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With the discovery of Majorana quasiparticles in semiconductor-superconductor hybrid structures,
topologically protected qubits have emerged as a promising contender for quantum information pro-
cessing. While the construction of a universal quantum computer with topological protection likely
requires significant advances in materials science, intermediate-scale devices are nearly within the
reach of current technology. As a near-term milestone for topological qubits, we propose a network
of topological superconductors as a simulator of a large variety of quantum spin systems, including
those with frustration. Our proposal is founded on existing technology, combining advantages of
semiconducting and superconducting qubits. We identify local measurement protocols that give
access to information about ground and excited states as well as dynamic correlations. The topo-
logical protection of the qubits results in longer coherence times, and relaxation to the groundstate
can be controlled by coupling the network an external bath. We conclude by pointing out specific
applications of the quantum simulator, e.g., spin liquids, quantum criticality, and thermalization.

I. INTRODUCTION

The prospect of quantum computing has made the
field of quantum information one of the most rapidly
developing areas in physics. Nevertheless, in spite of
encouraging results with up to 20 qubits [1, 2], the re-
alization of a full-scale quantum computer might still
be in the distant future. The fundamental challenge is
to maintain coherence of a large number of qubits [3].
Protecting quantum information against noise requires
the implementation of error correction schemes, but this
comes at the cost of a large overhead, with the number
of physical qubits typically exceeding the number of log-
ical qubits by several orders of magnitude [4].

The need for error correction can be reduced by
using topological qubits formed by multiple spatially-
separated Majorana quasiparticles living at domain
walls of one-dimensional topological superconductors.
The information is stored nonlocally and is therefore
immune to local low-frequency noise. While a large va-
riety of topological-superconductor platforms are being
investigated in the lab [5-16], the most encouraging re-
sults have been achieved in semiconductor devices with
proximity-induced superconductivity [17]. This includes
the initial discovery of Majorana states [5] and the sub-
sequent observation of unique Majorana signatures such
as an exponential protection [6], a quantized conduc-
tance [18], and a fractional Josephson effect [19]. Mo-
tivated by these findings, several detailed proposals for
quantum computers consisting of arrays of mesoscopic
superconducting islands hosting Majorana states [20—
25] have been made recently [26-28].

The efficient simulation of quantum many-body sys-
tems is a prime motivation for building a computer.
While the latter remains unavailable, quantum simu-
lation has been demonstrated in a variety of systems
throughout the last decade [29-34]. The underlying
idea of quantum simulation is to carefully tune the mi-

croscopic parameters of a many-body system so that
it mimics the behavior of another many-body system
on certain time scales. A key advantage of analogue
quantum simulators is that far fewer resources are re-
quired relative to a quantum computer since, ideally, ev-
ery physical qubit corresponds to a logical qubit. Nev-
ertheless, quantum simulators are equally plagued by
decoherence for physically relevant system sizes. More-
over, they require delicate control over parameters.

In this paper, we propose the realization of an ana-
logue topological quantum simulator of spin systems.
We envision a network of coupled superconducting is-
lands hosting four Majorana states, each representing a
spin-1/2 site [35, 36]. By suitably arranging the islands,
one can simulate a plethora of quantum spin models, in-
cluding models on a variety of lattices with spin greater
than or equal to 1/2. The exponential protection of Ma-
jorana states results in long coherence times while the
flexibility of the semiconductor platform allows for in-
tricate and versatile control. Moreover, the charging en-
ergy in mesoscopic superconducting islands suppresses
quasiparticle poisoning, one of the main sources of error
of Majorana qubits.

Motivated by the experimental effort to realize a
quantum computer in semiconducting hybrid struc-
tures [17], we focus on an implementation of Majorana
qubits in a semiconductor platform. By combining well-
established methods of manipulating superconducting
and semiconducting qubits in the lab, we propose real-
istic setups to measure and control the simulated spin
system. These include coupling our system to transmis-
sion line resonators and techniques developed for the
control of quantum dots.

We remark that our quantum simulator is similar in
spirit to certain quantum computer proposals, e.g., the
surface code realizations of Refs. 26 and 27. Moreover,
the simulator requires similar hardware components as
the topological quantum computer proposed, e.g., in



Refs. 23-25. Our quantum simulator can therefore serve
as a important milestone in the effort towards the long-
term goal of building a topological quantum computer.

This paper is organized as follows. Section II presents
the general setup of the spin-1/2 island and how it can
be used to generate spin models. Section III proposes
a specific experimental setup using semiconductor-
superconductor hybrid structures and shows that cer-
tain models can be simulated in a simplified setup. Sec-
tion IV describes how key quantities like the excitation
spectrum or dynamic correlation functions can be de-
tected. Section V highlights possible applications of the
quantum simulator. Finally, Sec. VI discusses related
work and presents an outlook.

II. BASIC SETUP

In this section we outline the basic principles behind
our setup. A more detailed discussion of the experimen-
tal realization and parameters is deferred to Sec. I1I. We
start by describing the simplest variant of our proposal:
each effective spin-1/2 is represented by a mesoscopic
superconducting island hosting four Majorana states.
We show that arbitrary trivalent lattices can be built
out of these sites. Next, we extend the setup to lattices
with larger coordination number, higher effective spins,
and non-planar graphs (i.e., lattices with bonds that
cross). Our scheme relies on a perturbative expansion,
and so we conclude with a discussion of the higher order
corrections not explicitly considered.

A. Spin-1/2 models on trivalent lattices

The primary component of our proposal is the meso-
scopic superconducting island. We take the supercon-
ducting gap to greatly exceed all energy scales of the
system. The next most dominant term in the Hamilto-
nian is the charging energy:
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where ¢ labels the island, n.; is the number operator
of the electrons on the superconductor, and C; is the
capacitance. The background charge, Q) ;, is controlled
by a gate voltage, and we assume that it has been tuned
to favour an integer number of charges: Qo,/e = N; +
ON;, where N; € Z and [0N;| < 1. As a result, there
is an energy cost of e?/2C when n.; = N; £ 1. We
work in the regime where e2/2C dominates all energy
scales save the superconducting gap, and it follows that
the low energy physics can be understood by working
entirely within the groundstate manifold of H¢.

When N; is an even number and the superconduc-

tor is topologically trivial, the optimal charge subspace
is non-degenerate. Conversely, topologically non-trivial
superconductors may possess additional degrees of free-

dom in the form of Majorana zero modes, b,. Their
defining properties are
{by, b} = 26, bl = by,. (2)

Because of the reality condition, a single Majorana can-
not be associated to an occupation number and there-
fore does not constitute a proper excitation. Neverthe-
less, Majoranas always appear in pairs, and so a two-
dimensional Hilbert space labelled by the occupation of
a complex fermion f, = (ba, + iba,—1)/2 can always
be defined. In the absence of a charge constraint, the
topological character of the superconductor supporting
these modes guarantees that the two states |0), and
1), = f110) are nearly degenerate, with an energy split-
ting that decreases exponentially with the separation of
the two modes. When N,, Majorana zero modes are
present in the superconductor, the degeneracy becomes
2Nm /2 Finally, fixing the total charge of the system re-
moves one degree of freedom and reduces the dimension
of the groundstate manifold to 2N=/2-1,

Majoranas may be found both localized at the ends
of 1d topological superconductors and localized within
vortices in 2d topological superconductors. Inspired by
recent experimental success in the former system [6],
we propose the setup shown in Fig. 1(a). The two blue
triangles represent mesoscopic, trivial superconductors,
while the gray lines depict topological superconducting
wires. Together, they comprise a single superconducting
island with charging energy Hc ;. Most importantly, a
total of four Majoranas, labelled by ¢;, b¥, bY, and b7, is
also present on each island as indicated by the coloured
dots.

A specific experimental realization of this device is
discussed in Sec. III. Nevertheless, we stress that our
protocol is not restricted to those systems or even to
ones containing 1d topological superconductors. The
only mandatory component is a superconducting island
with a large charging energy and four Majoranas. For
this reason, the wires are omitted in subsequent dia-
grams.

With four Majoranas and the charge constraint, each
island is two-fold degenerate and the parity operator,
takes a fixed value. Depending on how the Majoranas
are defined, p; = +1 may correspond to either an even
or an odd parity. We discuss this issue later in this
section.

In the fixed-parity subspace, it is not difficult to show
that the operators

0=,y 2. (4)

a __ a
oi = 1pic;by,



Kitaev
honeycomb model

.....
......

¢ b b b
([ e O

Heisenberg
honeycomb model

Y . ;
Ay Yao-Kivelson

model

XXZ spin chain

FIG. 1: Basic spin simulation setup. (a) Two Majorana islands interacting through an ¢,,-bond. The islands are
represented by the blue triangles and the three grey lines depict the proximity-coupled semiconductor wire hosting
Majorana zero modes at their ends — these are omitted in all subsequent diagrams. The inset Majoranas shows
which coloured circle is associated to which of the four Majoranas: ¢, b*¥>*. The remaining diagrams illustrate
Majorana network representations of different spin models: (b) the Kitaev honeycomb model, (c) the
Yao-Kivelson model, (d) the Heisenberg honeycomb model, (e¢) an XXZ spin chain.

reproduce the spin algebra. Further, the identity p; =
c;b¥bYb7 implies that the spin operators may equiva-
lently be represented solely in terms of b-Majoranas:

o = —ie™blhs, (5)

where repeated superscripts are summed. As we discuss
below, this manner of representing spin operators was
used by Kitaev to exactly determine the groundstate of
the honeycomb model [37]. We employ this representa-
tion in a manner converse to Kitaev: instead of repre-
senting physical spins with Majoranas, we represent the
physical Majoranas as spins.

Interactions between neighbour spins originate from
weak tunnelling between the Majoranas on separate is-
lands. These inter-island bonds can be differentiated
by which b-Majoranas are interacting. For instance, the
two islands in Fig. 1(a) are interacting through the b7,
bY, and ¢; Majoranas, and so we call this an “zy-bond”

or {yy. Denoting the tunneling amplitudes by ¢}, tfj,

and ¢7;, we write the tunneling Hamiltonian as
H{G, = giyibiby + glyibib! + gijicicy,
1 (di—b o —i(bi—b;
g =5 [tgjem /2 L FTeie=eN2] ()

where a = z,y, c and ¢; and ¢; are the superconducting
phases on either island. We are interested in the regime

where [t{;] < €®/2C, justifying a perturbative expan-
sion. Because the problem is dominated by the charging
Hamiltonian in Eq. (1), the island does not have a def-
inite phase. Instead, e’®/2 is an operator that creates
a charge on the island at site i. It follows that, pro-
jecting to the ground state manifold of Hc; and Hg j

annihilates Ht(zfg’)ij7 and the leading order contribution

appears at second order in perturbation theory:

(zy) _ 1 1 T 1Y\ pTRY BT Y
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(7)

where a constant has been omitted. Here, we have de-
fined EC,ij = Ui+ + Uj_, where U;+ = Hcﬂ-(m + 1) —
Hc i(n;) is the energy cost of removing or adding an
electron to the ith island. In what follows, we assume
that Ho; = Hc is the same for all islands and write
Ec = U, +U_; we frequently refer to F¢ as the “charg-
ing energy.” We next use Eqgs. (4) and (5) to rewrite the
Majorana bilinears in terms of spin operators:

(zy) _ 1 a __a_a
Hij 4 Z Jijaigjv (8)
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where the exchange couplings have been defined as
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It is not difficult to see that the analogous expression
for interactions across yz- and zz-bonds are identical to
Eq. (8), but with appropriately redefined J;7**. The
total Hamiltonian of the network is

Heg =Y HIY+3 0P +3 HEY,  (10)
lyz leg

Loy

where £,;, with a,b = x,y, z indicates which type of bond
is being summed over.

We further note that it is also possible to induce an
onsite transverse Zeeman field by coupling two Majo-
ranas within an island:

HY) = ihzbfb! = —hzpo?. (11)

Here, a magnetic field in the z-direction is simulated,
but the other directions are equally possible. As op-
posed to the inter-island interactions considered above,
the tunnelling amplitude enters directly into the effec-
tive Hamiltonian and is not suppressed by the charging
energy. It is therefore essential that hy be extremely
small.

Both the Heisenberg couplings in Heg and the ef-
fective Zeeman fields in Hz depend sensitively on the
phases of the tunnelling amplitudes, making it impera-
tive to understand the relation H Z-((-lb) and Hyz; have to
the physical observables in the system. We start by ob-
serving that the expressions in Egs. (6) and (11) follow
from hopping between the electrons of the model. For
example, the interaction between the two z-Majoranas
in Eq. (6) arises from

Ay ==t (U0 +ne],  (2)
where f‘% is real, and f;" and f7 are electron operators at
the z-ends of wires on islands ¢ and j respectively. At
low energies relative to the superconducting gap, the
Majoranas are the only modes that contribute to tun-
neling processes. Further, since they are localized op-
erators, they have significant overlap only with electron
orbitals in their proximity (e.g., the end of the wire). It
follows that the replacement f¥ — ufe='%i/2¢%/2p? is
appropriate in Eq. (12). Here, u? is a positive number
that parametrizes the overlap of the Majorana and the
fermion. As above, ¢; represents the superconducting
phase of the ith island, and it follows that e~ *%/2 is the
operator that removes a charge from island 7. Impor-
tantly, an additional phase contribution, e¥i /2, is also
present. Unlike the superconducting phase, this term is
simply a number, and its value that depends both on

the spin-orbit direction, how the system was prepared,
and a gauge choice. The latter follows from the ob-
servation that since changing the sign of a Majorana
does not affect its defining relations in Eq. (2), there
is an ambiguity in the definition of €*%7/2. The choice
of sign ultimately determines to whether the positive
eigenvalue of the parity operator in Eq. (3) corresponds
to the even or odd fermion parity sector of the island.
The tunnelling amplitude in Eq. (6) is related to ¢* as
th = =24t} ufulel % /2, (13)
The experimental parameters that determine these
phases are discussed in greater detail in Sec. 111 C 1.
Nevertheless, one can verify that if two islands islands
have the same parity p; = 1, by tuning the phases 6
appropriately, the three exchange couplings, Ji%, can re-
alize any combination of signs. In particular, this means
that both antiferromagnets and ferromagnets can be
simulated. Unless otherwise noted, we assume that ¢%,
07, and 0 are such that Jj; > 0.

