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This study analyzed the scar-like localization in the time-average of a time-evolving wavepacket

on a desymmetrized stadium billiard. When a wavepacket is launched along the orbits, it emerges
on classical unstable periodic orbits as a scar in stationary states. This localization along the

periodic orbit is clari¯ed through the semiclassical approximation. It essentially originates

from the same mechanism of a scar in stationary states: piling up of the contribution from the
classical actions of multiply repeated passes on a primitive periodic orbit. To achieve this, several

states are required in the energy range determined by the initial wavepacket.
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1. Introduction

This study investigates localization in the time-average of the absolute squares of the

time-evolving wave function on a desymmetrized stadium billiard that occurs after

a Gaussian wavepacket is launched as an initial state. In chaotic billiards such as

a stadium, nodal patterns of stationary states with unique characteristics were

discovered approximately three decades ago.1 The patterns often have a unique

enhancement along classical unstable periodic orbits. Such a phenomenon is called

scar in quantum stationary states of a ¯nite chaotic region. The eigen states with

scars are called scar states. In contrast, in integrable billiards, the nodal patterns
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are essentially repetitive and synthetic. The eigen states are a genuine quantum

mechanical concept, whereas the periodic orbits are apparently classical mechanical

objects. The scar state is an important discovery expressing a providential quantum

classical correspondence.

A semiclassical approximation emerged as a powerful tool to determine scar states

in quantum systems along the classical unstable periodic orbits. This method has been

used to construct theories of scars in coordinate space2 and phase space3,4; they suc-

cessfully clarify the contribution of the periodic orbits to the scar states. Both theories

discuss the energy dependence of scars because the scars are ¯rst discovered in the eigen

states. Bogomolny2 proposed the Green's function in terms of the actions of the clas-

sical periodic orbits to expose the periodic orbits as the origins of the scar in the

coordinate space. Berry's theory4 utilizes theWigner function under approximation in

the phase space to determine the cause of the scars. In particular, Heller's lecture3

revealed the dynamical properties of scars, stating that the time-evolving wavepackets

propagate near the periodic orbits. In particular, the Heller group focused on homo-

clinic orbits and the return of the Gaussian wavepacket to the neighborhood of its

launching point in ¯nite regions. In addition, they realized the importance of the

autocorrelation function and its Fourier counterpart ��� the weighted spectrum.5–9

Finally, the enhancement or localization in the time-average of a time-evolving

wavepacket was discovered.10,11 In this study, it is called as the \dynamical scar."

(a) (b) (c)

(d) (e) (f)

Fig. 1. (Color online) (a)–(f) Illustrations of time-evolution of the Gaussian wavepacket j�ðtÞj2 in a

desymmetrized stadium billiard. The initial packet �0 is as Eq. (2). The x-coordinate is set along
the bottom line of the stadium, and the y-coordinate is on the left straight boundary. Thus, the origin of

the coordinate is located on the bottom-left corner. The wavepacket is launched from r0 ¼ ð1=2; 1=2Þ
and travels with a launching angle � ¼ ��=4(a), which is de¯ned in the counterclockwise direction

from the direction of the x-axis, jp0j ¼ 250 and �0 ¼ 0:15. The orbit corresponds to the periodic
orbit No. 7 in Ref. 2. After approximately t ¼ 5� 103, the wave function defuses almost all over the

stadium(f).
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It has a distinctly close relation to scar states because it also emerges along a periodic

orbit.12 The scar states are also shown to contribute signi¯cantly to the dynamical

states. The window function13 for the semiclassical approximation to describe the

enhancement is derived from a weighted power spectrum.

However, it is known that the re°ection symmetries of the billiard's shape

sometimes prevent the detection of its genuine chaotic characteristics. To remove the

discrete symmetries, we studied the localization in a desymmetrized 2� 4 stadium

billiard.14 The desymmetrization eliminates two discrete mirror symmetries of a full

stadium shape and makes the chaotic properties more evident. We use Table I in

Ref. 2 to distinguish the periodic orbits; however, the table is pertaining to a full

stadium, and is not for a desymmetrized stadium. Therefore, it should be used with

caution. If the periodic orbits pass over the horizontal and vertical axes of the

symmetries, they may have to be folded at the crossing points for the desymmetrized

stadium (cf. Figs. 2 and 3). Then, we can specify the periodic orbit with \No." in the

table. For example, in Fig. 1, the periodic orbit which the Gaussian wavepacket

travels along is called No. 7.

Fig. 2. (Color online) The time-average of the evolving wavepacket AðrÞ in Fig. 1. The weak concen-
tration appears along the broken yellow lines, which represents the corresponding unstable periodic orbit.

It shows the shape of the desymmetrized orbit No. 7.

(a) (b)

Fig. 3. (Color online) The time-averages of the evolving wavepackets AðrÞ in stadium billiard with

di®erent initial conditions. In both cases for the initial Gaussian wavepackets, jp0j ¼ 250 and �0 ¼ 0:15.

