b). Each atomistic model of
commensurate superlattices consists of two graphene
layers with in-plane lattice constant of 2.47 A, while
the distance between the two graphene layers is fixed
at 3.35 A. Twist angles that result into commensur-
ate stackings are identified following the formalism of
Uchida et al [38], which associates an angle § with a

5

pair of integers (M, N) that define the periodicity of
the layers as:

cos(9) — N? + 4NM + M?
- 2(N2+ NM+M?)

For instance, in the regime of small twist angles, the
three pairs (M, N) of (32,31), (27,26), and (23,22),
correspond to # of 1.05°, 1.25°, and 1.47°, respect-
ively. In total, 33 unique commensurate bilayers for
0.88° < 0 <21.79° are calculated (21 for 1.05° <
0 < 2.88°) and analyzed. For large 6 the low-energy
band structure resembles that of an isolated graphene
layer. As 6 becomes smaller, the number of bands
increases and the electronic bands near the Fermi level
become flatter. Figure 4 shows TB band structures of
bilayers with # near the magic angle. In this range,
strong interlayer hybridization leads to the forma-
tion of low-dispersion bands. For even smaller rota-
tions (6 < 1.0°) structural relaxation effects have been
shown to modify the band structure significantly [31,
39, 40]. These effects however are not accounted for
in the current high-throughput workflow to reduce
computational burden and for that reason small twist
angles are not discussed here.

An important observation is that the electronic
bands evolve smoothly in the regime of small rota-
tions (figure 4), which allows for predictions for
incommensurate superlattices using interpolation as
described in section 2. In accordance with previous
theoretical and experimental results, p() is maxim-
ized for 0* = 1.1° (see G/G@1.08 in figure 4) [7-9].

3.2. Three or four layers of graphene

We proceed to use our computational strategy to
investigate twisted layered assemblies of graphene
with three or four AB-stacked layers. We limit our
investigation to configurations with a single twist
angle for any rotated layers resulting in two and five
configurations for an input angle for the tree- and
four-layer assemblies, respectively. The three-layer
configurations correspond to the assemblies of a twis-
ted monolayer on a bilayer of graphene, 2G/G@4,
and a twisted graphene monolayer encapsulated by
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Figure 4. Low-energy electronic band structure for twisted bilayers of graphene near the “magic” angle of 1.1°, obtained using an
ab initio tight binding model. The shaded area marks occupied electronic states.

another two, G/G@6/G. The four-layer configura-
tions include assemblies such as a twisted monolayer
on a trilayer, 3G/G@, and a twisted bilayer on a
bilayer, 2G/2G@6.

We obtain predictions p(f) for 0.88° <6 <
21.79°, which requires calculation and analysis of
a total of 231 additional TB band structures of com-
mensurate 2D superlattices. Using p(0) as a guide,
we inspect the band structures of commensurate
supercells near 6" and verify low-dispersion bands
(figure 5). Some of the important features in the TB
electronic band structures are discussed below:

2G/G@0. The electronic structure of a twisted
monolayer on a AB-stacked bilayer of graphene
resembles that of the twisted bilayer with 0* = 1.1°.
The reduced symmetry causes the electronic bands
near the Fermi level to be more dispersive than the
twisted bilayer.

G/G@0/G. This sandwiched configuration
achieves bands with very low dispersion near §* =
1.5°. A distinguishing feature of this configuration’s
band structure is a Dirac cone that resembles that
of an isolated graphene layer. The Dirac cone fea-
ture is caused by an anti-symmetric combination of
electronic orbitals (the top and bottom layers are in
registry and couple identically to the middle layer),
and is not sensitive to the twist angle [41]. These
findings are in excellent agreement with the work of
Khalaf et al [42], which used model Hamiltonians to
argue that this trilayer configuration’s magic angle is
obtained by multiplying the bilayer magic angle by
V2.

3G/G@§. The twisted monolayer on a trilayer of
graphene has 0* = 1.1°. Unlike the twisted mono-
layer on bilayer, the flat bands are not gapped from
the rest of the spectrum. A cone-like feature has begun
to emerge at the K-point. As the number of layers
in the unrotated part of the stack increases, the low-
dispersion bands of the 2D twisted interface will coex-
ist within a continuum of bands from bulk graphite
[43].

2G/G@§/G. A twisted monolayer of graphene,
when twisted on an bilayer of graphene, has a
magic angle of 0* = 1.5°. Like the case of the sand-
wiched trilayer of graphene, the increase in the magic
angle is caused by the enhanced interlayer coup-
ling, but now parabolic bands meet near the Fermi
level instead of a Dirac cone. This is comparable to
the change in the electronic structure when going
from the twisted bilayer to the twisted monolayer
on bilayer, as the substitution of the bottom layer
with a Bernal-stacked bilayer has reduced the sym-
metry and increased the dispersion of the low energy
bands.