1. Exzamples

The scheme just described allows for the simulation
of a number of different models, some of which we now
discuss. Our primary constraint is the planarity of the
interactions: it is not reasonable to propose a setup in
which tunneling amplitudes “cross” since there is no
justifiable manner to preclude all four Majoranas in-
volved from interacting with one another, resulting in
large interactions between Majoranas within a single is-
land. This restriction allows us to simulate lattices with
at most coordination number three.

The most direct application of this method is the Ki-
taev honeycomb model [37]:

1
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where the z-, y-, and z-bonds are indicated by the
coloured bonds of the lattice on the right of Fig. 1(b).
Using the relations in Eq. (4), Kitaev showed that Hy
is exactly solvable [37], and so it should not be surpris-
ing that it can be simulated using physical Majoranas.
A potential realization of this system using Majoranas
is shown to the left of Fig. 1(b). We note that in this
case, fixing the signs of the tunnelling amplitudes or the
parities of the islands is not necessary as the sign of the
exchange couplings J; does not alter the groundstate.

The honeycomb model is just one of a family of ex-
actly solvable models with spin liquid groundstates: any
system of spin-1/2’s on a trivalent lattice with bonds
labelled by z, y, and z and interacting through Hg is



amenable to the same methods used to solve the honey-
comb model [38-41], and our setup is naturally equally
well-equipped to simulate these models. One example is
the Yao-Kivelson model where the spins take positions
on a decorated honeycomb lattice, as shown in Fig. 1(c)
on the right [38]. For an appropriate choice of coupling,
this model realizes a chiral spin liquid. For instance, the
groundstate spontaneously breaks time-reversal symme-
try and supports non-Abelian excitations in the form
of non-trivial fluxes. While the appearance of non-
Abelian statistics in a system whose fundamental com-
ponents are Majoranas may not be surprising, the non-
Abelian nature of the flux excitation is an emergent
phenomenon, independent from the basic constituents
of the spins being simulated. (This can be compared
with the distinction between the fermionic spinon in a
Zs spin liquid and the electron of the ultraviolet theory.)

Since the Kitaev models interact exclusively through
Ising interactions, it is clear that the Majorana network
we propose can also realize Ising models on trivalent
lattices as well as chains.

While the simulation of exactly-solvable and Ising
models is arguably not particularly interesting, our
scheme easily generalizes to unsolvable models. In par-
ticular, the familiar Heisenberg Hamiltonian is obtained
when all neighbouring Majoranas couple with the same
tunneling strength:

J
HH=4;;O'1‘~O']‘. (15)
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In Fig. 1(c) the Heisenberg model on the honeycomb
lattice is shown. Unlike the Kitaev models, each bond
of the Heisenberg model requires three Majoranas to in-
teract. As a result, the internal orientation of the Majo-
ranas within each island imposes a further restriction on
the lattices we can simulate: not only must they be (at
most) trivalent, but they must also be bipartite. As a
result, at this point, the scheme we have outlined is not
able to simulate the Heisenberg model on the decorated
honeycomb lattice shown in Fig. 1(c).

A crucial feature of our setup is that the SU(2) sym-
metry of Hpy is only achieved through the fine-tuning of
the values of the inter-site couplings. We discuss how
this may be implemented experimentally in Sec. 11 C 2.
The absence of an exact SU(2) symmetry actually has
some positive consequences. Notably, it allows us to
simulate XXZ-type models,

J
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where v # 0. This can be accomplished by the following
choice of couplings: on both yz- and zz-bonds, let the
magnitudes of t¥ and t* differ from the magnitudes of
t¢ and t*, i.e. (t*,t%,t°) = (t/v,t,t), a = z,y. In con-

trast, let t¢ differ from the other couplings on xy-bonds
instead: (t*,tY,t°) = (t,t,t/7v). This is illustrated for a
spin chain in Fig. 1(e). There, the anisotropic couplings
(those with coupling strength ¢/+) are indicated by a
straight line, while those with strength ¢ are indicated
with dashed lines

More interesting yet, is the our ability to simulate the
Heisenberg-Kitaev model [42]:

Ju JK
ij a

This can be obtained by the natural generalization of
the recipe above. This model is most interesting when
Jg > 0 and Jg < 0, and so the signs of the Kitaev
exchange couplings do matter in this case.

B. Four-bond vertex

The scheme outlined above is limited to lattices with
coordination number three or less and is therefore not
applicable to many of the models of greatest interest,
such as the kagome Heisenberg model. Using the sim-
ple fact that the groundstate of a (short) Heisenberg
chain with an odd number of spins is two-fold degen-
erate and has total spin 1/2, we extend our setup to
accommodate Heisenberg models on four-bond lattices.
(The configuration discussed in this section is actually
capable of simulating bipartite lattices with up to coor-
dination number five, but we do not explicitly discuss
an example of this form.)

In this scheme, each vertex of the lattice is composed
of three Majorana islands arranged in a row 1 — 2 — 3,
as shown in Fig. 2(a). Islands 1 and 3 are each cou-
pled to two other vertices through the bonds labelled
6(22, @S,Q, i = 1,3. In order to view these three is-
lands as a unit, we assume that the intra-vertex cou-
pling strength is very strong relative to the inter-vertex
coupling strength: tyert >> thond-

There are several ways to understand why this struc-
ture represents a spin-1/2. In terms of the Majoranas,
we observe that the interactions result in the hybridiza-
tion of the ¢, b*, and bY Majoranas of each island, allow-
ing the identification ¢; ~ ¢y ~ ¢3 and so on. When the
ever-present charge constraint is taken into account, we
further obtain the non-local identification bf ~ b5 ~ 3.
It follows that for energies much lower than tye., the
three-island vertex should possess the same degrees of
freedom as a single spin-1/2 degree of freedom and can
be treated in the same way as the single island in the
previous section.

This can be shown exactly in limit where both inter-
and intra-vertex tunneling amplitudes are much smaller
than the charging energy, Ec > tyert > thong- 10 start,
we note that since E¢ is the dominant energy scale, the
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FIG. 2: (a) The three-island vertex proposed in

Sec. II B. As opposed to the single-island vertex, it can
couple to four bonds neighbours. Here, these bonds are
indicated by the labels £, ¢{%¥ . The thick, black
dash-dotted line represent the strong tunneling
strength within the vertex, tyert, while the smaller,
dotted lines represent tunneling between neighbour
vertices with strength tponq. The other two diagrams
are Majorana representations of Heisenberg models on
(b) the square and (c) the kagome lattices.

arguments of previous section establish that to leading
order in 1/E¢ the behaviour of the charge-neutral sector
is controlled by the effective Hamiltonian in Eq. (10).
It is convenient to rewrite the Hamiltonian as H.g =
> (Hyi + Hp;), where i sums over the vertices and

H,;=Jy(Si1+8i3) Sio, (18)
J,
Hy i = 517 [Si1- (S +Sj,) + Siz-(Sjs +S5u)]-

Here J, ~ 2. /Ec, Jo ~ t} .4/ Ec, and Si¢ = 0,¢/2,
¢ = 1,2,3 are the spin operators corresponding to the
Pauli matrices defined in Eq. (4). The generically in-
dexed spins §,, 5;,,S5;,, and S, represent the effective
spins on the four nearest-neighbouring islands.

Next, the inequality tyert > thonga implies that J, >
Jp as well. Our final effective Hamiltonian is obtained
by projecting onto the groundstate manifold of >, H, ;,
and this can be done by focusing on a single three-island
vertex at a time. For notational clarity, we suppress the
vertex index .

The groundstate of H, is determined by rewriting the
spin operators as S13 = S1+S3, Stot = S13+S52. This
gives

Ju 3
Hv:2<sgot_S%3_4>' (19)

It’s clear that H, can be simultaneously diagonalized
with respect to the total spins sy, and si13. The result-
ing groundstate manifold, 743, is two-fold degenerate
with quantum numbers (siot, s13) = (1/2,1). The en-
ergy gap to the next excited state is J,, which is by
assumption larger than the bond exchange coupling as
required.

We project onto the groundstate manifold &
through the projection operator P. Letting 8§ =
PSiotP be the spin operator on 74, we find

2 1
,PSLQ.P == 58, PSQP == —58 (20)
That is, spins 1 and 3 act identically on /7). Performing
the same analysis on every site, the effective Hamilto-
nian is
4

Heg = Jog (z;s -8;, Joit = b (21)

ij

Higher order terms are suppressed by Jy,/J,,.

In Figs. 2(b) and (c) we illustrate possible realizations
of both the square and kagome lattice Heiseberg models.
As with the single-island vertices of the previous section,
XXZ-type anisotropies may also be induced for greater
frustration.

This proposal may appear experimentally unfeasible
since it is seemingly founded on the double limit Fo >
tvert > thond- However, we now demonstrate that these
constraints can be considerably relaxed by numerically
solving the Hamiltonian

3
Hfue = Z He, + Ht(:g)m + Ht(jg)m + Hy, (22)

i=1
where H¢; and Héfg)zj are the charging and tunneling
Hamiltonians defined in Egs. (1) and (6) respectively.
We assume that the charging energies, F¢, and tunnel-
ing amplitudes, tyert, are the same for all islands and

bonds. Hj is the Josephson Hamiltonian:

Hjy = —Ej|cos(¢1 — ¢2) + cos(da — ¢3)|. (23)



0.6 0.0 S
— 0.25
— 0.5

0.4 fl—10

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 0.5 1.5 2

1
t/EC

FIG. 3: Numerical results of three-island vertex
simulation. Together they demonstrate that the
optimal coupling strength is tyert ~ Ec. The functions
in (a)-(d) are all plotted against the tunneling
amplitude tyert. The colours are associated with the
values of €; provided in the inset of (a). The functions
plotted are: (a) the energy gap between the two-fold
degenerate manifold of interest and the excited states;
(b) the expectation value of the parity operator on
islands 1-3; (c) the proportionality constants o and ¢’
of the now-inequivalent spin representations in

Eq. (24); (d) the ratio ¢ = o/ /a parametrizing the
anisotropy between spin representations.

So far, this term has not been considered as its contri-
bution is negligible when E¢ is very large. However, in
the limit of weak tunneling, the Josephson energy is pro-
portional to the square of the tunneling amplitude and
so should be taken into consideration once tyert ceases
to be small. We write simply E; = €;t2,,, and solve for
different choices of proportionality constant €;. More
details are provided in Appendix A.

Our results are shown in Fig. 3. In (a), we plot the
energy gap as a function of the tunneling amplitude.
We find that it reaches a maximum when tyoy = E¢.
This demonstrates that the double limit Eq > tyers >
tbond 18 not in fact necessary for the three-island vertex
to realize a single effective spin-1/2. The instead, the
optimal situation occurs when Ec ~ tyert > thond-

After this point, the Josephson term begins to dom-
inate. For large enough tyer¢, we find that the excited
states to approach the groundstate exponentially as ex-
pected. Physically, the penalty for increasing tye.t is
that inter-island charge fluctuations are allowed. This
is clearly demonstrated in Fig. 3(b), where the expec-
tation value of the parity operator [see Eq. (3)] is plot-
ted with respect to tyert/Ec. As expected, for all three
islands, the parity decreases quite rapidly as tyep¢ is in-
creased. Since Hpgye is symmetric under the exchange

of islands 1 and 3, their parities are equal, (p1) = (ps3).
The fact that these expectation values are larger than
(p2) is in accordance with the reasoning that because
island 2 interacts with two islands while islands 1 and 3
interact with a single island, the parity of island 2 should
fluctuate more than the parities of islands 1 and 3 .

The primary consequence of these charge fluctuations
is that the two spin representations in Eqgs. (4) and (5)
cease to be equivalent. Importantly, a pseudospin op-
erator, 8, can still be defined because the topological
properties of the Majoranas continue to guarantee the
twofold degeneracy of the groundstate manifold of the
three-island system. Noting that Hgy,. is symmetric un-
der not only the exchange of islands 1 and 3, but also
under permutations of ¢, b*, and bY, we expect

1

a8 = S P (—ib}b, —ibib ic;b;) P,
10, .. g
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where 7 = 1,3 and « and o' are real. As above, P

represents the groundstate projector. Since c; 3, b7 3,
and by 5 interact with Majoranas on island 2, we further
infer that operators composed only of these Majoranas
should have a smaller overlap with § compared to those
that contain b7 in their definition, implying that o < a.
This is verified in Fig. 3(c¢), where both « and o’ are
plotted against the tunneling amplitude. We observe
that when e is zero, @ = &/ = 2/3, confirming that
Eq. (20) holds in the appropriate limit.

One effect of Eq. (24) is to renormalize the effec-
tive Heisenberg coupling of the inter-vertex Hamilto-
nian. While it clearly reduces the interaction strength
relative to the value obtained in the tyet/E. — 0 limit,
this effect is small. Even for the largest t et and €y
considered, the resulting coupling is still over half the
effective coupling in Eq. (21).

A feature of Eq. (24) that may be more troubling is
that it introduces an inherent anisotropy. Even suppos-
ing that all inter-site tunneling amplitudes have been
tuned to have the same magnitude, an SU(2)-symmetric
effective Hamiltonian will not be obtained. For instance,

the exchange couplings corresponding to the Z_,(,lz) bond
in Fig. 2(a) will instead be J% = 4a?t}  ,/Ec and
J% = 40t} 1/ Ec in this case (we've assumed that
the proportionality constants o, o’ are the same for both
three-island vertices). We parametrize this anisotropy
by ¢ = o//a < 1, and this is plotted in Fig. 3(d). It
is not too small and can readily be compensated for by
an appropriate tuning of the inter-site tunneling ampli-
tudes.



C. Larger coordination number and effective spin

By considering vertices composed of more than three
islands, the scheme outlined above can be extended not
only to vertices with more bonds, but to vertices with
larger effective spins as well. In this section, we work
entirely in the regime where each island can indepen-
dently treated as an effective spin-1/2; as above, this
assumes Ec > tyert > thong- We further simplify the
problem by assuming a single, uniform intra-vertex ex-
change coupling, J,. The vertex is then described by
the Hamiltonian

Hy=1Jy Y Sp-Sp. (25)

(n,m)

We let Ny denote the total number of islands in the
vertex.

In this section, it is useful to consider both antifer-
romagnetic and ferromagnetic exchange couplings. For
the antiferromagnetic case, J, > 0, we further assume
that the islands are arranged in a bipartite fashion. We
denote the sublattices by A and B, and take the number
of A-sublattice sites to be greater than or equal to the
number of B-sublattice sites: Ng > Np.