(a) The wavepacket is launched from ð1=2; ffiffiffi
3

p
=6Þ and its launching angle is � ¼ �=6. This shows the shape

of the desymmetrized orbit No. 12. (b) The wavepacket launched from ð1=4; 1=2Þ has an angle de¯ned as

tan � ¼ 2. This corresponds to orbit No. 14. The launching angles are de¯ned as those in Fig. 1. The broken

yellow lines correspond to the classical unstable periodic orbits.
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2. Gaussian Wavepacket as a Probe for Dynamical Properties

The time-dependent Schr€odinger equation

i}
@�

@t
¼ � }2

2m
r2�þ V� ð1Þ

governs the dynamical properties of the quantum systems, considering a particle

of mass m. By adopting the quarter of the 2� 4 stadium (Figs. 1–3) as a two-

dimensional (2D) chaotic ¯nite structure, the potential is simply set as V ¼ 0 inside

the billiard and V ¼ 1 outside of it.

The Gaussian wavepacket is a conventional tool used for elucidating the time-

evolution of quantum states.6–9 It has been one of the fundamental quantum objects

since the early stage of quantum mechanics. Its initial form in a 2D region is

�0ðrÞ ¼
1

�0
ffiffiffi
�

p exp
i

}
p0ðr� r0Þ �

ðr� r0Þ2
2�02

� �
; ð2Þ

where r ¼ ðx; yÞ is a point inside the nanostructure, r0 ¼ ðx0; y0Þ is the initial

location of the center of the wavepacket, and p0 ¼ ðp0x; p0yÞ is the packet's

initial momentum. The standard deviation of the Gaussian packet �0 determines

its size.

If the Gaussian wavepacket is placed in a °at in¯nite space, it travels as a bunch

with the initial velocity of the center of the wavepacket v0 ¼ p0=m. The absolute

value of the wavepacket shows that its shape is always Gaussian; however, its size

increases as j�ðtÞj ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð }t

m�02
Þ2

q
. If the time is su±ciently long, �ðtÞ � }

m�0
t.

In this work, the wavepacket travels in the ¯nite region, and repeated re°ections

on the boundary eventually di®use it around the billiard (Fig. 1; also see Refs. 10

and 11). Initially it behaves like a viscous liquid. The speci¯c texture of the traveling

wavepacket then gradually and progressively decreases. Finally, in the chaotic bil-

liards, the snapshots of wave function ripple over the billiard with irregular granular

pattern. On the contrary, the autocorrelation function surprisingly exhibits long-

time recurrence.7 This also implies the localization on the periodic orbit.

3. Dynamical Scar

One of the most fundamental concepts in quantum physics is the use of the absolute

square of the wave function to derive any physical properties; usually its time-

average is important to investigate the quantum e®ect. Therefore, the time-average

of the absolute square of the wave function is as follows:

AT ðrÞ ¼
1

T

Z T

0

j�ðr; tÞj2dt: ð3Þ

This is an appropriate tool to detect the desirable localization. Here, T expresses the

time required to measure the time-average.
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For numerical calculation, it is discretized as

AT ðriÞ ¼
1

Nt

XNt

j¼0

j�ðri; tjÞj2; ð4Þ

on the mesh points ri ¼ ðxi; yiÞ, and the integration over time is the summation over

the discretized times tj ¼ j�t, where�t is a time step. The summation must then be

divided by the integer Nt representing the number of whole time steps and appar-

ently T ¼ Nt�t. In this study, the natural units } ¼ m ¼ 1 are always applied for

actual numerical evaluation. The time step is set at �t ¼ 2:5� 10�2, T ¼ 9� 104, or

Nt ¼ 3:6� 106, and the lattice constant is 0.2. A typical example of the calculated

AT is presented in Fig. 2. The time-average expresses clear localization along un-

stable periodic orbits despite no speci¯c patterns in the snapshots of the wavepackets

(e.g. Fig. 1(f)).

It is apparently similar to the scars in stationary wave functions1 Furthermore,

di®erent launching conditions exhibit the same phenomena on various periodic

orbits, as shown in Fig. 3 (also see Ref. 12). The enhancement appears clearly around

the periodic orbit if the initial location of the center of the wavepacket and its

velocity are on and along the orbit. These are referred to as \dynamical scars" to

distinguish them from the scar states in stationary eigen states. These are

enhancements in the time-average of the time-dependent wave function.

