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Abstract

We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices

using gradient radio-frequency electromagnetic forces. Both cantilever and doubly clamped

beams, fabricated using our angled-etching fabrication technique,1 are demonstrated, with op-

eration frequencies ranging from a few MHz to ∼50 MHz. Frequency tuning and parametric

actuation are also studied.

Owing to its large Young’s modulus, excellent thermal properties, small thermo-elastic dis-

sipation, single-crystal diamond is an ideal candidate for realization of high-frequency (f ) and

high quality factor (Q) nanoscale mechanical resonators. These devices are of interest for real-

ization of stable, high f · Q product, RF oscillators and inertial sensing applications.2 Recently,

diamond nanomechanical resonators embedded with luminescent crystalline defects (color cen-

ters), have also been explored as a promising platform for applications in quantum information
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science and technology (QIST).3 Of these, negatively charged nitrogen-vacancy (NV−) color cen-

ter is of particular interest since it can be used as a spin-qubit with optical read-out. Importantly,

NV− electron spin state can have long coherence times (milliseconds)4 even at room tempera-

ture and it can be prepared and manipulated using microwave and radio frequency (RF) fields to

drive transitions between these electron and nuclear spin sublevels.5–7 Recently, it has been pro-

posed that strain-fields can also be used to manipulate the spin-state of NV,8,9 which resulted in

renewed interest of QIST community in single-crystal diamond micro-electromechanical systems

(MEMS).10–12 For example, coupling between an NV− center and a mechanical resonator could

enable high fidelity control of NV− spin state via rapid adiabatic passage,10 and potentially the

remote coupling of NV centers via mechanics.3 Furthermore, mechanical resonators may enable

coherent coupling between dissimilar systems with degrees of freedom possessing dramatically

different properties and energy scales. To realize such systems, it is essential to achieve a reliable

method for controlling and reading the dynamic action of monolithic single-crystal diamond me-

chanical resonators. To date, several reports have demonstrated mechanical resonators fabricated

in single-crystal diamond,13–18 with recent results demonstrating the coupling of NV− centers

to bulk phonon modes10,19 and micron-scale mechanical resonators.11,12 Of these, cantilever de-

vice using strain at its clamp induced from the driven motion11,12is a promising platform, due to

its large applicable stress. Hundreds of MPa is achievable at the clamp of 600 nm thick, 24µm

long cantilever at 25 dBm drive power of piezo transducer,20 compared to 10 MPa at 25 dBm

drive of HBAR resonator.10 Furthermore, dynamic driving of cantilevers with resonances above

10 MHz, and in particular at frequencies larger than electron-spin resonance linewidth, is required

for reaching so called resolved sideband regime.12 In general, there is a trade-off between achiev-

able maximum strain at unit drive power and resonance frequency. This work aims at achieving

high frequency dynamic actuation of flexural mechanical mode in single-crystal diamond as well

as large strain-fields at the site of NV− center.

Dielectrophoretic actuation21 has recently been used to actuate and transduce motion of na-

noelectromechanical systems (NEMS) and applied to achieve mechanical resonance tuning,22 and
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coherent control of classical mechanical resonators,23 as well as to study cavity electromechan-

ics,24 and nonlinear mechanics.25 In our approach, single-crystal diamond cantilevers (Figure 1(a))

and doubly clamped nanobeams (Figure 1(b)) are placed between metal electrodes and are driven

by fringing radio-frequency (RF) field (Figure 1(c)) with frequency resonant with mechanical res-

onance of the devices. Our numerical modeling indicates that keeping small vertical distance from

electrodes to nanobeam is of crucial importance for efficient actuation (Figure 1(d)).

In contrast to conventional electrostatic and piezo-electric actuation approaches, that may re-

quire physical contact or doping of diamond nanomechanical structure, gradient RF force does

not require any modification to the mechanical resonator itself. Therefore, it preserves diamond’s

unique material properties (Young’s modulus, low mass density, large thermal conductivity, and

low thermoelastic dissipation) thus minimizing dissipations and resulting in devices with large me-

chanical quality factors. Of particular interest for QIST applications, dielectrophoretic actuation

scheme maintains the integrity and stability of NV centers embedded within diamond nanome-

chanical structures, that are known to be sensitive to fabrication imperfections and surface ter-

minations.26 Additionally, we note that electrodes employed for actuation may also double for

on-chip delivery of microwave power to NV− center. Therefore, we believe that dielectrophoretic

actuation is an ideal choice for investigation of NV-mechanical coupling.