The vertex has been reduced to a simple spin prob-
lem, and many known results can be applied [43-45]. In
particular, it can be shown that the groundstate mani-
fold of H, has total spin

Stot = {

and that it is sot(stot + 1)-fold degenerate, where siot
is the eigenvalue of the total spin Sior = >, Spn. More-
over, the groundstate-projected single-site spin operator
is proportional to the total spin in the groundstate. For
the ferromagnetic case, the relationship is simply

[INs— Ng|, J,>0,

26
N, Jv <0 (26)

N[ D=

1
= — 2
PSP NSS, (27)

where we continue denote the operator which projects
onto the groundstate manifold by P and the total spin
in the groundstate by § = PS;.tP. For antiferromag-
netic J, > 0, the sign of the proportionality constant
alternates between sublattices:

{+1, neA
sgn(c,) =

Sn :n‘ga
PSnP=c -1, neB

(28)

This scheme is limited by the size of the energy gap.
For 1d and quasi-1d chains, the number of sites, Ny,
increases, ferromagnetic and antiferromagnetic gaps ap-
proach zero as 1/N2 and 1/Nj, respectively. When the
islands are arranged as a Cayley tree, different gap scal-

ings can be obtained [46].

1. Larger coordination number

It is simple to verify that Egs. (26) and (28) are
consistent with the four-bond vertex presented above.
In Fig. 4(a), a row of five strongly-coupled islands is
shown, and this will behave like an effective spin-1/2
with seven bonds. There, islands with a positive propor-
tionality constant (A-sublattice) are coloured in blue,
while those with a negative proportionality constant ( B-
sublattice) are shown in purple. This type of vertex can
be employed to realize the triangular lattice Heisenberg
model.

When attempting to increase the coordination num-
ber, it is the natural to choose a configuration which
minimizes the number of sites N,. Different connectiv-
ity choices may result in different gaps as well. For in-
stance, as we saw, the three-island vertex has an energy
gap J,. This decreases to Egap = 0.72J, for a five-spin
chain and Fg,, = 0.56J, for a seven-spin chain.

2. Larger effective spin

There are multiple ways to obtain a given effective
spin, and the optimal choice depends on whether it is
easier to engineer exchange interactions that are fer-
romagnetic, antiferromagnetic, or a mixture of the two
[see Sec. ITT C 1 below for more discussion]. For instance,
both the two-island vertex depicted in Fig. 4(b) and the
4-island vertex in Fig. 4(c) simulate effective spin-1 de-
grees of freedom. The former corresponds to having fer-
romagnetic exchange couplings and the energy barrier
to the excited states is |Jf M |, while the latter configura-
tion requires antiferromagnetic exchange couplings and
results in an energy gap JAF /2.

D. Non-planar bonds

We have emphasized the requirement that no bonds
between Majoranas cross. This would appear to pro-
hibit the realization of any two-dimensional model with
next-nearest neighbour couplings. However, in this sec-
tion we demonstrate that the simple spin manipulations
exploited in the previous section present one way of
overcoming this obstacle.

Consider the setup in Fig. 4(d). There, four 3-island
vertices (labelled 1-4) are arranged in a square and
interacting with both their nearest and next-nearest
neighbour bonds through the mediation of a two-island
singlet (composed of two islands labelled A and B).
The inset provides a simplified schematic of the image.
To see how this works, we consider the regime where
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FIG. 4: Further applications of spin addition. (a) A
seven bond effective spin-1/2. (b) and (c¢) both depict
effective spin-1 vertices. The couplings in (b) are
ferromagnetic, while those in (c) are
anti-ferromagnetic. (d) An illustration of a portion of
a checkerboard lattice model. The two islands labelled
A and B in the centre are strongly coupled through an
antiferromagnetic exchange term so that their
groundstate is a singlet. Through second order
perturbation theory they mediate interactions between
islands 1 and 4, islands 2 and 3, islands 1 and 2, and
islands 3 and 4. A simplified schematic is shown in the
inset.

the four-bond vertices and the two center islands can
each be treated as a single effective spin. The interac-
tions between islands 1, 4, A, and B are described by
Hdiag = HO + H1 where

Hy=JoS4-Sp,
H1:Jb(SA‘Sl+SB‘S4). (29)

We assume that Jy > J, > 0 and project onto the
groundstate manifold of Hy. To second order in pertur-

bation theory, the effective Hamiltonian is

i

Hegr = JaiagS1 -S4, 5

Jdiag = (30)
This demonstrates our claim that such singlet-islands
can help induce diagonal bonds.

There are some caveats. First, the coupling induced
by hopping between islands 1 and 2 is ferromagnetic in
this limit. This can sometimes be avoided by changing
the relative orientations of the islands, but embedding it
into a full lattice can be complicated. Further, the three-
island vertices do not possess enough free bonds to sim-
ulate a full square lattice with next-nearest neighbour
bonds. The best that can be simulated is a checkerboard
square lattice with next-nearest neighbours across every
other plaquette; for a realization of the J; — Jo Heisen-
berg model on the square lattice, vertices composed of
more than three islands are needed.

E. Higher order corrections

So far, we have demonstrated that the effective Hamil-
tonian of the Majorana island network we propose re-
produces a variety of Heisenberg Hamiltonians at lead-
ing order. While the derivation of Sec. II A indicates
that all corrections to Heg are suppressed by powers of
t/Ec (where t is the typical tunneling strength between
islands and E¢ the charging energy), one may neverthe-
less worry that these terms are physically relevant.

One concern is that even after a model has been fine-
tuned to return an SU(2)-symmetric Heisenberg Hamil-
tonian at leading order, terms depending on the inter-
nal orientation of the Majoranas may be generated at
higher orders, potentially breaking both SU(2) and spa-
tial symmetries. For example, in the Heisenberg model
on the honeycomb lattice, one of three colours can be as-
sociated to each hexagon. As an example, the hexagon
shown in Fig. 1(d) can be associated with orange, as
shown on the right of diagram. These colours corre-
spond to different directions in spin space and imply
an anisotropy that should ultimately be manifest in the
effective Hamiltonian.

We show that these symmetry-breaking contributions
can be neglected up to O (tL_l/Eé”), where L is the
number of bonds in the smallest loop in the lattice (e.g.,
L = 6 for the honeycomb lattice).

We begin by noting that higher-order contributions
to the effective Hamiltonian are generated in the same
manner we used to obtain Heg in Eq. (10). There, Hog
was obtained through a two-step hopping process: a
Majorana from island 4 tunnels to a neighbouring is-
land j, altering the charge on both islands ¢ and j, and
taking them out of the groundstate manifold. To restore
the charge, a Majorana must subsequently hop from is-
land j to island 7. As we saw, this ultimately results in



a contribution of the form J%olc? for a = z, y, or z.
Generalizing to higher orders, it’s evident that to satisfy
the charge constraint, all hopping processes containing
fewer than L steps necessarily backtrack on themselves.
We conclude that the nth order contribution to the ef-
fective Hamiltonian is given by a sum of terms of the
form

gy () T (X wieg)
(

¢ ij)€C, \a=z,y,2

where n is an even number smaller than L and C,, is half
of an m-step path that backtracks on itself. Save for
models containing triangular loops, this demonstrates
that the leading correction to Heg is of order t*/E%,.

When the network includes multi-island vertices or
singlet-mediated hopping, t" should be replaced with
the appropriate powers of thond, tvert, and tgng. An
important observation is that since none of the multi-
island vertices we construct in this paper contain in-
ternal loops, all higher-order SU(2) symmetry-breaking
terms are generated solely via virtual hopping around
a true loop of the lattice being simulated. This means
that, in the absence of inter-vertex hopping, the rela-
tions of Secs. II B and II C are not modified.

III. EXPERIMENTAL REALIZATION

Considerable experimental efforts to build platforms
for topological superconductor networks based on su-
perconducting hybrid systems are currently underway.
Significant progress has been made for various different
platforms, including semiconductor nanowires [5, 6], two
dimensional electron systems [9, 47], and atomic chains
[7, 8], as well as quantum Hall [16], quantum spin Hall
[12], and quantum anomalous Hall [10] systems.

Semiconductor-based platforms have shown com-
pelling evidence for the presence of Majorana states and
their exponential edge localization in tunneling spec-
troscopy [5, 6, 9, 18]. Moreover, InAs wires with epi-
taxial Al shells exhibit clear signatures of topological
superconductivity in the Coulomb blockade regime [48].

Based on these encouraging results, proposals have
been made to construct a full-scale quantum computer
using Majorana islands, ranging from full architectures
based on surface codes [26, 27] or color codes [28] to con-
crete experimental geometries to implement qubit oper-
ations [23-25]. Nevertheless, building a universal quan-
tum computer remains challenging as it requires a large
number of qubits to implement various logical gates as
well as error correction protocols. In Ref. 28, the over-
head for a fully operational quantum computer was es-
timated to be 500 physical qubits per logical qubit.

Motivated by recent experimental progress, we fo-
cus on proximity-coupled semiconducting wires as a
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FIG. 5: (a), (b) Proposed experimental setup for a
Majorana island consisting of proximity coupled
semiconducting wires hosting Majorana states (colored
circles). Light blue (light green) segments correspond
to the topological (trivial) phase. Gray circles
represent quantum dots and black dashed lines
indicate tunnel couplings. (c), (d) Effective Heisenberg
coupling realized by tunnel couplings between
neighboring islands. (e), (f) Additional quantum dots
can be used for measurements or the implementation
of Zeeman fields as detailed in Sec. IV.

platform for the quantum simulator. Such a platform
can be realized either by assembling epitaxially-grown
nanowires with superconducting shells [49] or by defin-
ing superconducting wires in a two-dimensional electron
gas by lithography and gating [9, 50]. The semiconduc-
tor platforms have the additional advantage that other
building blocks, such as quantum dots serving as control
knobs or external probes, can be added with little cost.

A. Basic experimental setup

We envision a design for the Majorana island, the el-
ementary building block of the simulator, as depicted in
Fig. 5(a). The island comprises three topological super-
conductor wires which are connected at one end so that
the three Majoranas hybridize to a single Majorana and
a fermion with a sufficiently large gap. Moreover, the
superconductors should be well connected, such that the
three wires have a mutual charging energy and the indi-
vidual charging energies are suppressed. Fig. 5(c) shows
how the island is connected to neighboring islands real-
izing a three-bond vertex of Heisenberg couplings. Ma-



joranas of the same type are connected by tunnel cou-
plings. The geometry allows the outer Majoranas b;"Y"*
to be placed nearby the corresponding Majoranas of
neighboring islands, and the tunnel couplings can sim-
ply be realized with quantum point contacts. Coupling
the central c-Majoranas, however, requires tunnel cou-
plings across distances comparable to the length of the
topological segment.

Tunnel coupling across longer distances could be real-
ized, e.g., by elongated quantum dots that are tuned off
resonance. The spatial extension of gate-defined quan-
tum dots is constrained by the fact that the gap of the
dot should exceed the charge gap in the superconduct-
ing islands. Alternatively, when the separation is too
large to be bridged by gate-defined quantum dots, tun-
nel couplings can be realized by a single topological su-
perconducting wire with a sizable charging energy. The
two end Majoranas form a nonlocal quantum dot, which
can have a charge gap exceeding the pairing strength
even for micron-sized wires.

An alternative setup is depicted in Fig. 5(b). In this
case, the island comprises three wires with six Majo-
ranas altogether. Again, all wires are connected to en-
sure a mutual charging energy. In addition, a central
quantum dot tuned off-resonance ensures that the three
central c-Majoranas are strongly coupled. This results
in a single Majorana state delocalized over the three
sites. The mutual coupling strengths of the c-Majoranas
should ideally exceed the gap set by the charging en-
ergy. While this setup requires an extra quantum dot,
it is more symmetric and all tunnel couplings connect-
ing different islands can be fabricated in the same way
[see Fig. 5(d)].

While this basic architecture is sufficient to realize the
spin models discussed in Sec. 11, additional elements can
be added as probes or control knobs. In the simplest
case, quantum dots can be placed between neighboring
islands as shown in Figs. 5(e) and (f). A single dot cou-
pled to one island [Fig. 5(e)] can be used to probe the
parity of two Majoranas [23], i.e., a spin expectation
value. Moreover, by coupling two dots to Majoranas
on neighboring islands as in Fig. 5(f), one can detect
the joint parity of the four Majoranas [23], which corre-
sponds to a nearest-neighbor static spin-spin correlation
function. In Sec. IV, we show how dots can also be used
to generate Zeeman fields and realize more sophisticated
experimental probes.

B. Simplified architectures

While the architectures described above serve as the
elementary building blocks for a large variety of quan-
tum spin models, it may be useful to consider alterna-
tive designs with minimal hardware requirements. Such
simplified networks can realize only certain models with
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fewer couplings and may be seen as intermediate steps
towards a full quantum simulator described above.

A potential complication of the design in Fig. 5 is
the noncollinear arrangement of nanowires. This setup
precludes applying a magnetic field in the most favor-
able direction parallel to the nanowire and, hence, per-
pendicular to the spin orbit direction and parallel to
the superconducting film. Moreover, it requires tunnel
couplings over longer distances or additional topological
nanowires.

An example of a simplified geometry realizing the one-
dimensional transverse-field Ising model is displayed in
Fig. 6(a). This is a paradigmatic model for the study
of quantum phase transitions and is described by the
Hamiltonian

H=> JiSESi, + > hiS;. (32)

The couplings J; and fields h; are generated by inter-
and intrasite Majorana tunnel couplings. Notably, all
wires are parallel, and the tunnel couplings only con-
nect Majoranas over short distances. Each spin site can
be made from a single, sufficiently long, proximitized
nanowire in the topological phase with an electrostati-
cally depleted central segment, such that domain walls
inside the wire harbor two additional Majoranas. The
intra-site tunnel couplings required for the Zeeman fields
can simply be realized by a finite overlap of Majorana
wavefunctions inside the central segment. Alternatively,
two topological wires can be coupled by a narrow super-
conducting bridge to ensure a joint charging energy [see
Fig. 6(c)]. In this case tunneling through a quantum
point contact between the wires’ ends can simulate a
Zeeman term.