Any states in the quantum systems can be expanded using these eigenfunctions as

�ðr; tÞ ¼
X
n

cn nðr; tÞ ¼
X
n

cn�nðrÞexp � i

}
Ent

� �
; ð5Þ

where  nðr; tÞ ¼ �nðrÞexpð� i
}
EntÞ is the nth eigen state of the system with energy

En. The expansion coe±cient cn must satisfy the condition
P

njcnj2 ¼ 1. In this

study, the initial state is set as �ðr; t ¼ 0Þ ¼ �0ðrÞ. The expansion coe±cient cn can

be determined using the initial wavepacket �0 as

cn ¼
Z
� �
n�0ðrÞdr: ð6Þ

Moreover, the expansion can be used to elucidate the time-average of j�ðr; tÞj2 as

AðrÞ ¼ lim
T!1

AT ðrÞ ¼ lim
T!1

1

T

Z T

0

j�ðr; tÞj2dt

¼ lim
T!1

1

T

Z T

0

X
n

jcnj2j�nðrÞj2 þ
X
n 6¼m

c�mcn�
�
m�nexp

i

}
ðEm � EnÞt

� �" #
dt

¼
X
n

jcnj2j�nðrÞj2; ð7Þ

assuming En 6¼ Em, if n 6¼ m. In other words, using Eq. (7), if the coe±cients cn of

the scar eigen states on the same periodic orbit have dominantly larger values, the

\dynamical scars" of the periodic orbits are observed in the time-average Aðr).10–12
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Therefore, at least theoretically, the time-average (7) can be written in energy

integration as follows:

AðrÞ ¼
Z X

n

jcnj2j�nðrÞj2�ðE � EnÞdE: ð8Þ

However, the Dirac delta function must be treated carefully to allow comparison of

numerical results and experimental data. The behavior of the delta functions is often

smoothed by the limitation of the precision of numerical calculation and experi-

mental measurement.

Equation (8) can be considered as the summation of the related wave functions

and the speci¯c contribution weight that closely corresponds to the weighted spec-

trum because it includes the factor jcnj2. In the numerical calculation, the weighted

spectrum would be smoothed by the numerical discretization and the precision of the

calculation. The Dirac delta function could be replaced with a smoothed function.

4. Window Function

The correlation function between the traveling wavepacket (5) and initial state (2)

C0ðtÞ ¼
R
� �

0ðrÞ�ðr; tÞdr2 closely relates to the weighted spectrum. The autocorre-

lation function is expressed by the eigenfunction expansion (5) as

C0ðtÞ ¼
Z

��
0ðrÞ�ðr; tÞd2r

¼
Z X

m

c�m�
�
m

 ! X
n

cn�ne
� i

}
Ent

 !
d2r

¼
X
n

jcnj2e� i
}
Ent: ð9Þ

The weighted spectrum can be de¯ned through its Fourier transform as

~C0ðEÞ ¼ 1

2�

Z 1

�1
C0ðtÞei

}
Etdt

¼ 1

2�

Z 1

�1

X
n

jcnj2ei
}
ðE�EnÞtdt

¼ }

X
n

jcnj2�ðE � EnÞ

¼ }P ðEÞ: ð10Þ
This only represents the bare weighted power spectrum PðEÞ ¼Pnjcnj2�ðE � EnÞ
with the Planck's constant.

The smoothed version of the weighted spectrum and the Green's function produce

a neat form of the time-average. The smoothed weighted spectrum function (SWSF)

can be written as

P�ðEÞ ¼
X
n

jcnj2��ðE � EnÞ: ð11Þ

M. Tomiya, S. Sakamoto & E. J. Heller

1950026-6

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

01
9.

30
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

A
R

V
A

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/2

2/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



In addition, we have lim�!0 P�ðEÞ ¼ P ðEÞ. When � becomes in¯nitesimal,

lim�!0��ðxÞ ¼ �ðxÞ. Here, the Lorentzian form of the smoothed version delta function

is introduced as

��ðE � EnÞ ¼
�

�

1

ðE � EnÞ2 þ �2
: ð12Þ

Realistic systems have ¯nite precision and always show errors because of numerical

applications, limit of measurement, etc. Owing to these inevitable limitations of the

systems, the Dirac delta functions are replaced by some ¯nite regular functions. Its

in¯nity and singular behavior cannot be recreated exactly through computation;

they seem very large but are ¯nite and singular-like; however, the peaks are not

numerically in¯nite. The width of the Lorentzian � will be the order of the mean level

spacing �E under such limitation because much ¯ner energy di®erence would not be

distinguishable. The replacement is allowed if the width of the Lorentzian � is equal

or larger than the order of the mean level spacing �E. By using this expression, the

smoothed Green's function

ImG�ðr; r;EÞ ¼ ��
X
n

j�nðrÞj2��ðE � EnÞ ð13Þ

is also introduced.

