Waterproof molecular monolayers stabilize 2D materials

Cong Su1,b,1, Zongyou Yin1,c,2, Qing-Bo Yan1,d,1, Zegao Wang1,e, Hongtao Lin1,f, Lei Sun1, Wenshuo Xu1, Tetsuya Yamada2, Xiaogang Ji2, Nobuyuki Zettu2, Katsumi Teshima2, Jamie H. Warner2, Mircea Dincă2, Yuejun Hu2, Mingdong Dong3, Gang Su4, Jing Kong4,m, and Ju Li4,a,2

1Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; 2Research Lab of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139; 3Research School of Chemistry, The Australian National University, ACT 2601, Australia; 4College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, 310027 Hangzhou, China; 5Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, 6College of Information Science & Electronic Engineering, Zhejiang University, 310027 Hangzhou, China; 7Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; 8Department of Materials Science, University of Oxford, OX1 3PH, United Kingdom; 9Center for Energy and Environmental Science, Shinshu University, 380-8553 Nagano, Japan; 10School of Physical Science, University of Chinese Academy of Sciences, 100049 Beijing, China; and 11Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by Michael L. Klein, Temple University, Philadelphia, PA, and approved September 11, 2019 (received for review June 4, 2019)

Passivation of molecular monolayers has been widely used to protect surfaces from corrosion (1). However, the durability of these monolayers is often limited by the instability of the organic layer under ambient conditions (2). Here, we show that alkylamines n-CmH2m+1NH2, with m = 4 through 11, are highly effective in passivating electron-doped n-type 2D materials such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, MoTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks. Thus, the atomistic details of passivation matter even more here. Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-CmH2m+1NH2, with m = 4 through 11, are highly effective in passivating the electrostatically doped properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, MoTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks.

Significance

A family of strong yet removable 1- to 2-nm-thick ultrathin monolayer is developed as a corrosion inhibitor for 2D materials that significantly prolong lifetime while protecting optoelectronic properties in both ambient and harsh chemical or thermal environments. This method is low in toxicity and can be applied to arbitrary substrate with no size limit.

Published under the PNAS license.

1C.S., Z.Y., and Q.-B.Y. contributed equally to this work.
2To whom correspondence may be addressed. Email: Zongyou.yin@anu.edu.au or liju@mit.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1909500116/-/DCSupplemental.

First published October 1, 2019.

Results

The coating process is divided into 2 steps: 1) The sample together with silicon substrate is put in the liquid n-hexylamine for 20 min under 130 °C. This step creates coating on sample, but minor cracks might exist. 2) To fix the cracks, the sample is then immersed in hexylamine vapor for another 20 min at 130 °C and then annealed in argon for 30 min under 200 °C after the surface

molecular monolayer stabilizer | multilayer 2D materials | anticorrosion
is cleaned by hexane. The hexane cannot remove the hexylamine coating but only the surface contamination, as shown later. More detailed coating procedures are presented in SI Appendix, Fig. S1 (28–40). The optimization of coating parameters of n-hexylamine onto BP is shown in SI Appendix, Table S1.

Once mechanically exfoliated, the bare BP flakes are highly reactive and chemically unstable. After keeping a 3-nm-thick BP flake in ambient air (humidity ~35%) for 2 d (the thickness is estimated using the method from ref. 9), only vague traces remain (Fig. 1A), even when care is taken to prevent light exposure, known to accelerate the damage. As shown in Fig. 1A, the 3 characteristic Raman peaks of BP at 361 cm\(^{-1}\) (\(A_g^1\)), 438 cm\(^{-1}\) (\(B_{2g}\)), and 466 cm\(^{-1}\) (\(A_g^2\)) completely disappear after 2 d. The degradation of BP is further expedited when exposed to light, in line with previous reports (9) which showed that the lifetime of BP (defined as the time needed for the Raman intensity to drop to \(e^{-1}\) of its original) is \(\tau \sim 1\) h when a 2.8-nm-thick sample is exposed to a photon flux of \(1.8 \times 10^7\) W/cm\(^2\), and \(\tau \sim 10\) min when exposed to a photon flux of \(1.7 \times 10^8\) W/cm\(^2\).