Our diamond cantilevers and doubly clamped beams are fabricated using fabrication technique–

angled-etching–that we have recently developed,1 which is shown in Figure 2(a). Briefly, angled-

etching employs anisotropic oxygen plasma etching at an oblique angle to the substrate surface,

yielding suspended triangular cross-section nanobeams directly from single-crystal bulk diamond

substrates. Nanomechanical resonators fabricated by angled-etching are easily integrated with di-

electrophoretic actuation. Parameters for nanobeam width and the distance from the bottom apex

of the nanobeams to the substrate have to be carefully chosen in order to maximize the efficiency

of transduction (Figure 1(c) and (d)). See Supporting Information for further discussion. Once

free-standing diamond nanobeams were fabricated, electrodes were patterned on the diamond sub-

strate via a standard metal lift-off process. First, the diamond substrate was spin coated with a
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polymethylmethacrylate-copolymer (MMA/PMMA) bilayer resist, where the MMA copolymer

thickness was carefully chosen to be slightly thicker than the distance between the nanobeam top

surface and the substrate. Conformal resist coating was observed, without any complication due

to existing device geometry. After resist coating, exposure and alignment were done via electron

beam lithography. 50 nm of titanium and 200 nm of gold layer were then evaporated and followed

by lift-off in remover PG to complete electrode patterning. Figure 2(b) is a top-down view of dia-

mond nanobeam cantilever. It can be seen that good alignment can be achieved, with error on the

order of tens of nanometer – this is more than adequate for efficient actuation. In fact, we note

that the slight misalignment is actually beneficial since it enables the actuation of in-plane motion,

as discussed below. Figure 2(c) shows an array of fabricated diamond doubly clamped nanobeam

mechanical resonators that share driving electrodes. This configuration allows us to characterize

in parallel large number of resonators having slightly different geometry and hence different reso-

nance frequencies. Our nanomechanical resonators had wide range of widths (200 nm - 300 nm)

and lengths (1 µm - 20 µm), corresponding to fundamental flexural resonance frequencies (from

Euler-Bernoulli beam theory) ranging from a few MHz to hundreds of MHz. Due to the nature of

angled-etching fabrication technique, width and thickness of nanobeam’s triangular cross-section

are correlated. The smallest cantilever that could be characterized (Figure 1(a)) had a width of

300 nm and the length of 4 µm, while the smallest doubly clamped nanobeam (Figure 1(b)) had a

width of 200 nm and the length of 7 µm.

All experiments were performed at room temperature, inside a vacuum chamber at the pressure

below 10−5 Torr. Figure 3(a) shows a schematic of the experimental setup, which is a slightly

modified version of that used previously for characterizing the Brownian motion of single-crystal

diamond nanobeams.17 Specifically, network analyzer was used instead of spectrum analyzer in

order to obtain driven response of our devices (by sweeping the driving frequency around me-

chanical resonance), and a bias-tee was included to combine DC bias with RF drive signal to

ensure proper actuation: since actuation force is proportional to the square of applied voltage,

F ∝ (VDC +VRF cosωt)2.21 DC bias is needed to provide force component at the driving frequency.
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For the most of fabricated diamond nanobeams, both the fundamental out-of-plane and in-plane

modes were characterized. Resonant responses of fundamental out-of-plane motion of devices

shown in Figure 1(a) and (b) are plotted in Figure 3(b) and (c), respectively. Solid curves are fitted

to the raw data, with both figures showing the expected resonant responses in the linear regime. The

maximum resonant frequency of the out-of-plane mode that we could measure using our approach

was ∼40 MHz, in the case of 7 µm long doubly clamped nanobeam. The maximum resonant

frequency of the in-plane mode, measured in the same devices, was ∼50 MHz. To the best of our

knowledge, this is the highest actuation frequency of flexural mechanical vibration achieved by

dielectrophoretic actuation to date. Unfortunately, in our current experiments, we were not able

to measure devices with resonances >50 MHz, due to the deteriorated signal-to-noise ratio of our

measurements. Noise floor of our experiment was affected by three different instruments: shot

noise from laser source, dark current and thermal noise from photodetector and thermal noise from

the receiver, which can be either the network analyzer or spectrum analyzer. Depending on the

settings of instruments, any of these three could be the limiting factor for the noise floor. Most of

our measurements, however, were limited by the shot noise from the laser source.