Under such circumstances, a square of the delta functions can be treated using the

Berry's method.15 The smoothed delta function (12) has a remarkable property:

���ðE � EnÞ ¼ 2��½��ðE �EnÞ�2 ¼
2�3

�

1

fðE �EnÞ2 þ �2g2 ; ð14Þ

where ���ðE � EnÞ is another version of the smoothed delta function lim�!0
���ðxÞ ¼

�ðxÞ. Next, we use an alternative practical version of the time-average

A�ðrÞ ¼
Z X

n

jcnj2j�nðrÞj2 ���ðE � EnÞdE: ð15Þ

The original time-average A is in the limit AðrÞ ¼ lim�!0A�ðrÞ.
By multiplying the two terms (11) and (13), we obtain

P�ðEÞImG�ðr; r;EÞ

¼
X
n

jcnj2��ðE � EnÞ ��
X
n0

j�n0 ðrÞj2��ðE �En0 Þ
( )

¼ ��
X
n;n0

jcnj2j�n0 ðrÞj2��ðE � EnÞ��ðE � En0 Þ

¼ ��
X
n

jcnj2j�nðrÞj2½��ðE � EnÞ�2

¼ �1

2�

X
n

jcnj2j�nðrÞj2 ���ðE �EnÞ: ð16Þ

Periodic orbit scar in wavepacket propagation
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Here, Eq. (14) is also applied for this deformation. Finally, Eq. (16) is used

to provide the following expression for the time-average by using the Green's

function

A�ðrÞ ¼ �2�

Z 1

�1
P�ðEÞImG�ðr; r;EÞdE

¼
Z 1

�1
wðEÞImG�ðr; r;EÞdE; ð17Þ

where the window function wðEÞ is introduced13 through SWSF (11) as

wðEÞ ¼ �2�P�ðEÞ ¼ � 2�

}

~C0ðEÞ: ð18Þ

In other words, wðEÞ is the weight for the integration over the energy region to

evaluate the time-average A�ðEÞ from the imaginary part of the smoothed Green's

function (13). This speci¯c quantum phenomenon has been focused upon in

this study. It determines where the window should be transparent in the energy

spectrum.

In a 2D °at and in¯nite space, the traveling wavepacket can be calculated exactly.

The autocorrelation function is then well approximated as

CfðtÞ ¼
Z

��
0ðrÞ�ðr; tÞd2r � exp � v2t2

4�2
0

� i

}
E0t

� �
; ð19Þ

and its real phase part

CRðtÞ � exp � v2t2

4�2
0

� �
ð20Þ

satisfactorily represents the damping behavior of the correlation function CfðtÞ.
In a chaotic ¯nite region, the autocorrelation function should di®er as

CðtÞ �
X
n

exp � v2ðt� n�Þ2
4�2

0

� i

}
E0ðt� n�Þ

� �
exp � �

2
jtj

� �
; ð21Þ

where � is the period of a particular periodic orbit, along which the initial wavepacket

is launched.3 The summation implies that the ¯nite region allows the wavepacket to

repeatedly return to its original location. Moreover, its chaoticity makes it spread all

over the billiard exponentially under the Lyapunov exponent � of the periodic orbit.

It can be reformed using the Poisson summation rule as

CðtÞ ¼
X
n

1

}

�ffiffiffi
�

p �0
v
exp � �2

0

v2}2
ðEn � E0Þ2

� �
e�

i
}
Ente�

�
2 jtj; ð22Þ

where En ’ Ep þ�n and E0 ¼ p0
2

2m . Here, Ep represents the energy at the highest

maximum of the serial local peaks with width � and � ¼ 2�}=�ð¼ }!Þ is the energy
gap between the local peaks. The weighted power spectrum can then be derived

M. Tomiya, S. Sakamoto & E. J. Heller
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through the Fourier transform of the autocorrelation function (22) as follows:

~CðEÞ ¼ 1

2�

Z 1

�1
CðtÞei

}
Etdt

¼
X1

n¼�1

1

}

�ffiffiffi
�

p �0
v
exp � �2

0

v2}2
ðEn � E0Þ2

� �
� 1

�

�=2

ððE � EnÞ=}Þ2 þ ð�=2Þ2 :

ð23Þ
This also includes the Lorentzian function of (12); however, the origin of its peaky

behavior is completely di®erent from �. The Lyapunov exponent � is purely due to

the chaotic property of our system and does not exist in CfðtÞ.
Therefore, replacing ~C 0ðEÞ with ~CðEÞ, the relationship between the window

function and power spectrum should be modi¯ed to

wðEÞ ffi � 2�

}

~CðEÞ: ð24Þ

Then, by Eq. (23), the window function is expected to be

wðEÞ � �2�
1ffiffiffi
�

p �0
v
exp � �2

0

v2}2
ðE � E0Þ2

� �

� �

�

Xþ1

n¼�1

�=2

ðE � Ep � n�Þ2 þ ð}�=2Þ2 : ð25Þ

The interplay of the Gaussian envelope shape with its width v}=�0 is due to the size

of the initial Gaussian (1) and the narrow peaks, with width �, represented by the

Lorentzian. Finally, wðEÞ is well estimated through Eq. (25) by replacing the eigen

energies En of the eigenstates in the exponential function of Eq. (23) with an ordi-

nary energy variable E. In reality, the resulting numerical di®erence of wðEÞ is slight
after the replacement. Then, the exponential function goes out form the summation

symbol, and Eq. (25) becomes the overall exponential factor multiplied by the ad-

dition of the Lorentzian \delta" functions, which are smoothed by the Lyapunov

exponent �.