In contrast, n-hexylamine protected BP (HA-BP hereafter), which is kept side-by-side with the unprotected one, exhibits robust BP characteristics for a much-extended period. The difference in optical contrast for HA-BP between 0 and 111 d is 31% of the intensity of the bare BP flake (Fig. 1B), 438 cm\(^{-1}\) (\(B_{2g}\)), and 466 cm\(^{-1}\) (\(A_g^2\)) completely disappear after 2 d. The degradation of BP is further expedited when exposed to light, in line with previous reports (9) which showed that the lifetime of BP (defined as the time needed for the Raman intensity to drop to \(e^{-1}\) of its original) is \(\tau \sim 1\) h when a 2.8-nm-thick sample is exposed to a photon flux of \(1.8 \times 10^7\) W/cm\(^2\), and \(\tau \sim 10\) min when exposed to a photon flux of \(1.7 \times 10^8\) W/cm\(^2\).

The coating process involves the proton transfer of the hydroxylated BP to the –NH\(_2\) group of n-hexylamine based on the below. First-principles simulations suggest that n-hexylamine forms a molecular monolayer as shown in Fig. 2A. The top layer of the BP surface is rapidly oxidized from the oxygen dissolved in liquid hexylamine, forming O=P–OH, O=P–O\(_r\), or P=O surface groups. Experimental evidence supports a model where the acidic P–OH groups on the BP surface and the terminal –NH\(_2\) groups of alkanamines undergo a Bronsted–Lowry acid–base reaction to form a layer of alkylammonium salts that coat the BP surface through a strong electrostatic interaction with the deprotonated P=O\(_r\) surface sites. Formation of the neutral –NH\(_2\) group in n-hexylamine becomes charged (i.e., –NH\(_3^+\)) came from X-ray photoelectron spectroscopy (XPS): Comparing the N 1s peaks between HA-BP, dodecylamine (C\(_{12}\)H\(_{25}\)NH\(_2\)R–R–NH\(_3^+\)), and methylammonium chloride (CH\(_3\)NH\(_2\)Cl, R–NH\(_3^+\)) reveals that HA-BP and R–NH\(_3^+\) have the same binding energy, which is blueshifted by 2.4 eV from that of R–NH\(_2\) (Fig. 2B). Contact-angle measurements also show that the surface of BP becomes more hydrophobic after HA coating (SI Appendix, Fig. S2), confirming that the HA coating is indeed terminated by alkyl chains, not by amine/ammonium groups.

Inspection by atomic force microscopy (AFM) of the height profile of the same 2D flake before and after coating revealed that the n-hexylamine coating is around 1.5 nm thick (Fig. 2C), which is consistent with the theoretical chain length of n-hexylamine (41). This demonstrates that the deposition of n-hexylamine molecules is self-limiting. Polar organic solvents including acetone, ethanol, or isopropanol, as well as nonpolar solvents like hexane, cannot remove the n-hexylamine coating, indicating that the interaction between n-hexylamine and BP is strong enough to sustain solvent attack. We also note that n-hexane does not impart any corrosion protection, attesting that the amine group is key for this function and that the alkyl chain itself cannot bind strongly on BP.

We employed first-principles calculations to investigate the transfer of protons when n-hexylamine approaches P–OH (Fig. 2D), formed by reacting with the water from the n-hexylamine coating solution. Among various structural possibilities after systematic study, with results shown in SI Appendix, Figs. S3–S6, the most likely reaction pathway agrees with the scenario (P–OH–NH\(_2\)–C\(_6\)H\(_{13}\)) proposed above and yields a bonding energy of 0.97 eV, which is 3 to 4\(x\) stronger than the pure \(dW\) interaction [-0.33 eV between n-hexylamine and pure BP, \(-0.22\) eV between amines and graphene (42)]. The electronic density distribution shows that the H atom shares its orbital much more with N atom than with O atom (Fig. 2D, Inset), and Bader charge analysis indicates that n-hexylammonium (C\(_6\)H\(_{13}\)NH\(_3^+\)) carries a net charge of +0.89\(e\), and to compensate, the rest has –0.89\(e\).