In many MEMS / NEMS applications, high f · Q product is an important figure of merit to get a

high sensitivity. State-of-the-art flexural NEMS device can reach f · Q product of 6.8×1012 Hz.27

In our devices, maximum f · Q product that we measured was 2.35× 1011 Hz in the case of 300

nm wide and 4 um long cantilever ( f = 38 MHz). We note that all devices that we characterized

have comparable mechanical Qs, regardless of their length and operating frequency. Therefore,

we believe that currently Q is limited by surface losses, since all devices have comparable surface

to volume ratio.28 This fact is different from what we previously reported,17 which indicates the

clamping loss as a dominant loss mechanism. Possible explanation would be that the nanobeams in

this work have larger surface to volume ratio due to its smaller widths (200 nm - 300 nm compared

to ∼ 1 µm in previous study), hence they have larger contribution from surface loss.

By further increasing the input RF power, and by using longer devices having smaller spring

constant, the diamond nanomechanical structures could be driven deep into the nonlinear regime

5



(Figure 4). We note that longer devices are “softer” and therefore deflect more for the same applied

voltage, thus easily entering nonlinear regime with the same driving power. Typically, nonlinearity

in small scale mechanical resonators can be phenomenologically modeled using Duffing equation:

[
d2

dt2 +
Ω0

Q
d
dt

+Ω
2
0
(
1+βx2(t)

)]
x(t) =

F(t)
m

(1)

where x(t),Ω0, Q, F(t) and m are the beam displacement, the resonance frequency, mechanical

quality factor, external driving force and effective mass of the resonator, respectively. The cubic

term βx3(t) in the equation, so called ‘Duffing nonlinearity’, determines the nonlinear behavior

of the resonator: when β < 0 resonance tends to move to the lower frequency when amplitude

increases, resulting in “softening”, that is lowering of the spring constant; the opposite is true

when β > 0 and spring “hardening” occurs. Figure 4(a) and (b) show softening of the fundamental

out-of-plane and in-plane modes, respectively, for 8 µm long diamond nanobeam cantilever. On

the other hand, spring hardening is observed in the case of 13 µm long doubly clamped diamond

nanobeam, for both out-of-plane and in-plane modes shown in Figure 4(c) and (d), respectively.

There are many physical origins that can give rise to mechanical nonlinearities, including, but

are not limited to transduction effects, actuation scheme, material properties, non-ideal boundary

conditions, damping mechanics and geometric/inertial effects.29 Based on our FEM simulations

and dipole approximation for force calculation, we believe that in our case nonlinearity is due

to either nonlinear actuation or geometry. Actuation nonlinearity can either cause hardening or

softening depending on the beam separation from the driving electrodes (Figure 1(c)). On the

other hand, geometric nonlinearity, which could be analytically calculated by considering axial

inertia and nonlinear curvature, always induces hardening.30 In the case of cantilevers, shown in

Figure 4 (a) and (b), both modes show softening which can be explained by nonlinear actuation.

As for doubly clamped beams, tension-induced geometric nonlinearity is dominant within device

parameter space explored in this work. Therefore hardening in Figure 4 (c) and (d) can be explained

from tension-induced effect. See Supporting Information for details.
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Nonlinear behavior was further confirmed by hysteresis curves as shown in Figure 5(a) and

(b), which are measured from fundamental out-of-plane and in-plane modes of 19 µm long doubly

clamped diamond nanobeam, respectively. This device was particularly chosen among others as

a representative examples because of its prominent nonlinearity, though, other devices gave the

hysteresis curves as expected.

Our dielectrophoretic actuation scheme introduces an additional effective spring since the actu-

ation force has dependence on position.21 Furthermore, since the force has a quadratic dependence

on applied voltage, the mechanical eigenfrequency is tunable with DC bias, and the amount of shift

in frequency has quadratic dependence on voltage. Figure 6 (a) shows Brownian motion measured

with a spectrum analyzer as the applied DC bias was changed from −9 V to +9 V. Bright spots of

each data column correspond to the Brownian motion resonance location. The solid black line is

a quadratic fit for applied DC bias and shows an excellent match with the theoretical prediction.