In the chaotic billiard systems, the actual weighted power spectrum ~CðEÞ, which is

evaluated from numerically obtained eigen states, is known to have an extremely

spiky and oscillatory behavior.3,7–9 The existence of the scar states in the chaotic

billiard systems leads to a relatively smaller amount of selected eigen states contrib-

uting dominantly to AðrÞ. The jcnj2 histograms clearly show this tendency. Figures 4

and 6 show the histograms for Nos. 7 and 14, respectively, where the numbering

denotes a speci¯c periodic orbit in the stadium, as shown in Table 1 of Ref. 2.

In Fig. 4, the red curve represents wðEÞ for No. 7, with � ¼ 0:418jp0j. The con-

stant 0.418 is the geometric Lyapunov exponent and was evaluated from the

monodromy matrix of the corresponding periodic orbit.2 In addition, � is set to

the averaged energy level spacing �E ¼ 0:0003412� 104. Other parameters

related to the initial Gaussian are the same as those in Fig. 1. They are simply the
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linear-dynamical predictions of the window function.3,7–9 The local peaks of the

actual weighted spectrum are located at almost equal energy intervals, that is,

� ¼ 0:03193� 104, which is very close to the theoretical estimation �th ¼
}

m ð2�L Þjp0j ¼ 0:03253� 104, where L ¼ 4:8284 is the length of the speci¯c periodic

orbit. Through the semiclassical approximation, the classical action on the classical

periodic orbit is determined as Srð	; 	;E0Þ ¼
H
rpdr ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE0

p
. It must increase by

as much as 2�}, adding �th to its energy E0.

As aforementioned, wðEÞ is less spiky than the actual jcnj2 histogram. In addition,

it is the \totalitarian" case in Ref. 8. In the weighted spectrum of the \totalitarian"

system, some particular states have dominant contributions. The scars can often be

found in such states. Still, its smoothed behavior follows the estimated envelope

function: the window wðEÞ. (The opposite case is called the \egalitarian" in Ref. 8.

Then the weighted spectrum essentially follows the window function). It simulta-

neously allows the emergence of \dynamical scars". Similar to the scar states, if only

one primitive periodic orbit has a dominant contribution, the \dynamical scars"

become visible. In actuality, the eigen states at peaks often become the scar states of

the corresponding periodic orbit (cf. Figs. 4 and 6). Of course, the eigen states with

larger cn would also contribute to the \dynamical scars." However, in some cases, the

\dynamical scars" are blurred by the superposition of the other orbits on the eigen

state.

The histogram of jcnj2s is extremely spiky, although it is possible to elucidate its

smoothed version (Fig. 5) formed by averaging the energy range, which is su±ciently

Fig. 4. (Color online) The window function (weighted spectrum) of the Gaussian wavepacket wðEÞ
traveling along orbit No. 7 (a dotted curve) for the case of Fig. 1 (and also Fig. 2) is compared with its
expansion coe±cients jcnj2 (bars). The snapshots are shown in Fig. 1 and its AðrÞ in Fig. 2. Here, the

parameters of the initial Gaussian (Eq. (1)) are the same as those in Fig. 1. The insets show the eigen states

corresponding to the high peaks. The four-digit numbers near the insets represent the counts from the

ground state to the excited states in the insets. The scar states on the classical orbit No. 7 are often
observed. The plot of jcnj2 is extremely spiky; however, it is a typical structure of the \totalitarian" case in

Ref. 8.
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larger than the energy spacing of the levels but much smaller than the required

energy. It agrees well with the window function wðEÞ.
The same situation occurs for the periodic orbit No. 14 (Fig. 3(b)). In Fig. 6, the

red curve represents wðEÞ, with � ¼ 0:3684jp0j. The local peaks' energy intervals

� ¼ 0:02340� 104 are extremely close to the predicted ones �th ¼ }

m ð2�L Þjp0j ¼
0:02428� 104 (L ¼ 6:47). Furthermore, other parameters related to the initial

Gaussian are the same as those in Fig. 3(b). In addition, the processes in the

smoothed histogram are the same as those in the No. 7 orbit case. The smoothed

Fig. 5. (Color online) The window function (weighted spectrum) of the Gaussian wavepacket wðEÞ
traveling along orbit No. 7 (a dotted curve) and its averaged behavior of the expansion coe±cients jcnj2
(a solid curve) (cf. Fig. 4). Here, the averaging is performed in the energy range of 20�. The two lines match

very closely.