The model in Eq. (32) is noninteracting and can be
used for benchmarking. Allowing for additional tunnel
couplings between next-nearest neighbors as shown in
Fig. 6(a) breaks the integrability of the Ising model and
leads to the following Hamiltonian

H=Y JSe58,+ > JISESE,+ Y hiS?. (33)

When the couplings or fields are chosen to be random,
this model can be used to study the many-body local-
ization transition. Moreover, it is believed to exhibit a
finite temperature spin-glass transition and localization-
protected quantum order [51].

A geometry based on parallel wires can even be
used to simulate two dimensional models. Figure 6(b)
shows a realization of the Kitaev honeycomb model [see
Eq. (17)], where spin sites are represented by horizontal
wires with four Majoranas. This setup again allows for
a global magnetic field parallel to the direction of wires
and only requires tunnel couplings between Majoranas
separated on scales much shorter than the wire length.
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FIG. 6: Parallel-wire realization of (a) the one dimensional transverse-field Ising model with next-nearest neighbor
interactions and (b) the Kitaev honeycomb model. In (b), the direction of the effective exchange interaction
between neighboring sites is indicated by the shaded areas. The spin-1/2 lattice sites can be constructed from (c)

a linear tetron or (d) a two-sided tetron.

The lower part of Fig. 6(b) illustrates that the arrange-
ment of tunneling couplings shown indeed realizes Ki-
taev couplings along the edges of one hexagon. Addi-
tional tunnel couplings between Majoranas on the same
island can be introduced to add local Zeeman fields.

It is an interesting feature of this geometry that only
one of the two inner Majoranas on each site is coupled to
a neighboring site and only on side (either up or down).
Each spin-1/2 site can therefore be realized by two ad-
jacent topological wires as depicted in Fig. 6(d), which
minimizes the required size of the superconductor and
allows for a sizable charging energy. We emphasize that
the ordering of Majoranas within each islands is impor-
tant to ensure the mapping to a spin model. In Fig. 6
care has been taken to choose networks that map to the
Ising and Kitaev models when the fermion parities of all
superconducting islands are equal.

C. Implementation

The physical architecture of our quantum simulator
bears many similarities with some of the most promis-
ing proposals for a topological quantum computer in
Refs. 26-28 and 23-25. Like our quantum simula-
tor, these quantum computer platforms comprise a net-
work of Majorana islands connected by tunnel couplings
whose strengths are greatly exceeded by the charging
energy on the island.

While topological quantum computers based on pro-
jective measurements only require parity measurement
of two or four Majoranas, somewhat more sophisticated

measurement protocols are desirable for the quantum
simulator (see Sec. IV). Nevertheless, external control
and characterization of the system can be realized in
both cases by employing standard transport measure-
ments and spectroscopy of additional quantum dots.

Despite being based on the same basic building
blocks, the proposed quantum-simulator architecture is
much less demanding than that of a full Majorana-based
quantum computer. Our quantum simulator can there-
fore also serve as a milestone for experimental efforts
geared towards the latter goal.

1. Sign of Heisenberg couplings

The ability to experimentally control the sign of the
tunnel couplings in Eq. (6) such that the resulting ex-
change couplings are either ferro- or antiferromagnetic is
a key requirement of our proposal. Using the low-energy
expansion of the local fermion operators discussed in
Sec. IT A,

a

[~ u}le_mi/zewi be, (34)

one can write the exchange interaction along the z-
direction of spins as

1685t (07 —0Y+0Y —67)
JG = z ufufuiu?Re[e’ RCRACIRE IR (35)
c

by combining Egs. (9) and (13). Because ¢{; and u$
are positive numbers the sign of the exchange couplings
only depends on the phase differences 67 — 67.



The phases 6§ reflect the Majorana wavefunction at
the location of the tunnel coupling. They contain infor-
mation about the local superconducting phase and the
history of creating and braiding Majoranas. When the
superconducting gap has a minimum at a finite momen-
tum, the Majorana wavefunction oscillates in space. An
experimental consequence of this is the presence of os-
cillations of the Majorana wavefunction in finite length
wires as a function of magnetic field [6]. Due to the
small electron density required to enter a topological
phase, the wavelength of these oscillations is typically
long. In InAs wires the wavelength is ~ 100 nm. Hence
the phase of the Majoranas can be controlled by tun-
ing the distance between the domain wall harboring the
Majorana state and the location of the tunnel coupling.

When the band structure has only a minimum at zero
momentum, the Majorana wavefunction does not oscil-
late. In this case, the phases 67 are entirely determined
by the creation and braiding history of the Majoranas
and the local superconducting phases. While the over-
all phase of the superconducting island czASj does not as-
sume a particular value in the presence of a charging
energy, phase differences between different parts of the
same island are well defined as long as Cooper pairs
are allowed to move freely within the island. Impor-
tantly, the phase of the p-wave pairing amplitude de-
pends on the geometric angle between wires [52, 53],
even if the proximity-providing s-wave superconductors
all have the same phase.

As an example on how the signs of the exchange cou-
plings can be fixed even when the Majorana wavefunc-
tion does not oscillate, we consider the parallel-wire con-
structions of the Ising and Kitaev models with antifer-
romagnetic interactions discussed in the previous sub-
section. Figures 6(c) and (d) show two possible island
geometries comprising two parallel topological super-
conducting wires: the linear tetron and the two-sided
tetron [23]. Both wires have the same superconducting
phase and the same direction in space. Therefore the
two Majoranas localized at the left ends (b7 and b7 at
the bottom of Fig. 6) have identical phases. The phase
of the two Majoranas at the right ends (b and ¢;) is
shifted by 7/2 relative to the left ones. One can readily
verify that for these phases, all couplings in the setups
displayed in Figs. 6(a) and (b) are antiferromagnetic.

Ensuring the correct signs in models with more cou-
plings and wires at different angles requires a more de-
tailed consideration of the specific experimental setup.
In this context, it may be useful to replace certain tun-
nel couplings between Majoranas by a coupling via a
quantum dot. As we show in Sec. IV A below, the sign
of such couplings can be tuned by the location of the
dot level.

13
2. SU(2) symmetry breaking

In order to minimize the amount of disorder in the
spin model, the tunnel couplings between different is-
lands should be homogeneous across the lattice. This
can be approximately realized by a regular design.
Moreover, all local couplings can be tuned and probed
individually to ensure a minimal amount of fluctuations
of the couplings strength between different sites.

An important challenge is to ensure that the SU(2)
symmetry of antiferromagnetic Heisenberg models is be-
ing realized. This requires equal strength for all three
tunnel couplings connecting two islands. Variations be-
tween couplings can be eliminated systematically by en-
ergy level spectroscopy of two neighbouring sites after
temporarily decoupling them from the surrounding is-
lands. The spectrum of these two antiferromagnetically-
coupled sites features three excited states whose energy
differences scales with the anisotropy of the interaction.
Realizing an SU(2) symmetric Heisenberg term, there-
fore, simply requires tuning the tunnel couplings to the
degeneracy point of the excited states of the two site
complex.

This scheme guarantees unwanted SU(2)-symmetry-
breaking terms to be bounded by the energy resolu-
tion of spectroscopic measurements. Experimental im-
plementations of such measurements are discussed in
Sec. IVB1. While all couplings need to be tuned and
probed individually, this step has to be done only once
for any particular model realization.

The degree of SU(2)-symmetry breaking can also af-
fect the effective spin sites constructed from multiple
islands depicted in Fig. 4. Importantly, however, the
ground state degeneracy of a spin-1/2 site, represented
by a chain with an odd number of islands as in Fig 4(a)
remains robust even when the internal exchange inter-
actions are not isotropic. The realization of spins higher
than 1/2 depicted in Fig 4(b) and (c) requires Heisen-
berg couplings between several spin-1/2 sites. A weak
breaking of the SU(2) symmetry of the couplings leads
to a small splitting of the spin degeneracy in the case of
larger spins.

In principle, SU(2) symmetry can be broken even
when all tunnel couplings have identical strengths. This
can be traced back to the lack of symmetry between the
b*¥-* Majoranas in the tunneling Hamiltonian given by
Eq. (6). As has been discussed in Sec. II E, symmetry-
breaking terms in the Hamiltonian, however, only occur
at higher-order in the small parameter t* / E depending
on the length of the shortest loop. In particular, multi-
island vertices with higher spin or coordination number
remain SU(2) symmetric as long as the tunnel couplings
have identical strengths because they generally do not
involve any loops.



IV. EXPERIMENTAL PROBES

In order to characterize the ground state and excita-
tions of the spin system, external probes are necessary.
The effective spin degree of freedom on each site is en-
coded nonlocally in the parity of two Majorana states.
While this makes the spins more robust to decoher-
ence, detecting a spin requires coupling two Majoranas,
thereby breaking this protection. Hence, experimental
probes of the spin system require some additional archi-
tecture.

Measurements of certain local observables can be re-
alized with minor modifications of the setup by adding
extra quantum dots tunnel coupled to Majorana states,
as shown in Figs. 5(e) and (f). As discussed in the pro-
posals for Majorana-based quantum computers [23, 24],
such dots can be used to measure the two-Majorana par-
ity on a single site, corresponding to a spin expectation
value, as well as the parity of four Majoranas on neigh-
boring islands, equivalent to the nearest-neighbor spin
correlation function (ool ).

Below, we discuss more sophisticated experiments, re-
quiring a relatively limited amount of additional hard-
ware. Similar to the parity measurements, we propose
to implement experimental control knobs and sensors by
coupling the fermion parity of Majoranas to a charge de-
gree freedom. Charges can then be readily read out and
manipulated using a variety of all-electric techniques de-
veloped for superconducting and semiconducting qubits.

A. Parity-charge coupling

In order to measure their parity, two Majoranas need
to be coupled such that they form an ordinary complex
fermion. This fermion can now have a nonzero energy,
as the topological protection of the Majoranas is broken
by the coupling. Hence, an unbiased detection of the
spin requires the energy of the fermion to be tuned to
Zero.

While this additional degree of freedom may at first
seem like a complication for experiments, we show that
it can be exploited to realize more powerful probes of
the system. Importantly, a nonzero energy splitting of
two coupled Majoranas acts as an effective local Zeeman
field in the spin model. As we shall see below, the same
architecture used for measuring spins can also be used
as a knob to generate excitations, thereby giving access
to dynamical properties of the system.

In the simplest case, a coupling between two Majo-
ranas can be realized by introducing a direct tunnel cou-
pling between them. The sign and magnitude of the
coupling term, however, depends on the details of the
Majorana wavefunction and is difficult to tune dynam-
ically. Therefore, we instead propose that a versatile
two-Majorana coupling may be induced by allowing tun-
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neling to an additional quantum dot or by introducing
a different charging energy for a part of the Majorana
island.

1. Additional quantum dots

Experimental control of the Majorana parity can be
obtained by exploiting the fact that the energy levels of
a quantum dot tunnel coupled to two Majoranas on a
single superconducting island depend on the joint Ma-
jorana parity. This dependence originates from virtual
processes where an electron from the dot tunnels into
one Majorana and onto the superconducting island and
back to the dot via the other Majorana. This effect has
been proposed previously as a tool for readout measure-
ments of a Majorana qubit [23, 24]. Here, we propose
an modified setup that also yields access to dynamic
properties of the system.

We consider a dot whose charging energy ec and level
spacing greatly exceed temperature so that it is suffi-
cient to focus on a single electronic level with orbital
energy €;. We can then express the dot Hamiltonian in
terms of the dot level creation operator d; as

H1 = 61d]{d1 + Gc(d'{dl — ’I”Lg,1)2, (36)

where ng 1 is the charge induced by a gate voltage. The
dot is operated in the regime near the degeneracy point
where the filled and empty state have equal energy,
ng1 =~ (e1 + €c)/2ec.

We allow for tunneling between the dot and two Majo-
ranas by o on the same superconducting island as shown

in Fig. 7(a). The tunneling can be described by the
Hamiltonian
H; = (tlbl + t2b2)d{€_i¢/2 + h.c. (37)

Because the superconductor has a large charging energy,
E¢, only virtual tunneling events are possible. To lead-
ing order in 1/Ex we obtain H = Hy + Hy ear

Hy ot = ~vibybo(2didy — 1) (38)

where we have introduced the coupling strength ~ =
2Im(tita)/Ec. The effective dot Hamiltonian assumes
the form H; with the replacement ¢; — €, = €1 +
27ib1by. The dot levels therefore acquire an energy shift
that is proportional to the Majorana parity pas = ib1bo,
allowing one to to determine the spin expectation values
(par) through a simple measurement of the energy shift.

The energy shift can be observed in transport mea-
surement by passing a current through the dot in the
Coulomb blockade regime. When the dot is tuned to
the edge of a Coulomb diamond at finite bias, i.e, the
sum of the dot level and the charging energy becomes
degenerate with the Fermi level in one of the leads [see
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FIG. 7: (a) Setup for parity measurements using a single quantum dot coupled to two Majoranas. External leads
are used for transport measurements through the dot. (b) Energy diagram of the dot. When the dot level is close
to the chemical potential in one of the leads, the current shown in (c) changes rapidly with the level position €;.
(d) Setup for parity measurements using a double dot with one dot tunnel coupled to two Majoranas on the same
superconducting island. (e) Charge on the first dot as a function of gate voltage for two different Majorana parity
states pps = £1 at zero temperature and v = t4/2. The inset shows the charge on the dot as a function of the
Majorana parity at the degeneracy point ng 1 —ng 2 = (€1 — €2)/2¢c. (f) Effective Zeeman field strength h$ equal
to the the energy difference between the ground state energies of the coupled Majorana-dot system for both even

and odd Majorana parity and t4 = 87.

energy diagram in Fig. 7(b)], the current depends sensi-
tively on the dot level position. If the coupling strength
~ between the dot and the Majoranas is smaller than the
tunneling rate, the current varies approximately linearly
with the Majorana parity as shown in Fig. 7(c).

The Majorana parity can alternatively be determined
by a charge measurement by coupling a second quan-
tum dot or an external lead to the first dot. Tuning
the dot energy level to a degeneracy point of the cou-
pled system enables the dot to fluctuate, and the parity
dependent shift of the dot level then translates into a
parity dependent charge. To be specific, we consider a
double dot setup containing a single electron, as shown
in Fig. 7(d) (similar arguments apply to an external
lead). The Hamiltonian acquires an additional term

His = exdids + e (dbds — ng2)? + ta(dids + didy),
(39)

where the operator do, describes the fermion on the
second dot. When the dot levels are detuned from
each other, the charge is localized predominantly in
one of the two dots. By varying the gate potentials

ng1/2, the charge distribution can be smoothly moved
to the other dot. In the absence of the coupling to
the Majoranas, t; = to = 0, the charge is equally dis-
tributed between the two dots at the degeneracy point
Ng2 —Ng1 = (62 — 61)/260.