In the given range of applied DC bias, the mechanical resonance could be tuned over roughly 260

full width at half maximum of the zero bias Brownian motion peak. We observe a blue shift of

resonance frequency because this motion is in-plane vibration and the effective spring has always

the same sign with the elastic spring. In the case of out-of-plane modes, frequency tuning can be

either red or blue shifted, depending on the height of the beam from the driving electrodes.22

Since the resonance frequency is easily parametrically tuned much more than a linewidth, para-

metric excitation is also expected. Criteria for a resonator to be used for parametric actuation is

given in equation (2).31

∂ f
∂V

∣∣∣∣
Vmax

·Vmax ·
Q
f0

> 2 (2)

where f , V and Q are resonance frequency, amplitude of applied RF voltage and mechanical quality

factor, respectively. f0 is a resonance frequency without RF voltage input and Vmax represents the

maximum voltage that can be applied. Since the spring constant is a function of position, it can

be modeled with Mathieu’s equation with a Duffing nonlinearity. Equation (1) may be modified to
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include parametric tuning as shown below:

[
d2

dt2 +
Ω0

Q
d
dt

+Ω
2
0
(
1+α +βx2(t)−2Γsin2Ω0t

)]
x(t) = 0 (3)

where α is the detuning between the parametric excitation and the fundamental mode Ω0, Γ is

proportional to the parametric excitation amplitude,32 whereas other parameters are defined the

same way as in equation (1). Right hand side of the equation (3) is zero, since there was no direct

driving at resonance frequency. When the resonator with eigenfrequency f0 can be parametrically

excited, its excitation frequency can be 2 f0
n for any integer n. In most of the cases, response

at n = 1 is used since it is the strongest, although the submultiples of it has been observed in

experiment.33 Mathieu’s equation with Duffing nonlinearity (3) can be analytically solved and the

solution predicts its stability on a phase plane, axes of which are detuning and driving amplitude.

Here, we show “instability tongue”34 when doubly clamped diamond nanobeam is parametrically

excited with n = 1. In Figure 6(b) the measured instability tongue is shown when nanobeam was

excited around the twice of its natural frequency of 7.25 MHz. In this experiment, excitation

was done by RF signal generator and the response was measured with spectrum analyzer, with

the amplitude of driven motion was calculated by simple signal processing. Parametric excitation

is particularly interesting for NEMS devices since it can circumvent electric cross talk, which

can be detrimental for nanoscale system,35 and can be used to realize a NEMS oscillator31 and

mechanical memory element.32 Furthermore, parametric oscillators are of interest for mechanical

quality factor enhancement,36 parametric amplification,37 and noise squeezing.38

In summary, we have realized a resonant actuator based on dielectrophoresis for single-crystal

diamond nanomechanical resonators. Actuation of both cantilever and doubly clamped diamond

nanobeams was achieved for both the fundamental out-of-plane and in-plane vibrations. Driving

frequency range spans from a few MHz to nearly 50 MHz, though higher frequency actuation

is expected to be realized by improving the signal-to-noise ratio of the optical interferometric

displacement detection, or moving to other displacement read-out schemes with better sensitivity.
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The dielectrophoretic actuation scheme employed is expected to maintain the mechanical quality

factor of the base diamond device, and also to not compromise the optical properties of integrated

diamond color centers.

Furthermore, our actuation scheme can efficiently drive the mechanical resonance well into the

nonlinear regime, with reasonable RF power levels. Studying physical origins of mechanical non-

linearity in NEMS devices are active field of research, with many open questions unanswered.39–41