Fig. 6. (Color online) The window function (the weighted spectrum) of the Gaussian wavepacket wðEÞ
traveling along orbit No. 14 (a dotted curve) is compared with its expansion coe±cients jcnj2 (bars). Its

AðrÞ is in Fig. 3(b). Here, the parameters of the initial Gaussian (Eq. (1)) are the same as those in Fig. 3(b).

The insets show the eigen states corresponding to the high peaks. The four-digit numbers near the insets
represent the counts from the ground state to the excited states in the insets. The scar states on the

classical orbit No. 14 are often present. The extremely spiky characteristic feature of this jcnj2 plot is the
same as that in Fig. 4.
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histogram matches very closely with its window function wðEÞ (Fig. 7). A similar

phenomenon occurs for No. 5, which is already published in Ref. 12.

Moreover, the bouncing ball mode produces a considerably unique result (Fig. 8).

This exceptional mode is the only nonchaotic periodic orbit in the stadium billiard. It

has a zero Lyapunov exponent and no chaotic origin because it bounces between the

parallel walls of the billiard in terms of classical mechanics. However, the parameter

� still cannot be set to zero or be in¯nitesimally small in our numerical calculation

because the Lorentzian approaches the Dirac delta function in such a limit; this

cannot be presented exactly in numerical calculation. The numerical results clarify

that only the wave functions with scars on the bouncing ball mode signi¯cantly

contribute to the \dynamical scar." Figure 9 compares the numerical histogram and

the estimated weighted spectrum, both of which show strikingly good agreement.

Numerically calculated interval between the peaks is � ¼ 0:07524, whereas its the-

oretical estimation is �th ¼ }

m ð2�L Þjp0j ¼ 0:07854 (L ¼ 2). Note that the width of

the sharp peaks � in the weighted spectrum is replaced by the averaged level

Fig. 7. (Color online) The window function (the weighted spectrum) of the Gaussian wavepacket wðEÞ
traveling along orbit No. 14 (a dotted curve) and the averaged behavior of the expansion coe±cients

jcnj2(a solid curve) (cf. Fig. 6). Here, the averaging is performed in the energy range of 20�. The two lines
match very closely.

Fig. 8. (Color online) The time-average of the evolving wavepacketAðrÞ on the bouncing ball mode of the

stadium billiard. It corresponds to orbit No. 1. The initial Gaussian wavepacket is set as jp0j ¼ 250 and

�0 ¼ 0:15. The wavepacket is launched from ð1=2; ffiffiffi
3

p
=4Þ and the launching angle is � ¼ �=2. The broken

yellow line corresponds to the classical periodic orbit. It belongs to the one-parameter family of the

bouncing ball mode, whose members bounce up and down between two parallel straight sections of the

boundary in¯nitely, and the launching point is on the line.
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spacing �E, instead of the theoretically exact value of the vanishing Lyapunov

exponent � ¼ 0. It also implies that this system does not have ¯ner energy resolution

than �E.

As mentioned earlier, with a good agreement between wðEÞ and the averaged

behavior of jcnj2, the semiclassical approximation can be expected to function sat-

isfactorily in this ¯eld. Moreover, it reminds us of the \totalitarian" aspect of the

system.

If we choose a su±ciently small window size to reasonably assume that only one

eigen state would be in the window simultaneously, it essentially resembles the result

of Ref. 2 for the scar states. However, in this study, the window size is much larger

because the initial wavepacket must involve the contribution of the eigen states in a

broader energy range. Thus, a scar is not directly observed in the snapshot of the

time-dependent wave functions (Fig. 1(f)). The \dynamical scar" is the superposition

of many corresponding states in the energy window.

5. Semiclassical Approximation

Through semiclassical approximation,2 the localization becomes the summation of

two parts:

AðrÞ ffi h
0ðr;EÞi þ
Z

wðEÞImGoscðr; r;EÞdE ¼ h
0ðr;EÞi þ AoscðrÞ; ð26Þ

Fig. 9. (Color online) Expansion coe±cients jcnj2 (upper graph) and window function (the weighted
spectrum) of the Gaussian wavepacket wðEÞ (lower graph) for the bouncing ball mode. These graphs are

almost identical. The four-digit numbers near the insets represent the counts from the ground state to the

excited states. The parameters of the wavepacket are the same as those in Fig. 8.
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where

Goscðr; r;EÞ ffi 2

ð2�Þ1=2}3=2

�
X
�;n

D�;nð	Þ1=2
v

exp
i

}
S�;nð	; 	;EÞ þ W�;nð	Þ

2
�2

� �� �
� i

��;n
2

� i
3

4
�

� �
: ð27Þ

The ¯rst term of Eq. (26) on the right-hand side is the smooth part h
0i, and the

second is the oscillatory term Aosc. Further, the angle brackets h� � � i denote an av-

erage over the energy range that the window function wðEÞ covers, and 
0ðr;EÞ is the
classical probability density of ¯nding a particle with energy E at point r. Needless to

say, wðEÞ depends on the shape of the (initial) wavepacket. The 	 axis is set along the

concerned periodic orbit, and the � axis perpendicular to it at point 	. The classical

action of the n-fold repeated orbit can be derived as S�;n ¼ nS� from the action of the

primitive orbit �: S� . Then, T�;nðr;EÞ ¼ nT� , T� is the period of the primitive orbit �.