We now consider the effect of the coupling H; between
the Majoranas and the first dot. For simplicity, we as-
sume E¢ to be much larger than the energy required to
change the charge on the double dot system, although
an extension to the more general case is straightforward
[54]. In this case, the effective Hamiltonian simply reads
H = Hy+H2+ Hy of, and after projection to the single-
charge sector, we obtain

0+ oM tq (40)
tq 02 —YPum

in the basis {|10) ,|01)}, which comprises the Fock states
of the two dots with a total filling of one. Here, py; =
1b1bo is the effective spin operator defined by the two
Majoranas, and we have used the short-hand notation
57; = €; — 2ecng’i.

As above, the coupling to the Majorana simply shifts

H = EC(?’I?LQ + n371) + (



the energy level of the first dot in a parity dependent
way. Close to the degeneracy point of the two dots, this
leads to charge accumulation or depletion on the first
dot depending on the sign of the shift, and it follows
that the charge on the first dot depends on the parity
[see Fig. 7(e)]. To determine the parity by a charge mea-
surement, the dot should ideally be in the regime ¢4 2 =
since this is where the relation between dot charge and
Majorana parity at zero temperature is approximately
linear, as shown in the inset of Fig. 7(e). Moreover,
the coupling v should be small compared to the energy
scales of the spin Hamiltonian, such that the latter is
only minimally perturbed.

At small but finite temperatures, the first excited
state of the double dot is thermally occupied near the
degeneracy point, where the excitation energy is mini-
mal. Hence, the effect of nonzero temperature is similar
to that of tunneling between the dots: the charge varies
continuously from 0 to 1 when the gate voltages are
tuned across the degeneracy point.

The setup described above can also be operated in
reverse: because one parity state is favored energetically,
one can generate an effective Zeeman field by tuning the
gate voltage on the dot. In this case, the most favorable
regime is v < t4, where the energy difference between
the two parity states (i.e., the Zeeman field strength) is
linear in the gate voltage around the degeneracy point
[see Fig. 7(f)].

It is also possible to work in the opposite regime v >
tq, where the relationship between the effective Zeeman
field and the gate voltage is again linear. One should
keep in mind, however, that the coupling strength t,4
also determines the gap in the double quantum dot. To
minimize the effect of the probe on the spin system, t4
should be adjusted so that is is larger than the typical
energy scale of the simulated spin Hamiltonian. This is
particularly important when the quantum dot is used to
probe the excitation spectrum or the dynamic structure
factor of the spin system as discussed below. Such mea-
surements require the probe frequency to remain below
the gap of the double dot.

2. Split Majorana island

As an alternative realization of a parity-charge cou-
pling, we propose a slightly modified design of the Ma-
jorana island, in which three topological wires with sep-
arate charging energies are mutually coupled at their
ends by Josephson junctions (see Fig. 8). The junctions
can be implemented by simply adding gate controlled
barriers to the previously discussed setup. When all
Josephson couplings E greatly exceed the charging en-
ergies, the charge gap of the individual islands are expo-
nentially suppressed, and this setup simply realizes the
Majorana island with a global charge constraint and a
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FIG. 8: (a) Modified setup of the Majorana island
with three wires coupled by Josephson junctions. For a
choice of couplings E% > Ec and EY* ~ E¢, the
island decomposes into two subislands, whose charge
parity is associated with the expectation value of the
spin operator o,. (b) Spectrum of the Majorana island
as a function of the difference of gate voltages ng /2
on the two subislands (see Ref. 56). The Josephson
couplings are EY* = Ec /50 and EY = oo.

twofold degenerate ground state.

When one coupling E% remains very strong while EY*
are reduced to a scale of order E¢, the ground state
degeneracy is lifted. The Majorana island decomposes
into two subislands, where the wire hosting the b7 Ma-
jorana is only partially coupled to the other two wires.
As long as the imbalance of gate-induced charges on
the two subislands is not too large, the two low-energy
states remain approximately degenerate and well sepa-
rated from all higher energy states by a gap ~ F¢ [see
Fig. 8(b)]. The two low-energy states correspond to the
subisland’s fermion parities states and hence the two
eigenstates of the spin operator o7 .

This setup therefore effectively realizes a spin-1/2 in
the presence of a Zeeman field. The Zeeman field de-
pends on the strength of the Josephson couplings rela-
tive to the charging energy and can be tuned to zero by
varying a local gate potential, restoring the groundstate
degeneracy. An exact expression for the Zeeman field
can be evaluated in terms of Mathieu functions [55] and
has been given in Ref. 56.

The Majorana parity can be measured with a nearby
charge detector that is capacitively coupled to either
subisland. Such a measurement is possible when Cooper
pair tunneling between the subislands is weak, E%* <
Ec, and the two low-energy eigenstates near ng; —
ng2 = 0 have well-defined charges which differ by one.
In this limit, the charge expectation value can be asso-
ciated with the expectation value of the Majorana par-
ity operator. The couplings EY and E% can in princi-
ple be chosen arbitrarily small. In models where the
c-Majorana must couple with all of its neighbours, how-
ever, it is important to ensure that it remain delocalized
over all three wires in Fig. IV A 2(a).

The setup in Fig. 8(a) is related to the proposed real-
ization of a spin-1/2 site in Ref. 56. Using this setup as



an elementary building block for a lattice, however, has
the drawback that the Zeeman term must be fine-tuned
to zero. This makes each spin susceptible to charge
noise in the gate, which acts as a fluctuating effective
magnetic field in the spin model. It is instead advanta-
geous to choose strong Josephson couplings £ > Ec
on all sites except for one site used for measurements.
In this way, the spin system remains largely insensitive
to noise.

B. Experimental observables

While simple charge measurements can determine the
spin expectation values at each site, the probes intro-
duced above can also provide access to key properties
of the spin system such as the spectrum of spin excita-
tions and the spin-spin correlation functions. Finding
the excitation spectrum requires a local measurement
of a quantum dot spectrum, which has been realized
previously in a variety of experiments. The correlation
function provides more comprehensive information, but
is also more challenging as it requires nonlocal measure-
ments. We propose several experiments for both quan-
tities.

1. FExcitation spectrum

The density of states of a single Majorana island at
fixed charge corresponds to the local density of states of
the simulated spin model. In the majority of cases, the
most relevant information is the spectrum of extended
spin excitations, and this can be obtained by a local
measurement on a single site. When the spin system
has localized modes, sampling the measurement over
various spin sites may be necessary to ensure sizable
transition matrix elements to all states.

The spectrum of different charge states of a quantum
dot can be detected by charge reflectometry [57], which
requires a capacitive coupling between the subisland or
quantum dot and a transmission line cavity (see Ref. 58
for an example of a double dot coupled to a cavity). The
absorption of the cavity mode is strongly enhanced when
its frequency matches the transition energies between
dot levels of different charge.

Here, we are interested in excitations within a fixed-
charge sector on each individual island. Charge re-
flectometry of the entire island, however, would probe
states outside the Hilbert space of the spin system. In-
stead, the transmission line resonator needs to be cou-
pled to a dot (or subisland) whose charge is coupled
to a Majorana parity as described in Sec. IV A. The
spectrum can be measured by detecting absorption of
microwave photons inside the cavity. If the system is
tuned to the degeneracy point where the Zeeman field
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FIG. 9: Transport experiment to measure the
spectrum of the spin system. An ac gate voltage
applied to a subisland results in transitions to excited
states within the same charge sector, which can then
decay into the drain. The island with one missing
electron is subsequently more likely to be refilled from
the source lead.

vanishes, the coupling of the site to the cavity mode can
be described by the Jaynes-Cummings Hamiltonian

1
H= Hspin + ﬂag(a + aT) + wr(aTa + 5)3 (41)

where the coupling strength 8 depends on the proper-
ties of the cavity and the capacitance between the cavity
and the subisland [59] and o¢ is the effective spin defined
by the Majorana parity. Absorption of cavity photons
results in spin flips and hence induces transitions be-
tween the many-body states of the spin systems. The
excitation spectrum of the spin system can therefore be
observed by detecting resonances in the cavity trans-
mission as long as the operator of is not a conserved
quantity of the Hamiltonian.

Alternatively, the spectrum can be probed in a trans-
port experiment in the Coulomb blockade regime. Two
Majoranas on the same island are contacted by leads
at different voltages. The gate voltage of the island is
chosen such that the groundstate of the spin system is
stable, while allowing higher energy excitations to decay
into the drain by transferring an electron from the dot to
the lead. This can be achieved by choosing a gate volt-
age slightly below the energy threshold for removing an
electron out of the equilibrium state, but high enough
that electrons can escape when the spin system is in an
excited states [see Fig. 9]. The voltage in the source
lead is chosen sufficiently high such that no spin excita-
tion can decay into the source lead, and sufficiently low
that higher charge states of the superconducting island
remain unoccupied.

Since all excited states can decay, the system will
eventually relax to the ground state, where transport



is blocked. By applying an alternating gate voltage to
the subisland (or the quantum dot coupled to the Ma-
joranas) one can generate an ac Zeeman field, which
induces transitions to excited states of the spin system.
Electrons from the island can then tunnel into the drain,
leaving the Majorana island with one missing electron.
This is then filled with an electron from either lead by
another tunneling event. If the final state is again an ex-
cited state, transport continues until the system reaches
the ground state.

By applying periodic ac pulses to the gate, a steady
state current can be measured whenever the ac fre-
quency matches a transition between the ground state
and an excited state. A similar experiment has been
performed in the context of spin blockade in semicon-
ductor quantum dots [60]. To avoid transitions between
excited states due to the external radiation, the period
should exceed the relaxation time to the ground state.

If the excitation spectrum consists of many states,
however, the probability of ending up in the ground
state after the dot is refilled can be very low, resulting
in a long relaxation time. The relaxation time can be
reduced by choosing asymmetric tunnel couplings such
that refilling the dot from the drain side becomes more
efficient. Alternatively, the bias voltage in the source
lead can be reduced so that only low-lying excited states
are energetically accessible for source electrons.

2. Measuring correlation functions

More comprehensive information about the system
can obtained from frequency-dependent spin-spin cor-
relation functions. A key observable for the character-
ization of the spin model is the retarded spin-spin cor-
relation function

X2t —t) = —i([of(t),o2(t)]) 0t — 1), (42)

which governs the response of a spin to a time dependent
magnetic field according to

wate) = | TS R (43)
oo j,b

with dof(t) = of(t) — (o), or in Fourier domain

(00%(k,w)) = Zxab(k‘,w)hb(k,w). (44)
b

In the context of spin models, it is more common to
consider the dynamic structure factor

S (k,w) = Z / dt e =M (5o (t)doh) . (45)
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The correlators are related by the fluctuation-
dissipation theorem [61]

S(k,w) = 2 I k 46

(»W)—mmX( ,w) (46)

where  is the inverse temperature.

The frequency dependent response function can be
determined by measuring the nonlocal spin response to
a locally applied external field. By applying an oscil-
latory Zeeman field h%(w) on site j and measuring the
expectation value of a spin (o'(w)) on a different site 1,
one can directly obtain the correlation function X?f (w)
via Eq. (44).

An oscillatory Zeeman field can be realized by apply-
ing an ac gate voltage to a quantum dot or subisland
whose charge is coupled to the Majorana parity as dis-
cussed in Sec. IV A. Measuring the expectation value
(0(w)) requires a time-dependent parity measurement
of two Majoranas. This can be achieved, for instance,
by weakly coupling a quantum dot to the pair of Ma-
joranas. As explained in Sec. IV A 1, this setup can be
tuned into a regime where the conductance through the
dot varies with the Majorana parity and thus with (o)
[23]. It follows that finite-frequency oscillations of the
expectation value (o(t)) result in an alternating cur-
rent at the same frequency.

Measuring (o¢(w)) as a function of drive frequency
and position yields access to the full energy- and
momentum-dependent response function. The complex
phase of Xff can be obtained from the phase mismatch
between the applied ac voltage and the detected dc cur-
rent, which is accessible via lock-in techniques. More-
over, one can determine the dynamic structure factor
from the response function using Eq. (46).

The response function can alternatively be accessed
by coupling subislands (or nearby quantum dots) on
two spin sites to transmission line resonators as in
Sec. IV B 1. By driving one spin at the probe frequency
and measuring the transmission and phase shift in the
resonator coupled to the other spin site, one can directly
obtain the response function.

An interesting question of practical relevance is
whether the correlation function can also be measured
with a single resonator coupled to two different spins.
Nonlocal spin-spin correlations should result in a beat-
ing pattern in the resonator signal, however, extracting
a correlation function from the reflection properties of a
single resonator requires a more detailed analysis of the
coupled resonator-spin system. Alternatively, a mea-
surement of the correlation function with a single res-
onator could be realized by a pump-probe experiment,
where the couplings between the resonator and the spins
are switched on and off at different times. The switching
of the resonator couplings can be realized by rapidly de-
tuning the quantum dots that mediate the charge-parity
couplings.



C. Experimental parameters

To judge the feasibility of these proposals, we now
estimate experimental parameters specific to networks
of semiconductor nanowires with proximity induced su-
perconductivity. The typical charging energy of an InAs
wire with a thin Al shell [6], Ec ~ 160 peV, is of sim-
ilar magnitude as the induced gap, A ~ 180 ueV. The
tunneling strength between two Majoranas can be arbi-
trarily tuned by a gate voltage. By choosing ¢t ~ 0.3E¢,
we obtain an exchange interaction J ~ 4t?/Ec =
0.36 E¢c = 60 ueV. This exceeds the typical electron tem-
perature of T = 50mK (corresponding to 4 peV) [6]
by an order of magnitude. Alternatively, relaxation of
qubits via a coupling to the transmission line resonator
can yield a temperature as low as 7' = 35 mK [62].

With this choice of parameters, the leading correc-
tions to most spin Hamiltonians are of order t*/E2 ~
10%, as already mentioned in Sec. I E. If a higher ac-
curacy is needed, the tunnel couplings can be adjusted
accordingly.