In Fig. 2E, the migration energy barrier of H\(_2\)O penetrating through n-hexylamine is calculated to be 1.4 eV and O\(_2\) 1.0 eV, when n-hexylamine covers BP in the densest possible packing structure (hereafter defined as 100% coverage, shown in SI Appendix, Figs. S8 and S9) when the coverage drops to 66.7%, the migration energy barrier reduces to 0.2 eV for H\(_2\)O permeation and no barrier (0 eV) for O\(_2\). When the HA coverage further decreases to 50% or 25%, the migration of both H\(_2\)O and O\(_2\) through the HA layer toward the surface of BP is barrierless. Combining this theoretical analysis with the time-evolution XPS data on phosphorus oxide concentration (Fig. 2F and G), where the oxidation speed of phosphorus after n-hexylamine coating is significantly reduced by 32\(\times\) at the beginning of oxidation (fitting method and definition of time constant can be found in

Fig. 1. Comparison of BP flakes with and without n-hexylamine coating. (A) The Raman spectra at \(\lambda = 532\) nm of the bare BP flake. (Inset) Optical images of the exfoliated BP flake on SiO\(_2\)/Si wafer before aging (on 0 d), and after 2-d aging in ambient conditions where only the blurry marks of original flake could be identified. (B) The corresponding Raman spectra of the n-hexylamine-coated sample on the 0, 13, 41, 111, and 186 d. (Inset) Optical images of n-hexylamine-coated BP flake on SiO\(_2\)/Si wafer before aging (on 0 d), and after 111-d aging under the same ambient conditions. (Inset) Green dots are laser spot positions for repeated spectra acquisition. All samples are dried for 30 min at 120 °C in air right after being prepared. All Raman spectra shown above have been renormalized and calibrated to Si (reference) peak intensity. (Scale bars, 5 \(\mu\)m.)

Su et al.
Fig. 2. The mechanism of \textit{n}-hexylamine coating on BP. (A) Proton transfer takes place during the coating process (Upper) and the \textit{n}-hexylamine monolayer is formed on BP after the coating process is done (Lower). \textit{R} in the diagram refers to \textit{C}_4\textit{H}_9- when representing hexylamine. (B) XPS spectra of nitrogen 1s peaks on HA-BP, dodecylamine (C-NH$_2$), and CH$_3$NH$_3$Cl (C-NH$_3^+$), proving that the amino group of \textit{n}-hexylamine coated on BP is in ionic state --NH$_3^+$. (C) The AFM data revealing the thickness of a BP flake with 24 nm before coating (pink line) and the thickness increment after hexylamine coating (violet line). (D) The schematic structure of \textit{n}-hexylamine adsorbed on BP, where red-, blue-, gray-, purple-, and white-colored balls represent oxygen, nitrogen, carbon, phosphorus, and hydrogen, respectively. (Inset) the contour map of valence electron density on the plane containing O, N atoms and the H atom between them, which corresponds to the part marked by rectangle dashed line. (E) The energy profile of H$_2$O and O$_2$ molecules when penetrating through the hexylamine molecule layer. The y axis is the distance between the bottom atom of H$_2$O or O$_2$ and the surface of BP, denoted as \(d\). Blue and red curves represent H$_2$O and O$_2$ penetration processes, respectively. The 4 groups of curves represent different coverages of 25, 50, 66.7, and 100\% (detailed coverage definition illustrated in SI Appendix, Fig. S7), as marked. The horizontal gray lines are the locations of the top and the bottom of hexylamine molecules. (F) The P 2p peaks and oxidized phosphorus species (R-P-O) of XPS curves on HA-BP measured as coated, after 2 d, and after 46 d. (G) The phosphorus oxide concentration as a function of time between \textit{n}-hexylamine-coated (violet triangles) and uncoated BP samples (pink squares). (Inset) A blow-up of the uncoated sample data between 0 and 15 h. Both datasets are fitted with exponential curves. The pink and violet solid lines are fittings of the scattered data pointing to the uncoated and HA-coated samples, respectively. Note that the oxidation of HA-BP is a significant slowdown starting from 100 h, so a second curve fitting is marked (dashed violet line). (H) Schematic illustration of the structure of BP after coating by \textit{n}-hexylamine. The first layer of BP is oxidized and forms a part of protective layer together with the \textit{n}-hexylamine coating. The surface protective layer (hexammonium + first-layer oxidized BP) protects the rest of BP underneath.

20846 | www.pnas.org/cgi/doi/10.1073/pnas.1909500116 Su et al.
(SI Appendix), we deduce the coverage density of n-hexylamine on BP must be more than the defined 66.7% coverage on the surface of BP.