To the best of our knowledge, we believe that our work is the first demonstration of nonlinear me-

chanical response of single-crystal diamond resonator. Single-crystal diamond has a great potential

as a nonlinear NEMS platform due to its ultrahigh mechanical quality factor over 300,00018 or even

a million at room temperature.16

Lastly, our actuation scheme is capable of strong frequency tuning simply by applying DC bias,

and leads to useful parametric excitation. Parametric excitation is expected to be important in many

applications including NV− center engineering, since actuation signals can be completely filtered

out from desired NV− center manipulation/read-out signals in frequency domain. Single-crystal

diamond actuation we developed here is expected to be a gateway to a more sophisticated platform

for the control of NV− center via nanoscale mechanics.
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Figure 1: SEM images of (a) 4 µm cantilever and (b) 7 µm doubly clamped beam. These rep-
resent the shortest devices that could be characterized to date. (c) Finite element method (FEM)
simulation is used to calculate applied force to suspended nanobeam with a given geometry and
electrostatic environment. Color map stands for the voltage and the streamlines show correspond-
ing electric field. (d) Vertical force per unit length applied to the beam from (c) is plotted as a
function of beam width and height, 20 V was assumed. It can be seen that there is an optimal
height that maximizes the force, since force goes to zero in the middle of two electrodes due to the
symmetry, and it also goes to zero at the far distance due to the lack of electrical field gradient. It
should be noted that beam thickness is proportional to beam width by the nature of angled-etching
technique.
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Figure 2: (a) Schematic illustration of angled-etching nanofabrication of for suspended dia-
mond nanobeams and the following standard bi-layer MMA/PMMA process for lift-off. Each step
is composed as the following: (i) Electron beam lithography mask is deposited, (ii) top-down reac-
tive ion etching of diamond is performed, followed by the (iii) angled-etching step and (iv) mask
removal. (v) New e-beam resist is deposited, and (vi) electron beam lithography followed by (vii)
metal evaporation and (viii) lift-off are used to define electrodes. (b) High mag SEM image of
7 µm cantilever shows that good alignment can be achieved, on the order of tens of nanometers,
which allows for efficient actuation. (c) SEM image of device array sharing electrodes.
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Figure 3: (a) Optical characterization setup. Fundamental out-of-plane resonant response of
devices shown in Figure 1(a) and (b) are given in (b) and (c), respectively.
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Figure 4: When nanobeams are driven hard enough, they start to show nonlinear behavior. Non-
linear response of 8 µm long cantilever for its (a) out-of-plane and (b) in-plane modes. Softening
of spring was observed for both types of modes. On the other hand, spring hardening was ob-
served in the case of strongly driven 13 µm long doubly clamped diamond nanobeam both for its
(c) out-of-plane and (d) in-plane modes.
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Figure 5: Hysteresis curve of (a) hardening and (b) softening mechanical nonlinearity measured
from 19 µm long doubly clamped diamond nanobeam when frequency was swept up and down.
(a) and (b) are the fundamental out-of-plane and in-plane modes, respectively.

(a) (b) 

Figure 6: (a) Tuning of mechanical resonance using DC bias. With applying ±9V, frequency
tuning range that can be achieved is approximately 260 linewidths. Quadratic nature of tuning can
be used to control the onset of parametric instability for RF power. (b) Typical tongue shape of
parametric instability was observed. Low response spots inside the instability region are attributed
to data acquisition software problems.
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S1. Parameters for efficient actuation. 

The amount of achievable strain at the clamp of cantilever is analyzed, in order to show how 

transduction efficiency and coupling strength scales with shrinking device dimension. Within our 

choice of angled-etching fabrication technique, when 𝜃 is given as a half of bottom apex of 

triangular cross section, width 𝑤 and thickness 𝑡 of nanobeam is related as 𝑡 = !
!
cot𝜃.1 For a 

fixed fundamental resonance frequency 𝑓! =
!!
!!
∝ !

!!
, maximum strain 𝜖  at clamp scales as 

𝜖 ∝ 𝑓!𝑥!,2 where 𝐿 is the length of cantilever and 𝑥! is the displacement at the tip. For a zero 

                                                
* To whom correspondence should be addressed 
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point motion 𝑥!"# = ℏ
!!!""!!

, induced strain scales as 𝜖!"# ∝ 𝑓!𝑥!"# ∝ 𝑔! ∝ 1/𝑤𝐿!, where 

𝑔! is the single-phonon coupling strength. For a fixed voltage 𝑉, applied force to the cantilever 

should be taken into account. After simple calculation, it can be shown that 𝜖! ∝
!! !
!! , where 

𝑃! 𝑉  is the force per length as a function of applied voltage 𝑉. 𝑃! 𝑉  is a function of the 

geometry and is proportional to 𝑉!. By assuming optimal configuration such that maximizes the 

force, 𝜖! for 50-300 nm wide cantilevers is calculated from FEM (Finite Element Method) as in 

Figure S1.  In conclusion, smaller geometry works favorably both for the single-phonon 

coupling strength and the coupling strength at a fixed voltage. In practice, fabrication and NV 

stability will set the limit of achievable device size and hence the coupling rate. In this work, 

200-300 nm is chosen as nanobeam width for the ease of fabrication as well as the ease of read-

out. 