The quasiparticle poisoning time of the Majorana is-
lands sets a limit on the duration of experiments that
require a coherent time evolution. This is particularly
relevant for understanding the dynamical properties of
isolated systems. The poisoning time of a Majorana
qubit on an island that is not connected to external
leads can be of the order of ¢, ~ 10 ms [48, 63], and in
future devices potentially even considerably higher [64].
However, the current estimates are more than sufficient
when compared against the fastest timescale of the ef-
fective spin system, 7; = h/J ~ 60ps, implying that
Tapp ™~ 1077;.

The observation of dynamic quantities requires mea-
surements in the frequency regime 0.1 — 10 GHz (set
by the exchange interaction), which is well within the
capabilities of standard experiments. We expect the fre-
quency resolution of the photon-assisted transport ex-
periment proposed in Sec. IVB1 to be similar to the
spin blockade experiment in Ref. 60, where the resolu-
tion is Af ~ 0.2GHz. Considerably enhanced resolu-
tion is offered by spectroscopy with a transmission line
resonator with Af ~ 2MHz [57, 58].

Measurements in the time domain are also feasible.
Rabi oscillations have been observed in semiconductor
quantum dots with frequencies in the relevant range of
~ 10 MHz [60, 65] to ~ 10 GHz [66, 67]. These measure-
ments are particularly relevant to our quantum simu-
lator as they perform continuous measurements of the
occupation probability rather than individual projec-
tive measurements. For the simulation of quenches (see
Sec. V B below), reasonably short rise times for voltage
pulses are necessary. For the control of a superconduct-
ing qubit in a parameter regime relevant to our proposal,
a voltage rise time of ~ 30 —40 ps has been reportd [68].
In comparison, the fastest timescale of the effective spin
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system is 7; = h/J ~ 60 ps.

V. APPLICATIONS

Having established that the properties of the Majo-
rana island networks we propose are governed by effec-
tive spin Hamiltonians, we now discuss some potential
applications of this framework. Our primary goal is to
underscore the versatility and usefulness of our Majo-
rana simulator.

Our simulator is perhaps most obviously applicable
to the field of frustrated magnetism, especially in two
dimensions. Nevertheless, it’s important to acknowl-
edge that spin models in one dimension require signif-
icantly less hardware, and their simulation can be a
useful milestone for experiments aiming to realize more
complex systems. Similarly, the architecture proposed
in Sec. III B considerably simplifies the construction of
certain models. While we equally mention both difficult,
far-future projects and simpler, more experimentally re-
alizable applications, we emphasize the latter when ap-
propriate.

This section is divided into several broad (and occa-
sionally overlapping) categories. We start by discussing
the identification of groundstates and the characteriza-
tion of their properties before turning to applications to
out-of-equilibrium systems.

A. Groundstate properties

The quantum simulator can be used to study ground-
state properties of spin Hamiltonians in one and two
dimensions. Some example models have been provided
in Sec. [ A 1 and we now expand on these remarks and
further motivate their study.

Entering the equilibrium of a realistic model should be
straightforward. Immediately after the tunneling am-
plitudes between Majoranas have been tuned to their
desired values, the network will realize a generic su-
perposition of energy eigenstates of the final Hamilto-
nian. The details of this initial state are not expected to
be important since the groundstate is subsequently at-
tained through relaxation. This may appear difficult to
achieve given the protection the Majorana islands pro-
vide against decoherence; however, we claim that this
is actually an advantage, as it leaves the experimental-
ist largely in control of the relaxation process. For in-
stance, dissipation and temperature may be adjusted by
allowing the system to interact with external leads. At
leading order in perturbation theory, this is equivalent
to coupling the effective spins of the islands to external
spin operators composed of conduction electrons in the



lead [35]. For island i, this interaction is

Hpani = Y, MofLy. (47)

a=z,y,z

Here, L} = vac e“bcwg,id%J- is a spin-1 vector where v, ;
is the conduction electron which couples to the b Majo-
rana. The coupling strength is Af ~ >~ |e®e| nng/Ec
where E¢ is the charging energy and 7f, a = z,y, 2
are the (small) tunneling amplitudes of the Majoranas
and the conduction electrons of the leads. Both the
temperature and density of states of the leads can be
manipulated to allow for the desired relaxation rate.
Provided the temperature scale and Majorana-lead cou-
pling strength are sufficiently smaller than the charging
energy and the inter-spin exchange respectively, the se-
ries of leads should act as an external bath for the Ma-
jorana network.

Alternatively, instead of coupling the Majoranas di-
rectly to leads, we could use the hardware for the mea-
surement protocols outlined in the previous section.
There, the islands couple exclusively to quantum dots,
which in turn couple to external leads or transmission
line resonators. In this scenario, the latter would act as
the bath.

Regardless of the relaxation process, the lowest tem-
perature scale that can be reached is set by the physical
temperature of the setup, ~ 35 — 50 mK [6, 62]. Rela-
tive to the typical value of J [see Sec. IV C], this implies
T/J ~ 0.05 —0.07. It is reasonable to assume that this
is small enough that the equilibrium state reproduced
by the simulator accurately reflects the groundstate of
the system.

We now compare the observables accessible in our
simulator against those obtained in experiments. We
next present some specific problems our simulator can
address, focusing on frustrated magnetic systems with
and without disorder, quantum phase transitions, and
the entanglement entropy.

1. Comparison against experimental observables

Since the end-goal of a quantum simulator is to im-
prove our understanding of physical materials, it is im-
portant to compare the data our simulator can provide
against the information obtained using current experi-
mental techniques.

In Sec. IV, we demonstrated that the onsite magne-
tization (S;) can be directly measured. This makes the
detection of magnetic order relatively straightforward.
By connecting the system to leads, (S;) may be tracked
as a function of temperature.

We also showed how the spectral function and the
dynamic structure factor S%(z; — z;,t) defined in
Eq. (45) can be obtained through linear response. This
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data probably most resembles the information obtained
through inelastic neutron scattering (INS). An INS mea-
surement proceeds by sending a beam of neutrons to-
wards the sample. There, the neutron spin interacts
with the spins of the material. Based on the momen-
tum of the neutrons exiting the sample, one can deduce
the structure factor S?(k,w) of the sample, where k is
the momentum and w the energy. It follows that a di-
rect comparison between our results and those of INS
requires a momentum sum. We note that neutrons also
couple to the phonon modes of the crystal, and that
this can disrupt the signal and make determining the
spin contribution difficult. The large size of the Majo-
rana islands precludes such a problem from occurring
within our simulation platform. Because the neutron
beam cannot be perfectly collimated, another issue is
that it may be difficult to resolve S%(k,w) at low ener-
gies and momenta. Conversely, the resolution of Majo-
rana network is limited only by its size.

Finally, integrating the structure factor over all of
space returns the magnetic susceptibility. This can be
tracked as function of temperature to extract the Curie
temperature.

2.  Magnetic systems

The Heisenberg model is the canonical model describ-
ing magnetic systems. While the groundstate properties
of many Heisenberg model variants are well-established,
many others remain poorly understood. In particular,
our understanding of magnetic systems with significant
frustration is far from complete. These systems may not
develop magnetic order, even at low temperatures, and
one especially fascinating non-magnetic alternative is an
exotic quantum phase of matter, typically called a “spin
liquid” [69-72]. The frustration can originate either
from the geometry of the lattice, as is the case with the
kagome antiferromagnet, or from the couplings them-
selves, as we saw with the Kitaev-type models. Identi-
fying and studying these phases is often challenging for a
number of reasons. First, obtaining experimental mea-
surements of candidate materials and interpreting the
results can be quite difficult. For instance, while the
absence of magnetic order is one hallmark of a spin lig-
uid, it is not a sufficient diagnostic. Their true defining
feature is the presence of nonlocal excitations, and these
are very difficult to identify experimentally. With the
control afforded by our setup, anyonic excitation could
be seeded as defects, and possibly even transported and
braided [56, 73]. Alternatively, when anyonic excita-
tions are present, spectroscopic measurements should
have a universal form [74]. Without phonons or im-
purities to undermine the signal, this may be easier to
observe in our setup than in a physical system.

Another issue is that even simplified models can be



difficult to investigate numerically, especially those for
which exotic phases are expected to appear. In partic-
ular, the antiferromagnetic Heisenberg model on non-
bipartite lattices has a “sign problem,” which precludes
the use of quantum Monte Carlo (QMC) [75, 76]. A
myriad of other computational techniques have been
developed, but system size quickly becomes a limiting
factor (in dimensions greater than one), leaving a fair
amount of room for ambiguity.

The spin-1/2 antiferromagnetic Heisenberg model on
the kagome lattice is one model of notable interest
[71, 72]. Despite having been a topic of study for sev-
eral decades, its groundstate remains disputed [77-85].
At this time, there are two primary proposals: the Zso
spin liquid [86] and the Dirac spin liquid [87-89]. The
essential difference between the two theories is the pres-
ence or absence of a spin gap. Ascertaining the ground-
state is meaningful not only from a theoretical point of
view, but also experimentally, as the kagome Heisenberg
model is believed to describe the compound Herbert-
smithite (ZnCuz(OH)gCly) [90]. In Fig. 2(c), we show
a potential setup which could be used to simulate this
Hamiltonian. If present, the energy gap is estimated
to be in the range 0.05 — 0.1J [71, 78, 91], and with
T/J ~ 0.05—0.07, signatures of a gap should be observ-
able via the techniques discussed in Sec. I'V. Further, we
emphasize that our estimate of T'/J is based on current
experimental parameters, and these may improve under
future developments.

The XXZ model on the kagome lattice has also at-
tracted recent interest. It was realized that the point
with J*/J* = —1/2 is exactly solvable and possesses
an exponentially large manifold of exact groundstates
[92]. Further, analoguous exactly-solvable points actu-
ally exist for other XXZ models on lattices composed of
triangles, such as the triangular and Shastry-Sutherland
lattices.

Another class of frustrated Hamiltonians worth ex-
ploring are the Heisenberg-Kitaev Hamiltonians, given
in Eq. (17) [42]. The honeycomb lattice version is be-
lieved to be relevant for the iridate oxide compounds,
NaoIrOs and LisIrOs [93-101]. By changing Jy/Jk,
three phases should be accessible: a Néel antiferro-
magnet, the stripy antiferromagnet, and the spin liquid
42, 102].

Less exotic systems with known groundstates may
also be interesting to study. For instance, the phase
diagram of the J; — Jy antiferromagnetic Heisenberg
chain could be investigated, where J; and J, are the
nearest and next-nearest neighbour exchange couplings,
respectively. When Jy/J; is small, the chain realizes
a Tomonaga-Luttinger liquid. However, as Jo/J; is in-
creased, the system becomes more frustrated. At suffi-
ciently large Jo/J1, the chain undergoes a spin Peierls
transition to a valence bond solid [103, 104]. These two
phases can be distinguished by their excitation spec-
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trum: while the Tomonaga-Luttinger liquid has gapless
excitation, the valence bond solid has a gapped spec-
trum. As a one dimensional model, the J; — J5 model
may be experimentally accessible on a shorter timescale.
Another possibility is to simulate the Heisenberg
model on either the honeycomb or square lattices. Both
models are known to possess Néel order at zero tem-
perature [see Figs. 1(d) and 2(b) for possible implemen-
tations]. After allowing these or similar systems to at-
tain their groundstates, the spin moment on every site
could be independently ascertained, allowing on-site res-
olution of the alternating order parameter in a manner
analogous to the cold atoms experiments of Ref. 105.

3. Disordered magnets

Since it is present in all matter to some degree, disor-
der is a far-reaching topic. Nevertheless, most studies of
many-body quantum states entirely neglect its effects,
in part because its inclusion often renders the problem
intractable. Similar to the clean limit just discussed,
computational limitations restrict our ability to numer-
ically simulate many of the systems of greatest interest.

The great tunability of the system parameters makes
our quantum simulator an ideal platform to explore the
effects of disorder. Notably, the implementation of ran-
dom bond disorder of various forms differs little from the
implementation of the pure systems mentioned above.
Within our setup, both the disorder strength and sym-
metry can act as tuning parameters. Variations in the
exchange coupling strength can be tuned both through
tunneling amplitudes and the charging energy, with the
requirement that ¢ < E¢ as a sole constraint. Depend-
ing on the model under study, random changes of the
sign of the exchange coupling J may be attainable; how-
ever, given J’s dependence on the geometry of the ar-
chitecture, this may be more difficult to achieve than a
change in magnitude (see Sec. IITC 1 for details). An
additional advantage of the Majorana simulator is that,
unlike cold atoms systems [106, 107], both true ran-
domness and quasi-periodicity can be achieved (we com-
ment on this further below). Weak random-field disor-
der could also be introduced either by allowing direct
(and very weak) tunneling between Majoranas on a sin-
gle island [see Eq. (11)] or by the more sophisticated
methods using quantum dots discussed in Sec. [V A 1.

Disordered phenomena in one dimensional systems is
relatively well understood. In particular, there exists a
large body of work on random quantum Ising [108, 109]
and Heisenberg spin-1/2 chains [110, 111]. An especially
interesting phase that is should appear is the “random
singlet phase” [110, 112, 113], which is characterized by
the existence of weak singlets between arbitrarily distant
spins. Features of this phase such as the quadratic decay
of correlation functions, ~ r=2, [110] may be possible to



observe in our setup.

The effects of disorder in frustrated magnets is far
more complex in higher dimensions, and this is pre-
cisely the regime where our simulator may be most use-
ful. For example, the authors of Ref. 114 conjectured
a Lieb-Schultz-Mattis-like theorem [115-118] for disor-
dered systems: when translational symmetry is pre-
served on average and the average unit cell contains a
single spin-1/2, a disordered paramagnet must either
possess gapless spin excitations or be topologically or-
dered. Either analytically or numerically demonstrating
this hypothesis is very challenging, and a sufficiently
large Majorana island network could provide new in-
sight.

Disordered systems may also be problematic from
an experimental standpoint. Determining the cause of
power law behaviour in observables such as the suscep-
tibility can be difficult, and this can make distinguish-
ing a disordered state from a quantum-critical one chal-
lenging [119, 120]. For systems like Herbertsmithite (a
material believed to be described by the kagome Heisen-
berg model) this is particularly disadvantageous since,
as discussed, the groundstate of this Hamiltonian in the
clean limit may be a Dirac spin liquid, a state described
by a conformal field theory. Numerical simulations of
the kagome Heisenberg model with random bond dis-
order [121] appear to indicate that sufficient disorder
suppresses magnetic order, favouring a 2d version of the
random singlet phase. The authors of Ref. 121 claim
that their results are in agreement with the dynamic
structure factor obtained via INS [72, 122]. This is
counter to the reasoning of Han et al. [123], who assert
that the signal is instead the consequence of separate
contributions from the Zs spin liquid and the impurities
within the sample. The type of large-scale simulations
our Majorana network may provide could help resolve
this issue [see Fig. 2(c)]. Further, different types of dis-
order can also be studied and possibly matched onto the
experimental data.