Its maximal number of conjugate points �;n ¼ n� can be derived from the primitive

� . In addition, W�;nð	Þ, D�;nð	Þ are the versions for the n-fold periodic orbit and can

be expressed as D� ¼ �ð @2S�
@�0@�00 Þ�0¼�00¼0 and W�ð	Þ ¼ ð@2S�@�02 þ @2S�

@�0@�00 þ
@2S�
@�002 Þ�0¼�00¼0 for

the primitive orbit. They can be derived from D� : D�;nð	Þ ¼ D�
�1��2
� n

1
�� n

2
, W�;nð	Þ ¼

D�;nð�n
1 þ �n

2 � 2Þ. Note that �1, �2 ¼ ��1
1 are the eigenvalues of the monodromy

matrix of the primitive orbit.

It is assumed that only one speci¯c periodic orbit � ¼ C shows a prime contri-

bution. Moreover, the primitive orbit n ¼ 1 is expected to be dominant on the pe-

riodic orbit because the factorDC;n vanishes rapidly with increasing n. Therefore, the

oscillatory part of A can be approximated on the classical orbit C (� ¼ 0) as

Aoscð	Þ ffi
2
ffiffiffi
2

p

�}7=2
�0
v
��
X
j

exp � �0
2

}2v2
ðEj � E0Þ2

� � jDC j1=2
v

�
Z

1

�

�=2

fðE � EjÞ=}g2 þ ð�=2Þ2 Im i exp
i

}
SC � i

�

2
C þ i�NC � i

1

4
�

� �� �
dE:

ð28Þ
Note that NC is the number of hits on the boundary, when a particle travels around

the closed orbit C, and DC ¼ DC;1. Under the semiclassical approximation, at

E ¼ Ej, it can be well assumed that expf i
}
SCð	; 	;EjÞ � i �2 C þ i�NC � i 14 �g ¼ 1.

Finally, integration in Eq. (28) can be performed using a complex integral, and the

localization is evaluated as

Að	Þ ¼ h
i þ Aoscð	Þ

¼ 1

Area
þ 2

ffiffiffi
2

p

�}5=2
�0
v
��

jDCð	Þj1=2
v

X
j

exp � �0
2

}2v2
ðEj �E0Þ2

� �
e�Tj

�
2 ; ð29Þ

where SCð	; 	;Ej þ i }�
2 Þ ffi SCð	; 	;EjÞ þ iTj

�}
2 is used, Tj is the period of the periodic

orbit at E ¼ Ej, and Area is the area of the billiard. Finally, the averaged level

M. Tomiya, S. Sakamoto & E. J. Heller

1950026-14

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

01
9.

30
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

A
R

V
A

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/2

2/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



spacing �E, which is the criterion of the energy resolution limit of the billiard

system, is adopted for �.

The evaluated localization A on the periodic orbit No. 7 (Fig. 2) is presented in

Fig. 10. Assuming that the wave function is completely °at in the ¯nite region, h
i
must be the inverse of the area of the billiard: fð4þ �Þ=4g�1 ¼ 0:5601 . . . throughout

the stadium. Owing to the scar or the contribution of the classical periodic orbit, the

concentration enhances the absolute square of the wave function by at least 10% on

the periodic orbit above the average behavior h
i, except in the neighborhood of the

singularity around the conjugate point. Of course, it cannot recreate the wavy be-

havior, which is particularly sharp close to the boundary because Eq. (29) does not

show the exact e®ect of the boundary condition. The approximation is determined

essentially through the length of the orbits and the energy. Actually, the wave must

be zero at the boundary according to the Dirichlet condition, and all dominant

eigenfunctions' phases become almost coherent near the boundary. Figure 11 shows

the semiclassical approximation of No. 14. In addition, it presents essentially the

same results as No. 7 (Fig. 10).

The singularity at the conjugate point is inevitable for the semiclassical approx-

imation; however, it is also beyond the scope of the approximation in the neigh-

borhood of the point. The semiclassical approximation of the wave function diverges

at the point due to the factor DC ¼ 1=m12, andm12 is the o®-diagonal element of the

monodromy matrix2 for the unstable classical periodic orbit C. In our study, m12 ¼
�2fð2þ ffiffiffi

2
p Þ � 	2g for No. 7 (Fig. 10), and m12 ¼ �2fð5þ ffiffiffi

5
p Þ � 	2g for No. 14

(Fig. 11). In both cases, 	 is measured from the left wall and along the orbits. The

monodromy matrix element m12 becomes zero and DC diverges at the conjugate

point 	C , where the classical orbits near the classical periodic orbit converge. The