2G/2G@f. Twisted double bilayer graphene has
been approached as an alternative to bilayer graphene
in exploring correlated insulators and supercon-
ductivity [44]. Electrically tunable half-filled Mott-
like insulating states for a wide range of twist
angles, and superconductivity with critical temperat-
ure onset at 12 K, has been demonstrated in devices
of this configuration [45, 46]. We identify a region
of almost-flat bands at the Fermi level near 6* =
1.1°, although their dispersion is larger compared to
bilayer graphene due to the absence of C2 symmetry.

G/2G@0/G. Electronic bands with low dispersion
are identified around 6* = 1.6° in the case of a sand-
wiched bilayer of graphene. This generalization of the
sandwiched monolayer lacks the symmetry-protected
Dirac cone feature at the K-point, and the resulting
electronic structure more closely resembles that of the
twisted monolayer on bilayer configuration. The pairs
of effective Dirac cones at both the M-point and K-
point may warrant further study.

2(G/G@§). This configuration belongs to the
same class of layered assemblies of graphene with
alternating relative twist angle as the sandwiched tri-
layer. It also exhibits magic angle flat bands, coexist-
ing with a pair of Dirac bands at the moiré K-point.
For this specific configuration, according to Khalaf
et al [42] the magic angle is expected to be ~ 1.62
times larger than this of bilayer graphene (6" = 1.8°).
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Figure 5. Low-energy electronic band structure for twisted three- and four-layer assemblies of graphene with low-dispersion or
almost-flat electronic bands, obtained using an ab initio tight binding model. The shaded area marks occupied electronic states.

Very flat electronic bands are indeed identified at
0* =1.7°.

As the number of calculated materials increases
it becomes impractical to inspect calculations one
at a time. To remedy the situation, we generate and
inspect information-rich representations of the data-
base in a state that contains all calculations of com-
mensurate supercells (figure 6). To produce these
visualizations we rely on data embedding using mul-
tidimensional scaling (MDS), as implemented in
the scikit-learn package (version 0.20.3), a machine
learning library for Python [47]. MDS as an approach
to dimensionality reduction is particularly useful for
visualizing the level of (dis)similarity of objects. Here,
these objects are the TB band structures, predictions
p(0), and vectorized representations of the layered
assemblies (264 in total). We use MDS to translate
them into sets of 2D points in abstract Cartesian
spaces by way of a 264-by-264 dissimilarity matrix
K = [k;;] with elements k;; defined as:

kij = || (akf?, bkS, ckS)] 2,

with a, b, c = {0, 1}. Its calculation relies on combina-
tions (a, b, ¢) of three different metrics for evaluating
pairwise distances between objects (k;; = 0):

e The calculation of K relies on Euclidean distances
between the TB band structures in an energy win-
dow of 0.30 eV centered at the Fermi level. The
band structures are represented as binary images
transformed by means of singular value decom-
position to 200-dimensional feature vectors (cov-
ering 97% of variance).

e The calculation of K? relies on absolute differences
between the predictions p(8).

e The calculation of K° relies on cosine distances
between unit-norm vectorized representations of
the layered assemblies. In analogy to a “sum over
bonds” vector for the featurization of chemical
compound spaces [48], we construct a sum over
interfaces (SOI) representation. These are vec-
tors composed of sums, where each sum rep-
resents a counting of a particular interface type
(G/G, G/G@0, G/G/G, G/G/G@8, etc). Two- and
three-layer groupings (12 interfaces in total) suf-
fice to uniquely describe the space of two- to
five-layer assemblies, a reasonable choice given
the weak but still important interactions between
neighboring layers. By standard definition, cosine
(dis)similarity metrics reduce the importance of
the size of the assemblies.
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Three visualizations are shown in figure 6, one
for each of the above three matrices, which we use
as building blocks for another four matrices corres-
ponding to combinations (a, b, ¢) of (1,1,0), (1,0,1),
(0,1,1), and (1,1,1). In figure 6, the points are color-
coded with respect to p(f) and the symbol size is
proportional to the associated uncertainty (larger for
higher precision with respect to p.(#)). The black
arrows in figure 6 indicate where the same layered
assembly, G/G@1.05, can be found in each panel. As is
often the case with visualizing materials information,
the elected estimator MDS or approach to construct-
ing the dissimilarity matrix K is neither unique nor
necessarily optimal. Analogous representations are
obtained by using the t-distributed stochastic neigh-
bor embedding (t-SNE) method. The generated 2D
plots together constitute an atlas of interface complex-
ity that upon inspection reveals distinct groupings.
The shorter the distance between any two structures,
the more similar these are. With regards to materi-
als discovery, such data-driven representation of the
materials space simplifies the task of screening for
interesting electronic behavior, drastically narrowing
the list of potential candidates for more careful con-
sideration.