4. Quantum criticality

Another application of our setup is to systems un-
dergoing quantum phase transitions. The traditional
first example of a phase transition is the critical point
separating the ferromagnetic and paramagnetic phases
of the Ising model. The 1+41d version is perhaps the
simplest system our network can realize since it can be
simulated using the the simplified architecture discussed
in Sec. ITII B and shown in Fig. 6.

XXZ spin chains are another example of an inter-
esting, yet comparatively simple realization of quan-
tum criticality. Their critical points are described by
a set of conformal field theories known as the SU(2)
Wess-Zumino-Witten nonlinear o-models. The chain in
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Fig. 1(e) would correspond to k = 1, and larger k con-
formal field theories are obtained by considering larger
effective spins [124-126].

Phase transitions can also be tuned by introducing
anisotropic bonds. The square lattice Heisenberg model
with exchange coupling J on the horizontal bonds of
every other column and exchange coupling g.J on all re-
maining bonds is one example [127-129]. In the limit
g — 0, a valence bond solid is realized, whereas in the
isotropic limit, ¢ — 1, the groundstate has Néel or-
der. At intermediate g a quantum phase transition in
the same university class as the classical 3d Heisenberg
model is realized [130]. Similarly, continuous transi-
tions belonging to different, less well-studied, univer-
sality classes can be induced on frustrated lattices such
as the Shastry-Sutherland lattice [130, 131].

Our setup is also capable of capturing more exotic
phase transitions, whose descriptions require emergent
gauge fields. These deconfined critial points [132, 133]
go beyond the Landau-Ginzburg paradigm and are not
necessarily associated with the breaking of a symmetry.
They can describe critical points connecting different
symmetry-broken states as well as transitions involv-
ing topologically ordered phases. A potential candidate
is the Heisenberg-Kitaev honeycomb model mentioned
above: numerics indicate that a continuous and poten-
tially exotic phase transition could lie between the spin
liquid and stripy phases [42, 134, 135].

Disordered critical systems can also be studied, and
the disorder strength may in fact be treated as another
tuning parameter. This is often a very difficult problem
since disorder tends to be relevant under the renormal-
ization group flow, taking the system outside of the per-
turbative regime [104, 136, 137]. Even in the 2+1d Ising
model, the fate of the system with random bond disor-
der is not well-understood [104]. It may also be possible
to obtain an interacting and disordered fixed point prox-
imate to the Dirac spin liquid phase by adding disorder
to the kagome Heisenberg model [138, 139]. The form
of disorder necessary to obtain this critical theory is
specific enough that it is unlikely to be realized in Her-
bertsmithite, and so the high degree of control afforded
by the Majorana network makes it an ideal setting for
the observation of this type of critical theory.

5. Entanglement entropy

The most intriguing aspect of quantum systems is
their nonlocal nature, and a widely-used measure of this
is the entanglement entropy.

Obtaining non-local state information is incredibly
difficult experimentally. Nevertheless, recent cold atom
experiments have managed precisely this [140-142], in-
dicating that it should be possible in our Majorana net-
work as well. In fact, the protocol used by the authors



of Refs. 140 and 141 to determine the second Renyi en-
tropy should also be applicable to a Majorana network
simulating spin-1/2 chains. As in their experiment, one
would arrange two spin chains like in Fig. 1(e) alongside
each other and mimic the “beamsplitting” procedure by
coupling them in the appropriate manner for a certain
duration. As we have stressed, an advantage our plat-
form has over optical lattice experiments is the ability
to tune the interactions. This offers the appealing pos-
sibility of measuring the entropy for a larger variety of
spin models.

B. Dynamical properties

Our discussion has so far focused on systems at equi-
librium. However, many of the most important re-
cent advances relate to out-of-equilibrium behaviour.
Since the tunneling amplitudes between islands are con-
trollable, the Hamiltonian may also be varied in time.
While we have already mentioned exploiting this to ob-
tain equilibrium-state information via linear response
[see Sec. IVB2], our system is not restricted to this
regime, and non-perturbative effects should also be ac-
cessible.

A common way to characterize these dynamics is by
studying the system’s evolution after quickly altering
the Hamiltonian. When the change is abrupt and per-
sists for all subsequent times, it is typically called a
“quench.” Conversely, the term “pulse” is used to de-
scribe a change with a small duration. Depending on the
situation, these quenches and/or pulses could be either
local or global. These parameter changes can be imple-
mented reasonably quickly (~ 20 — 30 ps) [68] relative
to the fastest timescale of the effective spin Hamiltonian
(7 = h/J ~ 60 ps). The isolation of the system is lim-
ited by the quasiparticle poisoning time, 7qpp ~ 1 ms.
Since this is orders of magnitude larger than the tun-
neling time, 7qpp/7s ~ 107, the system has more than
enough time to evolve in de facto isolation for novel
physics to be uncovered.

In contrast to an experiment being performed for
groundstate determination, it is important to know the
initial state before the quench or pulse is performed in
a simulation probing nonequilibrium behaviour. One
simple possibility is to have each vertex of the network
initialized to a definite spin value resulting in a total
product state. More complicated initial states can be
obtained by implementing the procedure outlined in the
previous section: start with an arbitrary state and turn
on a Hamiltonian with the desired groundstate. Once
that groundstate is achieved, the quench and/or pulse
can be implemented.

We now discuss two broad topics of study: the scram-
bling of information and many-body localized phases.
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1. Scrambling and quantum chaos

Recently, the process of thermalization has received
renewed interest: given unitary time evolution, how
does dissipation emerge? The eigenstate thermalizaton
hypothesis (ETH) states that an isolated system ini-
tially far from equilibrium (for instance, after a quench),
approaches a state in which observables appear thermal
[143, 144]. The approach to thermal equilibrium is very
intimately related to spreading of entanglement and the
scrambling of information.

We discussed in the previous section how the protocol
used to measure the entanglement entropy in the cold-
atom experiments of Ref. 140 and 141 could be applied
to our setup to measure the entanglement of certain spin
chains. In addition, the experiment of Ref. 141 not only
measured the entanglement entropy, but its evolution.
They applied a quench to a 1d row of atoms and mea-
sured the second Renyi entropy associated with half of
their system as a function of time. They observed an
increase in subsystem entropy and attributed this to
the entanglement between subsystems. In accordance
with the ETH, the entanglement entropy approached
the thermal entropy. These experiments and observa-
tions should be reproducible with the Majorana network
simulator, and the additional control furnished by the
Majorana device should allow similar studies to be done
in more diverse settings. For instance, the direct ob-
servation of some of the analytical results obtained for
14+1d conformal field theories may be accessible [145—
148].

Out-of-time-order correlators (OTOC) have recently
become an especially powerful way to obtain infor-
mation on the form and evolution of scrambling.
The OTOC can be thought of as a measure of the
failure of two operators initially at distinct points
(say, = and y) to commute at a later time ¢:
([As(0), B, (DTTAL(1). B,(1)]), where A.(0) (B,(0)) is
localized at = (y). The OTOC is a difficult object to ob-
tain experimentally since it appears to require an reverse
time-evolution step. Nevertheless, there are a number
of proposals for measuring the OTOC. Some explicitly
require that the Hamiltonian be taken to minus itself,
usually through a spin echo protocol [149, 150]. Analo-
gous measurements could be implemented in our system
through the techniques of Refs. 65 and 60. Another in-
triguing possibility was proposed in Ref. 151 where the
authors suggested measuring the OTOC through the
presence of an ancillary spin within the setup for the en-
tanglement measurement experiments mentioned above

[140, 141].



2. Many-body localization and prethermalization

In contrast to the systems mentioned in the previ-
ous section, many-body localization (MBL) occurs when
systems do not thermalize, even at long times [152-
154]. In contrast, a classical glass is a phase of matter
that thermalizes exponentially slowly. Since the quasi-
particle poisoning time 74, can be seven orders of mag-
nitude larger than the tunneling timescale 7; = h/J,
our simulator should be capable of distinguishing the
MBL phase from a classical glass.

Some of the simpler implementations of our proposal
are especially well-suited to studying the MBL phase. A
Heisenberg spin chain with nearest-neighbour couplings
and random local Zeeman fields is the paradigmatic ex-
ample of a system able to support MBL [152, 154]. The
local fields can be realized by simply adding tunnel cou-
plings between Majoranas on the same island or using
the quantum dot protocols of Sec. III. Importantly, as
already stressed in Sec. V A 3, choosing an arbitrary dis-
tribution of fields is straightforward.

Possible signatures of a many-body localized phase in
a spin chain can be observed in the temporal decay of
an initially polarized spin state after a quench. In our
case, the single-site spin polarization can be inferred
from local parity measurements on a Majorana island.
A possible experiment could measure, say, (o7 (¢)) after
the tunneling amplitudes linking site ¢ to the rest of the
system have been switched on for a duration t. The time
dependence of the disorder-averaged expectation value
serves as a measure of localization [155]. Such exper-
iments are essentially equivalent to decoherence mea-
surements of qubits, which have been demonstrated in
semiconducting quantum dots [65].

Alternatively one could detect global quantities such
as the staggered magnetization of a system initialized
in a Néel state (this is similar to the suggestion at the
end of Sec. V A2). In the MBL phase, such global ob-
servables are expected to retain a nonzero value after
disorder averaging, even in the long-time limit. Such
experiments would be similar to the cold-atom experi-
ments of Refs. 106 and 107, which measured the decay
of a density polarization of interacting fermions over
time. Notably, MBL physics was observable after only
30 — 507, well within reach of our simulator (our con-
ventions differ slight from those of Refs. 106 and 107,
where they define the tunneling time as 7; = 277y).

Unlike a thermal system, the entanglement entropy
of an MBL phase obeys an area law [152-154]. Once
more, by mimicking the scheme of Refs. 140 and 141,
this should be observable with our Majorana simula-
tor. More interesting the expected logarithmic growth
of entanglement after a quantum quench could also be
seen [156]. Since this behaviour is only apparent at ex-
ponentially long times, the long coherence time of the
Majorana network is crucial.
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Another intriguing question is to what extent localiza-
tion is able to protect symmetry-protected topological
order at finite temperatures [157].

Our ability to tune disorder also allows for system-
atic studies of the many-body localization transition.
As it separates a thermal phase from the non-thermal
MBL phase, standard statistical methods are not appli-
cable. For instance, the transition should only be vis-
ible using dynamic probes, which is why it is typically
referred to as a “dynamical phase transition.” One pre-
dicted feature of this transition is an exponentially slow
thermalization time in the critical region [158] making
long coherence times especially crucial in this context.
With 74pp ~ 1077;, our simulator should be able to
probe this and other novel features of the transition.
Further, our ability to control not only the strength of
the disorder, but also its form suggests the intriguing
possibility of tuning between quasi-periodic and random
distributions, which have transition believed to belong
to different universality classes [159].

Spin chains systems are also a particularly suit-
able platform to study prethermalization. This
phenomenon describes systems which remain in a
metastable nonequilibrium state for exponentially long
times until they ultimately thermalize. Our quantum
simulator combines two essential prerequisites for ob-
serving prethermalization: tunability and coherence.
Good control over experimental parameters is needed to
customize the exchange interactions, allowing the sys-
tem to enter the prethermal regime. In addition, ob-
serving exponentially long time scales requires long co-
herence times of the spin. An intriguing signature of
prethermalization within the scope of our simulator is
the stability of edge spins in the transverse-field Ising
model [160].

VI. DISCUSSION

In this paper, we have proposed a quantum simulator
of spin systems whose spins are topologically protected
from magnetic field noise. We began with a descrip-
tion of how to simulate a large variety of spin models
using Majorana islands. We subsequently proceeded to
outline concrete experimental platforms based on exist-
ing technology. We followed by proposing detailed pro-
tocols for the characterization of the simulated model
within the bounds of current experimental capabilities.
Finally, we discussed a number of important applica-
tions for which our simulator may further our under-
standing of many-body physics. We conclude our paper
with a comparison to other quantum simulators in the
literature and an outlook to the future.



A. Comparison to other quantum simulators

While constructing the Majorana network we describe
may be challenging, we emphasize that all the difficulties
inherent in our proposal must eventually be overcome
in the construction of a topological quantum computer.
More than anything, our quantum simulator stands as
a stepping stone on the path to universal topological
quantum computation. We have shown that with even
relatively few Majorana qubits, new physics can be un-
covered.

The analogue quantum simulator we have proposed
generically requires fewer resources than its digital coun-
terparts where Hamiltonian time evolution must be
Trotterized through the application of a series of quan-
tum gates on given initial states.

In fact, Kassal et al. [161] have shown that at least
100 qubits and 200,000 operations per time step are re-
quired to simulate a Hamiltonian with pairwise interac-
tions better than a classical computer. While no ana-
logue simulator can compete with the versatility this
type of simulator imparts, these requirements are well
outside of current experimental capacity.

Relative to other analogue simulators, the close rela-
tion between the Majorana simulator and a topological
quantum computer grants our proposal several advan-
tages. In particular, we address the extremely long co-
herence times, the fine-tunability, the low temperatures,
and the straightforward relaxation mechanisms our sim-
ulator provides.

We have repeatedly stressed the length of the deco-
herence time (set by quasi-particle poisoning) relative
to the timescale set by a typical exchange constant:
Tapp/TJ ~ 107. In comparison, for the study of MBL,
the cold-atom experiments were able to attain coher-
ence times of approximately ~ 30 — 507, [106, 107].
While features of the MBL phase were visible in these
experiments, definitively distinguishing the MBL phase
from a classical glass necessitates coherent evolution for
time scales exceeding 7; by several orders of magni-
tude, something the Majorana simulator provides. Fur-
ther, with access to such long time scales, a number
of experiments probing the precise nature of the phase
and its transition should be possible. In particular, in
Sec. VB2, we mentioned being able to observe the ex-
ponentially slow thermalization time in the critical re-
gion of the MBL transition [158] as well as the the log-
arithmic entanglement growth of the MBL phase [156].
Conversely, given the current decoherence times, neither
experiment is feasible with cold atoms [34].