With these conclusions, a schematic illustration of the molecular monolayer can be shown in Fig. 2H. The top oxidized BP layer of POH together with the coated n-hexylamine monolayer forms a dense protection layer for the BP underneath. It lowers the penetration speed of O₂ molecule significantly and blocks the H₂O molecule almost completely under room temperature, thus stabilizing the surface passivation layer (the oxidized BP at the top).

The anticorrosion effect conferred by organic monolayer is not limited to n-hexylamine. Indeed, other linear alkylamines \(n\text{-C}_n\text{H}_{2n+1}\text{NH}_2 \) with \(m = 4 \) through 11, including \(n\text{-butylamine} \) \((n\text{-C}_4\text{H}_{11}\text{NH}_2) \), \(n\text{-pentylamine} \) \((n\text{-C}_5\text{H}_{11}\text{NH}_2) \), \(n\text{-hexylamine} \) \((n\text{-C}_6\text{H}_{13}\text{NH}_2) \), \(n\text{-octylamine} \) \((n\text{-C}_8\text{H}_{17}\text{NH}_2) \), \(n\text{-decylamine} \) \((n\text{-C}_{10}\text{H}_{21}\text{NH}_2) \), and \(n\text{-undecylamine} \) \((n\text{-C}_{11}\text{H}_{23}\text{NH}_2) \) all consistently displayed similar anticorrosion effects in ambient air. Their coatings onto BP for anticorrosion demonstration are presented in SI Appendix, Table S2, and the growth parameters for coating all these alkylamines with different carbon chain lengths are summarized in SI Appendix, Table S3.

To demonstrate the passivation efficacy for actual optoelectronic devices in ambient and aggressive environments, we fabricated 2 BP-flakes-based photodetectors. As a direct bandgap semiconductor, with its \(E_{\text{g}} \) continuously tunable from \(-2 \) eV (single layer) to \(0.3 \) eV (bulk) \((43)\) by varying the number of layers, BP stands out as a promising material for photonic devices from near-infrared to midinfrared. The layout of the uncoated BP detector with a channel length and width of \(\sim 3 \) and \(\sim 5 \) \(\mu \text{m} \), respectively, between the Ti/Au electrodes is shown in Fig. 3A. The thickness of the BP here is 74 nm (SI Appendix, Fig. S10). The n-hexylamine–coated BP photodetector is shown in Fig. 3B, with comparable channel dimension and a BP thickness of 55 nm (SI Appendix, Fig. S10). Note here, the photocurrent for bare BP device is significantly lower than the protected one due to the fast degradation of BP in air during sample loading and contacting electrical probes. The photocurrent and current density as a function of input optical power under zero voltage bias (Fig. 3 A and B, uncoated and coated respectively) was measured in ambient air with a 1,550-nm laser. The coated BP can sustain annealing in \(\text{H}_2 \) environment under 250 °C for 1 h, proving its compatibility with the BP flake, and also likely originates from defects in the coating layer within the boundaries of electrodes that blocks the spreading of hexylamine.

Such monolayer protection is effective not only for BP, but also for other layered 2D materials. Here, to accelerate corrosion tests for \(n\text{-hexylamine} \)--coated 2D materials, we used harsh aqueous \(\text{H}_2\text{O}_2 \) or \(\text{KMnO}_4 \) solutions as etchants. In Table 1, we take the optical microscopy images during the corrosion exposure for each 2D material, including BP, WS₂, WSe₂, 1T′-MoTe₂, WTe₂, TaS₂, and NbSe₂. It should be noted that exfoliated BP, 1T′-MoTe₂, WTe₂, NbSe₂ and chemical vapor deposition (CVD)-grown single-layer WS₂ are known to be particularly susceptible to ambient corrosion and are readily attacked by solutions of \(\text{H}_2\text{O}_2 \). WSe₂ and TaS₂ are less vulnerable and require stronger oxidants for corrosion. \(n\text{-hexylamine} \) is proved to be effective in protecting these layered materials based on the comparison in optical image between uncoated and coated 2D materials after their exposure to the same etchants. A movie of the corrosion retardation for BP is presented as Movie S1.