Fig. 10. (Color online) Comparison of the semiclassically approximated time-average of the evolving

wavepacket (29) on the periodic orbit No. 7 (a dotted curve) and its numerically calculated localization

(a solid curve). They are presented as functions of the distance 	 from the point (0,1), which is measured

along the broken yellow line in Fig. 2. At a distance 	C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

2
pp

¼ 1:8478 . . ., the semiclassical

approximation diverges. At distances 0,
ffiffiffi
2

p ¼ 1:4142 . . ., and 1þ ffiffiffi
2

p ¼ 2:4142 . . ., the boundary walls are

present. At the boundary, the wave function becomes zero and shows a peculiar rough wavy behavior.
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conjugate points are located at 	C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

2
pp

for No. 7 measured from the point

ð0; 1Þ, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ ffiffiffi

5
pp

for No. 14 measured from ð0; 0Þ. In reality, a relatively strong

enhancement exists around the point. Apart from these properties, the semiclassical

approximation works well, and Eq. (29) still matches remarkably with the numeri-

cally evaluated time-averages on the orbits.

6. Conclusion

The quantum phenomenon, the \dynamical scar", is analyzed from the aspect of the

eigen state expansion of the incident wavepacket and the semiclassical approxima-

tion. By launching a Gaussian wavepacket along a classical unstable periodic orbit,

its weighted power spectrum �CðEÞ accomplishes a good match with its averaged

histogram of expansion coe±cients jcnj2.
By utilizing �CðEÞ as the energy window function for the semiclassical approxi-

mation, the \dynamical scars" can be evaluated. The periodic orbit critically con-

tributes to the approximation. However, it has nonrealistic singularities close to the

conjugate points on the orbit. The window function wðEÞ, which is manipulated

from ~CðEÞ, plays a crucial role for the approximation.

References

1. E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984).
2. E. B. Bogomolny, Phys. D 31, 169 (1988).

Fig. 11. (Color online) Comparison of the semiclassically approximated time-average of the evolving
wavepacket (29) on the periodic orbit No. 14 (a dotted curve) and its numerically calculated localization

(a solid curve). They are presented as functions of the distance 	 from the point (0,0), which is measured

along the broken yellow line in Fig. 3(b). At a distance 	C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ ffiffiffi

5
pp

¼ 2:6900 . . ., the semiclassical
approximation diverges. At distances 0,

ffiffi
5

p
2 ¼ 1:1180 . . .,

ffiffiffi
5

p ¼ 2:2361 . . ., and 1þ ffiffiffi
5

p ¼ 3:2361 . . ., the

boundary walls exist. At the boundary, the wave function becomes zero and shows a peculiar rough wavy

behavior.

M. Tomiya, S. Sakamoto & E. J. Heller

1950026-16

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

01
9.

30
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

A
R

V
A

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/2

2/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



3. E. J. Heller, Wavepacket dynamics and quantum chaology, in Chaos and Quantum
Physics, eds. M. J. Giannoni, A. Voros and J. Zinn-Justin, Les Houches Session LII, 1989
(Elsevier, Amsterdam, 1991), p. 547.

4. M. V. Berry, Proc. R. Soc. Lond. A 423, 219 (1989).
5. E. J. Heller, Phys. Rev. A 35, 1360 (1987).
6. S. Tomsovic and E. J. Heller, Phys. Rev. Lett. 70, 1405 (1993).
7. S. Tomsovic and E. J. Heller, Phys. Rev. E 47, 282 (1993).
8. L. Kaplan and E. J. Heller, Ann. Phys. (N.Y.) 264, 171 (1998).
9. L. Kaplan and E. J. Heller, Phys. Rev. E 62, 409 (2000).
10. H. Tsuyuki, M. Tomiya, S. Sakamoto and M. Nishikawa, Surf. Sci. Nanotech. 7, 721

(2009).
11. M. Tomiya, H. Tsuyuki and S. Sakamoto, Commun. Comp. Phys. 182, 245 (2011).
12. M. Tomiya, H. Tsuyuki, K. Kawamura, S. Sakamoto and E. Heller, J. Phys. Conf. Ser.

640, 012068 (2015).
13. H.-J. St€ockmann, Applications of periodic orbit theory, in Quantum Chaos an Intro-

duction (Cambridge University Press, Cambridge, 1999), p. 305.
14. L. A. Bunimovich, Funct. Anal. Appl. 8, 254 (1974).
15. M. V. Berry, Proc. R. Soc. Lond. A 400, 229 (1985).

Periodic orbit scar in wavepacket propagation

1950026-17

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

01
9.

30
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

A
R

V
A

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/2

2/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


	Periodic orbit scar in wavepacket propagation
	1. Introduction
	2. Gaussian Wavepacket as a Probe for Dynamical Properties
	3. Dynamical Scar
	4. Window Function
	5. Semiclassical Approximation
	6. Conclusion
	References