The high-degree of control our platform offers is an-
other advantage. In the language of hardware design,
the simulator we propose follows the “bottom-up” phi-
losophy. In contrast, some of the most successful simu-
lators take the opposite, “top-down” approach. Exper-
iments with cold atoms in optical lattices and trapped
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ions belong to the latter category since they let the
particles interact naturally. As a result, this type of
simulator possesses fewer tuning parameters, and this
makes breaking the SU(2) spin symmetry in these sys-
tems much more difficult. It is unlikely that a model
like the Heisenberg-Kitaev model [see Eq. (17)] could
be engineered in an optical lattice. Similarly, true ran-
domness is difficult to achieve in optical lattices, and
quasi-periodicity is favored instead [106, 107].

The Majorana network is also able to access low tem-
peratures. For instance, while ultracold Fermi gases
have observed Néel order in the square lattice Hubbard
model [105], attaining a sufficiently low temperature was
very challenging. The lowest they were able achieve
was T/J = 0.45, where J is the effective exchange cou-
pling. While adequate for the observation of antiferro-
magnetism on the square lattice, this temperature is not
low enough to resolve important features of certain spin
liquids. As an example, in Sec. V A2, we mentioned
that the groundstate of the kagome Heisenberg model
is currently unknown and that the spin gap was a clear
distinguishing feature of the two main candidate states.
However, should it exist, the estimated gap is very small,
with numerics currently setting it around 0.05 — 0.1J
[71, 78, 91]. This would not be visible at the tempera-
tures currently accessible in Fermionic quantum gases.
Conversely, the expected temperature of our proposal is
an order of magnitude smaller, T/J ~ 0.05—0.07, mak-
ing the observation of the debated spin gap a reasonable
objective.

Finally, unlike many quantum simulators, the plat-
form we propose does not require complex mappings be-
tween the degrees of freedom of the physical parameters
and the model of interest. Since the environment may
interact with the simulator in fundamentally different
ways than the original model, this can result in com-
plications when attempting to relax to the groundstate
[162]. For instance, trapped ions systems can simulate
spin systems, but only after transforming to the inter-
acting picture [163-166] where the decoherence process
is very different than in a physical spin system.

A number of other proposals to use Majoranas as sim-
ulators have been made. In particular, at first glance the
Majorana network proposal of Ref. 56 may appear very
similar. However, their scheme does not enjoy the same
protection against decoherence that ours does. More
importantly, in order to obtain the two-fold degenerate
subspace needed to form an effective spin, the backgate
voltage of each island must be precisely tuned. We use
a similar setup in Sec. IV A 2, but only for the purpose
of measurement. Similarly, the proposal of Ref. 41 con-
structs a Majorana network described by an effective
quadratic Hamiltonian. As per Kitaev’s solution, such
a Hamiltonian can only simulate a single flux sector of
the full model, and, as such, their proposal is unable to
reproduce the full dynamics of the Kitaev models.



The realization of spins with Majorana islands has
been exploited in several recent works as well. The ini-
tial discussion focused on the topological Kondo effect
in a Majorana island [35]. More recent works have pro-
posed architectures for the realization of logical qubits
in surface [26, 27] or color codes [28]. While these devel-
opment are of prime importance for the ultimate con-
struction of a topological quantum computer, the hard-
ware requirements are very demanding. For instance,
the authors of Ref. 28 estimate that their colour code
implementation requires 500 physics logical qubits for
every physical qubit. Our proposal, in contrast, has the
potential to solve important problems with far fewer
qubits.

B. Future directions

We have demonstrated that a multitude of interesting
spin models can be assembled from a basic setup com-
prised of superconducting islands with four Majoranas
each. Nevertheless, models with next-nearest neighbor
interactions are typically difficult to construct, requir-
ing a large number of islands per site. It would be in-
teresting to study how different superconducting island
constructions (e.g., islands with a larger number of Ma-
joranas) could be used to extend the scope of our plat-
form. As an example, a setup containing six Majoranas
per island was recently proposed in an independent work
[167] as a realization of the Yao-Kivelson model.

Devising ways to engineer additional, further-
neighbour couplings between spins is another mean-
ingful direction of study. An interesting experimen-
tal question is whether out-of-plane couplings between
Majoranas can be fabricated. This would be useful
for both models in three dimensions as well as two-
dimensional models with further-neighbour interactions
like the J; — Jo Heisenberg model on the square lattice.
One could also consider adding long-range interactions
between spins by coupling multiple islands to the same
delocalized mode, such as a photonic mode in a res-
onator or electrons in an extended lead.

The ability to couple effective spins to new degrees of
freedom may also be interesting in its own right. For
example, the Dicke model, the paradigmatic model for
a superradiant quantum phase transition, could be re-
alized by allowing several Majoranas to interact with
a single transmission line resonator [168]. Moreover,
our quantum simulator is capable of reproducing the
Ising-Dicke model, for which a rich phase diagram re-
sults from the competition between antiferromagnetic
exchange and coupling to the oscillator mode [169, 170].
Decoherence in this case is presumably limited to losses
in the resonator rather than decoherence of the spins.

With some adjustments, our simulator may also be
capable of reproducing Kondo lattice physics. In one
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dimension, this could be implemented by contacting the
Majoranas to three leads [35] such that all Majoranas
with the same label interact with the same lead. Kondo
physics should be obtained by lowering the electron den-
sity of the leads to match the density of effective spins.
While the situation is more complicated in two dimen-
sions, one could perhaps couple the Majorana islands
to an array of quantum dots [171-173]. By arranging
the dots so that each Majorana is associated to a clus-
ter of three dots labelled x, y, and z, a two-dimensional
Kondo lattice model should be obtained upon allowing
each dot to interact with the associated b-Majoranas
and the nearest-neighbour dots of the same kind.

The experimental capability to generate ac drives dis-
cussed in Sec. IV points to Floquet systems as another
intriguing direction of study. By applying a continu-
ous drive to our system, novel nonequilibrium states
of matter and dynamical phase transitions should be
accessible. The Majorana simulator seems particularly
suitable for the study of Floquet phases as the long co-
herence time of the effective spins is expected to reduce
the heating effects of the drive. Moreover, the ability to
tune the degree to which the system couples to the envi-
ronment might be useful for studies of driven-dissipative
systems.

The observation of multipoint correlators may be an
interesting extension to the proposed measurement pro-
tocols. Such measurements could be based on the pump-
probe technique proposed in Sec. IV B 2, in which physi-
cal observables were obtain through the detection of the
ac response of a spin expectation value to a locally ap-
plied alternating Zeeman field. In addition to signals at
the drive frequency, one can look for signals at higher
harmonics. Alternatively, one could apply two incom-
mensurate drives at different locations and detect a sig-
nal at the sum or difference of the applied frequencies.
Such measurements should be sensitive to multipoint
correlation functions.

In Sec. V A5 we suggested that the second Renyi en-
tropy of a spin chain could be obtained using a protocol
similar to the what was done in the cold atom exper-
iments of Refs. 140 and 141. It is natural to ask if
other Renyi entropies could be observed and whether
this scheme can be adapted to 2d lattices. Similarly, we
argued that proposals designed to measure the OTOC in
cold atom systems were also applicable to our setup. It
would be interesting to identify experimental strategies
that take advantage of the semiconductor realization of
our simulator, such as through nonlocal transport sig-
natures.
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Appendix A: Numerical solution to 4-bond vertex

In this appendix we provide details of the numerical calculation used in Sec. I B. We begin by discussing the
Hilbert space and Hamiltonian before presenting a broader study of the relevant parameter regime.
(N1, No, N3) where N; is the difference between the number
of electrons on each island and the integer closest to the charge induced by the backgate voltage. That is, we write
Qoi/e = N; + 6N; where N; € Z and assume that |[0N;| < 1. Then we can express the action of the charging

The charge degree of freedom will be given by IN =

Hamiltonian as

2
Hc i |Ni) = Eci (ﬁe,z‘ - Q{g’l) INi) = Ec,i (N; — 6N;)° |N;) (A1)
where Ec; = €2/2C;. Since |§N;| is small, the ground state manifold of Ho for the three island has N = (0,0, 0).
We describe the Majorana degrees of freedom in the basis defined by the complex fermions
1 T 1 z Y
Jia = (Cz +ib7) , fiB = 3 (b7 +1ib7) . (A2)

The state of the island also depends occupation of n; = (n;4,n;5) on each island, ¢ = 1,2,3. The Majoranas act
on this basis as
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Since these occupation numbers correspond to physical excitations, they are naturally dependent on the charge
degrees of freedom. We assume that all excitations on the islands conserve charge (no quasi-particle poisoning).
Without loss of generality, we choose to work in a basis where islands with an even charge have an even number of
occupied Majorana modes. That is, n; is restricted to (0,0) and (1,1) ((0,1) and (1,0)) when N; is even (odd). This
constraint is, of course, dependent on our definition of f;4 and f;5. Each value of N labels an eight-dimensional
subspace parametrized by the Majorana occupation numbers. Keeping the dependence of the n;’s in mind, we

write the states as |nq;ne;ns) |IN).
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The total Hamiltonian we simulated is

3
Hﬂuc = HC,i + Htun,12 + Htun,23 + HJ' (A4)
i=1

[This is the same Hamiltonian as given in Eq. (22).] The tunneling Hamiltonian given in Eq. (6) acts on these states
as

it
Hiyn,12 [n1snosng) [N) = 3 [()MB ((*)nlA - (*)n“> |1 —n14,n1B;1 —nga,n2p;N3)

— (=)"AT28 g a1 — nipginga, 1 —naping) | ® [|N1 +1; Ny —1;N3) + [N; — 1; Ny + 1;N3>}7

it

Hiun23 15 m2;m3) [IN) = 5

[(—)”23 ((—)"“ - (—)”“) |n1;1 —nga,nop; 1 — nga,n3p)

— (=)"AT35 Inginga, 1 — napinga, 1 —ngp) | ® {|N1;N2+1;N3—1>+|N1;N2—1;N3+1>}7 (A5)

where we’ve used the fact that the phase operator ¢?/2 adds a charge to the ith island, e.g. /2 |N1, No, N3) =
|N1 + 1, No, N3). For notational simplicity, we’ve omitted the “vert” subscript when writing the tunneling ampli-
tude, simply using ¢.

For sufficiently small tunnel couplings, the Josephson energy can be neglected. However, for large values of ¢ it

can have an appreciable effect and should be considered:
Hj = —Ej[cos(¢1 — ¢2) + cos (¢2 — ¢3) |. (A6)
H; acts on the charge degree of freedom as
Hjy|N) = f% |Ny + 2, Ng — 2, N3) + [Ny — 2, Ny + 2, N3)
+ |Ny, Ny +2,N3 —2) + |[N1, No — 2, N3 + 2) |. (A7)

The Josephson energy, E;, is expected to depend linearly on the transparency T of the system while the Majorana

tunneling, ¢, should have a linear dependence: ¢t < T, E; o< v/T. We will therefore express E in terms of ¢ as
EJ = 6]t27 (AS)

for some proportionality constant €.

Finally, in addition to the capacitance of the single islands, they will have a mutual capacitance:

HC,mut = EC,mut (ﬁe,Q - QZ,Q) [ (ﬁe,l - 62271) + ('ﬁ‘e,B - 622,3) ‘|7 (Ag)
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which acts on |IN) as
He mut |[IN) = Ecmut (N2 — 0N2) | (N1 —dN1) + (N3 — 0N3) | |IN). (A10)

We find that this term has little effect, and for this reason it is not included in Eq. (A4).

There are several points to be made. First, our simulations have to be truncated at some Ny, = max |N;|. That
is, we only consider states where |N;| < Npax. Also important is that in all parameter regimes and all values of
Nnax we consider, we find that Hg,. has a two-fold degenerate groundstate.

The appropriate choice of Ny,.x depends on the parameters of the Hamiltonian. When E¢ dominates the problem,
there will be few fluctuations in IV, allowing Np,.x to be relatively small, maybe even 3 or 2. However, the converse
situation is also important to consider. In Hgy. this is simply achieved by “setting” Ec = Ej = 0. More correctly,
this should be thought of as the limit F; — oo since when only the tunneling Hamiltonian is present, there ceases
to be a distinction between islands 1-3, and the system should instead be viewed as a single large island. This
pins the superconducting phases to a common value, and we can set ¢1 = ¢o = ¢35 = 0 without loss of generality.
Because total charge is still conserved, the value of E¢ ceases to matter.

The role of Hyun = Hyun,12 + Heun,23 [Eq. (A5)] is to couple the ¢;’s to one another, b7’s to one another, and the
bY’s to one another. It follows that in the groundstate we can identify C' ~ ¢; ~ ¢y ~ ¢z, B* ~ b3 ~ b3 ~ b%, and
BY ~ by ~ by ~ bY. Unlike the rought argument given in Sec. II B, without the charge constraint, there is no reason
to treat the b7’s as a single degree of freedom. As a result, we have six non-interacting Majorana modes with a
single charge constraint (C, B*, BY, and the three b7’s), implying that the groundstate should be 237! = 4-fold
degenerate. This four-fold degeneracy is found exactly when we diagonalize Hiyy, in the basis which treats only the

Majorana degrees of freedom. In particular, numerically diagonalizing
Hiyun,ne = (t+ 1) [ib705 + ibYbs + icico + ib5b5 + ibJbY + icacs (A11)
in the space spanned by {|n1;mn2;n3)}, we find four states with energy

Eexact = —8.4853t. (A12)

The four-fold degeneracy is lifted when Hy,, is diagonalized in the truncated Hilbert space which includes charge

degrees of freedom, ¢y

max

= {|n1;ng;n3) |N) : max N; < Nyax}, and we expect it to reappear as Npax becomes
large. In Fig. 10, the resulting energy levels as a function of Ny, are plotted. As expected, as Nyax is increased,
the groundstate energy, Fy, and first excited state energy, F, approach Eexact (both two-fold degenerate). There
is notably still a gap between Eexact and both Ey and E; even for Ny, = 11. However, more importantly, the
degeneracy has reasserted itself already by Nyax = 4.

We will use the (approximate) return of degeneracy to benchmark the size necessary for Nyax. The plots in Fig. 3

are simulated with Ny, = 7.
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