Despite the fact that \(n\text{-hexylamine} \) is sturdy under various environments, it is still removable by certain organic acids. Presumably, the organic-media–supported protons can penetrate the hydrophobic alkyl layer and protonate the ionized surface P–O⁻ groups, disrupting their electrostatic interaction with the alkylammonium cations. This removing protocol is effective both for the amine coating on BP and TMDs, without affecting the passivation oxidized layer and the materials underneath (SI Appendix, section 5).

Discussion

Amines with low water solubility have long been known as efficient and reliable corrosion inhibitors for steels \((41, 44)\). It is found here that they also serve as an effective coating for 2D
Table 1. Protection of various 2D materials with n-hexylamine coatings

<table>
<thead>
<tr>
<th>material / etchant with etching time</th>
<th>bare before exposure</th>
<th>after exposure</th>
<th>coated before exposure</th>
<th>after exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP (exfoliated) / 20sec in H₂O₂ (30 wt. % in H₂O)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS₂ (CVD, monolayer) / 5sec in H₂O₂ (30 wt. % in H₂O)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1T'-MoTe₂ (exfoliated) / 10sec in H₂O₂ (30 wt. % in H₂O)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTe₂ (exfoliated) / 30sec in H₂O₂ (30 wt. % in H₂O)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSe₂ (exfoliated) / 1min in KMnO₄ (0.02mol/L in H₂O)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TaS₂ (exfoliated) / 1min in KMnO₄ (0.01mol/L in H₂O)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NbSe₂ (exfoliated) / 20sec in H₂O₂ (30 wt. % in H₂O)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BP, WS₂, 1T'-MoTe₂, WTe₂, WSe₂, TaS₂, and NbSe₂ were coated with n-hexylamine and dipped inside etchants of H₂O₂ or KMnO₄ solution (depending on the respective material reactivity) as an accelerated lifetime test. The uncoated counterparts were processed in parallel with the coated parts under identical etching conditions. (Scale bars, 10 μm.)
layered materials, by blocking water for the native thin-oxide layer growing at the interface between the 2D material and the alkylamine coating. The photooxidation of bare BP starts with the synergetic effect of oxygen, water, and light, where phosphorus transformed to a layer of acidic phosphorus species. The thin layer of acid then coarsens into a droplet, leaving a fresh native oxide that would have perpetuated the corrosion. Our experimental finding of the passivation effect on BP is consistent with the theoretical prediction that mere BP reaction forming BP-PO(3), should be fully stable and self-limiting at ~1 nm if no moisture exists (31).

In summary, we have developed a strategy to effectively slow down the corrosion of BP by coating of alkylamine monolayer onto its surface. General applicability on a variety of other layered materials is also demonstrated. The alkylamine monolayer is robust in a range of chemical and thermal environments, including ambient air. The facile coating method can be implemented with many different substrates and is compatible with all linear alkylamines no shorter than n-butylamine, thus offering a platform for controlling the surface physics and chemistry of a rich tableau of 2D materials. Because of its simplicity, ecofriendliness, and low cost, we envision it to be scalable and adaptable in various industrial configurations.

ACKNOWLEDGMENTS. C.S. and Z.Y. would like to thank Philip Kim for granting lab access for the glovebox-enclosed AFM. C.S. would like to thank Greg Lin and Frank Zhao for helpful discussions. Z.Y. thanks Pablo Jarillo-Herrero for providing the glovebox. J.L., C.S., M.D. (MIT), and L.S. acknowledge support by the Center for Excitons, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award DE-SC0001088. J.L., C.S., and Z.Y. acknowledge support by NSF ECCS-1610806, the Australian Research Council Discovery Project (Grant DP190010259), and the Australian National University (ANU) Futures Scheme (Grant Q4601024). Q.-B.Y. and G.S. acknowledge support in part by the Ministry of Science and Technology of China (Grant 2013CB933401), the National Science Foundation of China (Grant 11474279), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB07010100). H.L. and J.H. acknowledge funding support provided by NSF under Award 1453218. J.H.W. acknowledges the support from the Royal Society and C.S. acknowledges support from the US Army Research Office through the Massachusetts Institute of Technology Institute for Soldier Nanotechnologies, under Award 023674. T.Y., N.Z., and K.T. acknowledge support by Inter-University Cooperative Research Program of the Institute for Materials Research, Tohoku University (program no. 15G0031).