 

Figure S1. Strain at the clamp of cantilever, for the target fundamental resonance frequency, 

increases as the device width (and height) decreases. 

 

S2. Nonlinearity from dielectrophoretic force 
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Due to the configuration of dielectrophortic actuation, applied force has nonlinear components. 

Since nanobeams have other known origins of nonlinear response,3 it is worthwhile to do order 

of magnitude analysis. Taking both geometric and actuation nonlinearities into account, Duffing 

equation can be expressed as in equation (S1). 

𝑑!

𝑑𝑡! +
Ω!
𝑄
𝑑
𝑑𝑡 + Ω!

! 1+ 𝛽!"#$ + 𝛽!"#$ 𝑥! 𝑡 𝑥 𝑡 =
𝐹 𝑡
𝑚  (S1) 

where 𝛽!"#$  and 𝛽!"#$  are Duffing parameters originate from geometrical and actuation 

nonlinearities each. 

Calculating 𝛽!"#$ from FEM is tedious and almost impossible in some cases. However, in our 

system, by approximating nanobeam cross-section as a dipole and electrodes as point charges,4 it 

is possible to obtain simple analytic expression for actuation force. Goodness of dipole 

approximation can be checked in Figure S2(a), where FEM simulation is compared to it. Taking 

power series of actuation force calculated by dipole approximation and considering both 

parametric and cubic terms,5 𝛽!"#$ can be calculated for 8 µμm long cantilever as in Figure S2(b). 

Note that depending on the height of nanobeam, 𝛽!"#$ can be either positive or negative. In the 

case of the cantilever, Duffing parameter can be calculated analytically by taking into account 

axial inertia and nonlinear curvature as in equation (S2).6 

𝛽!"#$ =
𝐸𝐼
𝐿! 𝜙 𝜉 !"𝜙 𝜉 !!"𝑑𝜉

!

!
 (S2) 

where 𝐿 is the length of the cantilever, 𝐸 is Young’s modulus, 𝐼 is the second moment of area, 

𝜙 𝜉  is normalized mode shape, 𝜉 is normalized distance along the beam axis and primes denote 

spatial derivatives. Figure S2(c) shows how Duffing parameters scale with the length of 

cantilever. Since 𝛽!"#$ > 0, softening behavior of cantilevers in Figure 4(a) can be explained 

from nonlinearity of actuation force.  In case of the doubly clamped beam, tension-induced 
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nonlinearity7 𝛽!"#$ = !"
!!!

𝜙 𝜉 !"𝑑𝜉!
!

!
 , where 𝐴 is the cross sectional area, is the most 

significant factor within the parameter space used in our experiments. Therefore, as it can be 

seen in Figure S2(d), this tension-induced nonlinearity results in hardening behavior observed in 

Figure 4(c). 

 

Figure S2. (a) Comparison of applied force per unit length calculated by FEM and dipole 

approximation. 300 nm wide cantilever, electrode gap of 400 nm, and applied voltage of 5 V 

were used for FEM simulation. (b) Duffing parameter from nonlinear actuation force, for 8 µμm 

long cantilever. (c) Comparison of Duffing parameters for cantilever as a function of the length. 

(d) Comparison of Duffing parameters for doubly clamped beam as a function of the length. 

Beam height of 400 nm was assumed for the calculation of nonlinear actuation. 

(a) (b)

(c) (d)
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S3. f · Q product of diamond nanobeams 

f · Q product is an important figure of merit for many high precision sensor applications.8 

Measured f · Q product of fabricated devices are given in Figure S3. From this figure, it can be 

seen that our devices are most likely limited by surface loss, which is supposed to give linear 

dependence of f · Q product on frequency when surface-to-volume ratio is fixed.9 

 

Figure S3.  f · Q product of diamond nanobeams with linear fit. Linear relationship suggests that 

surface loss is likely the limiting factor of mechanical energy loss. 
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