These representations provide a clear picture of
relationships across the entire materials database that
is not readily observable by means of enumeration:

e K favors a clustering with respect to electronic
bands,

e KP favors a one-dimensional ranking with respect
to the predictions p(#), and

e K° favors a clear clustering with respect to config-
urations (type of interfaces).

Combinations of the three matrices combine
materials information to highlight multiple trends
simultaneously: for example, a combination of (0,1,1)
separates configurations while sorting structures
according to p(6), which can be interpreted as a
score for selecting potentially interesting structures
for closer inspection. Interestingly, a combination
of (1,0,1) generates a sorting roughly correspond-
ing to p(#) even if information from KP? is not used.
Only very few predictions are associated with relat-
ively high uncertainty. For example, one case is asso-
ciated with multiple artificial band crossings at very
low twist angles for 3G/G@6.

3.3. Other layered assemblies

We next extend our exploration to systems with more
than four layers. Within the context of inverse mater-
ials design, our implementation of the Quantum
Expert can also be used to answer questions of the
form: "'what is the structure of a novel 2D layered
assembly that could exhibit interesting electronic prop-
erties?"!

G A Tritsaris et al

A pedestrian approach involves the use of the
2D embedding (0,1,1) shown in figure 6, i.e. using
a combination of the dissimilarity matrices KP and
K*. Informed by our findings for the three- and four-
layer assemblies with alternating relative twist angle,
we use it to identify " that maximize p(6) for the
five-layer configuration 2(G/G@8)/G. First, we vec-
torize the structures according to SOI and then seek
the nearest neighbors in the 2D embedding. With
respect to cosine distances the two most similar con-
figurations are G/G@6/G and G/G@0/G/G@6, while
3G/G@4 is the least. The nearest neighbors are asso-
ciated with twist angles around 1.1° and 1.6°.

Another approach would rely on the use of a
separate estimator (or optimizer) in the role of the
researcher requesting and using the predictions p(6)
for black-box optimization and adaptive search of
the materials space [49, 50]. We demonstrate this
modality of materials discovery by employing an
extremely randomized trees (a.k.a. extra-trees) model
for regression [51], as implemented in the scikit-
learn machine learning library [47]. Picking inter-
esting candidate structures for detailed investigation
implies decision. Extra trees is an ensemble-based
estimator that fits a number of randomized decision
trees and predicts through averaging the predictions
of all trees to control over-fitting. We use SOI vectors
augmented with twist angles to train a forest of 100
trees of maximum depth of 8 for regression. These
hyperparameters were obtained using 30-fold cross-
validation (average coefficient of determination R? of
0.7). By computing feature importances, we verify the
twist angle to be by far the most important and there-
fore strongly correlated with p(6), followed by the
number of G/G@0 (or G@0/G) and G/G@0/G inter-
faces. The trained meta-model codifies a structure-
property relationship leading to results in good agree-
ment with full TB calculations, 6* = 1.9° (error of
15%; see also figure 7).

These findings motivate us to look at general
trends in the electronic structure of alternating-twist
layered assemblies. According to the work of Khalaf
et al [42], for alternating-twist layered assemblies the
magic angle is expected to reach the limiting value
of 2.2° as the number of layers increases. To test this
theoretical prediction, but also to demonstrate the
capabilities of our models and methods, we obtain
p(0) for layered assemblies with up to twenty layers
of graphene with twist angle around 2.0°. We find
that the assemblies with nine and up to twenty layers
exhibit overlapping flat bands in the corresponding
TB band structure at 0* = 2.1° (figure 7). We ascribe
this relatively small discrepancy (5%) to the higher
accuracy of our ab initio TB approach compared to
the model Hamiltonians used in the aforementioned
study. As in the case of three- and four-layer assem-
blies, magic angle flat bands coexist with Dirac bands
at the moiré K-point. The generally good agreement
between theoretical predictions, full TB calculations,
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Figure 6. Visualizations of the materials space using multidimensional scaling (MDS) with different combinations (a, b, c) of
three dissimilarity matrices K (based on the calculated band energies), KP (based on the probabilities p(#)), and K (based on
configurations). Points are color-coded with respect to predictions p(6) for low-dispersion electronic bands in the band structure
(white for small; red for high) and the symbol size is proportional to the associated uncertainty (larger for higher precision). The
black arrows indicate where the same layered assembly, G/G@1.05, can be found in each panel. The top left panel shows its band
structure, with flat segments marked in orange (Hough transform).
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and data-driven regression in retrospect validates SOI ~ (¢) Train an estimator for predictions of layered

for representing structures.
In summary, the materials knowledge creation (d) Identify promising candidate structures from

cycle can be outlined as follows:

(a) Define the objective as the identification of twis-
ted layered assemblies of graphene with poten-
tially interesting electronic behavior.

Calculate and analyze the band structures of a
set of layered assemblies and use them to predict

(b)

such behavior.

assemblies not contained in the database.

step 3 and return to step 2 to assess them by full
physics-based calculations.

In other words, the predictions p(#) generated in
step 2 are used to support decision making in what
can be thought as a basic active learning approach for
autonomous (closed-loop) exploration of the mater-
ials space. Alternatively, the extra-trees regressor can
be used as another predictive data-driven model
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available directly to the inference engine for faster and
broader predictions that become increasingly more
accurate as the knowledge base expands. Conduct-
ing comprehensive model selection or an extensive
exploration of the space of twisted layered assem-
blies with five or more graphene sheets nevertheless
remains beyond the scope of this work.

4, Conclusions

We introduced the unifying conceptual framework
of an automated in silico Quantum Expert for the
creation, combination, and use of materials inform-
ation. We used it specifically to screen multi-layer
graphene-based assemblies for interesting electronic
behavior as an application. Materials calculations
relied on an ab initio tight binding model. Their ana-
lysis was based on various featurizations, including an
approach based on computer vision (Hough trans-
form) to construct measures of band flatness, and
sum over interfaces descriptors for the studied struc-
tures. We further produced informative visualizations
of the materials space, or an atlas of interface com-
plexity, by means of embeddings in two dimensions.
The various transformations of materials informa-
tion were enabled by a flexible layered assemblies nota-
tion, which we used to enumerate structures in the
database and unambiguously describe trends across
configurations.

Structural relaxation effects have been shown to
modify the band structure significantly in the regime
of small twist angles in twisted bilayer graphene:
single-particle gaps near the Fermi level become
wider, although the magic angle remains unchanged
[41]. These effects are not accounted for in the current
high-throughput workflow, but can be important
even for configurations beyond the twisted bilayer.
For instance, using a continuum model for interlayer
interactions, Zhu et al [52] showed that the relaxation
patterns of twisted trilayer of graphene are “moiré of
moiré” as a result of the incommensurate coupling
of two bilayer moiré patterns. An obvious extension
of the current work therefore would include atomic
relaxation. In addition, external conditions and per-
turbations such as pressure, temperature or a mag-
netic field could be considered as they are used to
control the properties of a layered assembly. Here,
we considered only high-symmetry directions in the
Brillouin zone for calculation and analysis of elec-
tronic band structures, but more detailed physical
insights could be obtained by densely sampling the
entire Brillouin zone. The use of more refined meth-
ods for physics-based calculations, for example using
more comprehensive model Hamiltonians and data-
driven analysis with more extensive model selection,
is also expected to improve the accuracy of predic-
tions with regards to magic angles.

Since our approach relies on calculations within
the single-particle picture, the TB band structures
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alone cannot provide quantitative insights into cor-
related behaviors observed in experimental meas-
urements. Combining materials data and informa-
tion from virtual (computer) and physical experi-
ments into common knowledge bases is expected to
improve the usefulness of our approach: imagine a
synthesis tool that enables rapid fabrication of layered
assemblies on a controlled manner with integrated
in situ characterization, acting either in the role of
the researcher or augmenting the knowledge base
for more reliable predictions. A common practical
concern is related to the synthesizability of mater-
ials predicted using modeling and simulation. Our
atlas (figure 6) provides a quick guide for picking
promising candidates that are also structurally sim-
ilar to known materials, making it easier to evalu-
ate feasibility and needed resources for experimental
verification. Moreover, in a Bayesian framework the
knowledge obtained from unfruitful experiments can
also be incorporated in the materials knowledge cycle
by updating predictions, i.e. the probabilities p(6),
accordingly.

At the computational level, the presented frame-
work is completely general and should be applic-
able to the accelerated investigation, optimization
and screening of materials more broadly, describ-
ing in a uniform way such workflows [16, 17].
It is straightforward to extend our computational
strategy to explore other scientifically and techno-
logically interesting 2D layered materials, including
layered assemblies of transition metal dichalcogen-
ides. At the algorithmic level, constructing a Hamilto-
nian for other materials will necessarily require dif-
ferent sets of tight binding coefficients. Appropriate
parametrizations could be tabulated or more gener-
ally obtained on demand by extending the capabil-
ities of the workflow engine. At the implementation
level, the modularity of our high-throughput work-
flow further facilitates the introduction of novel code
functionality.

Our streamlined approach and specific find-
ings provide insights into the electronic structure
of twisted multi-layer graphene-based superlattices
and offers reference for experimental measurements.
Qverall, this work aims to build confidence in the
combined use of physics-based and data-driven mod-
eling for the systematic refinement of knowledge
about 2D layered materials, with implications for the
development of novel quantum devices.
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