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We define dynamical universality classes for many-body systems whose unitary evolution is punctuated
by projective measurements. In cases where such measurements occur randomly at a finite rate p for each
degree of freedom, we show that the system has two dynamical phases: “entangling” and “disentangling.”
The former occurs for p smaller than a critical rate pc and is characterized by volume-law entanglement in
the steady state and “ballistic” entanglement growth after a quench. By contrast, for p > pc the system can
sustain only area-law entanglement. At p ¼ pc the steady state is scale invariant, and in 1þ 1D, the
entanglement grows logarithmically after a quench. To obtain a simple heuristic picture for the entangling-
disentangling transition, we first construct a toy model that describes the zeroth Rényi entropy in discrete
time. We solve this model exactly by mapping it to an optimization problem in classical percolation. The
generic entangling-disentangling transition can be diagnosed using the von Neumann entropy and higher
Rényi entropies, and it shares many qualitative features with the toy problem. We study the generic
transition numerically in quantum spin chains and show that the phenomenology of the two phases is
similar to that of the toy model but with distinct “quantum” critical exponents, which we calculate
numerically in 1þ 1D. We examine two different cases for the unitary dynamics: Floquet dynamics for a
nonintegrable Ising model, and random circuit dynamics. We obtain compatible universal properties in
each case, indicating that the entangling-disentangling phase transition is generic for projectively measured
many-body systems. We discuss the significance of this transition for numerical calculations of quantum
observables in many-body systems.
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I. INTRODUCTION

When left unobserved, quantum systems tend to evolve
toward states of higher entanglement [1–18]. Unitary
evolution of a many-body wave function, with a
Hamiltonian or with quantum gates, typically drives it
towards a state with volume-law scaling for the entangle-
ment entropies of subsystems. By contrast, local measure-
ments can reduce the entanglement in a quantum system by
collapsing degrees of freedom. A measurement of a single
spin-1=2, say, leaves that spin in a definite spin state and
disentangles it from the rest of the system.
What happens to the entanglement in a quantum system

when measurements occur repeatedly during the evolution
at a fixed rate? For simplicity, let us model the local
measurements as occurring at random times and locations,

at a nonzero rate p per degree of freedom. Do such
measurements collapse the many-body wave function into
something close to a product state with area-law entangle-
ment, or can volume-law entanglement survive?
Here, we answer this question for the simplest type of

measurement, which is a projective measurement of a
discrete degree of freedom. We show that both types of
dynamics can occur, leading to volume-law or area-law
entanglement, depending on the value of the measurement
rate p. These two distinct dynamical phases, “entangling”
and “disentangling,” are separated by a continuous phase
transition at a finite value of p ¼ pc (Fig. 1). (We call the
latter phase disentangling because if a finite system is
initiated in a volume-law entangled state, the dynamics will
eventually reduce the entanglement to area law.)
In this paper, we introduce two versions of this tran-

sition: the “generic” entanglement phase transition and a
toy model for it that is amenable to exact analysis. We show
in later parts of the paper that the generic transition occurs
in models that are not fine-tuned, including physically
sensible ones, and that it affects the dynamics of the von
Neumann entanglement entropy and of certain equal-time

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 9, 031009 (2019)

2160-3308=19=9(3)=031009(21) 031009-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.9.031009&domain=pdf&date_stamp=2019-07-22
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevX.9.031009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


correlation functions. First, however, we address the toy
model for the transition in depth. While the toy model is in
a different universality class from the generic transition, it
captures many qualitative features of the phase diagram and
the transition remarkably well.
The toy model is an exact description of the dynamics

of the zeroth Rényi entanglement entropy (S0) in a
system with discrete-time dynamics that has a circuit
representation [19].
For circuit dynamics without measurement, the well-

known “minimal-cut” formula gives S0 exactly as a
function of time so long as the dynamics is not fine-tuned
(see Ref. [9] for a rigorous proof in one setting). We show
that the minimal-cut formula still holds exactly when there
are projective measurements—our key insight is that it
should be applied to a network in which some bonds are
“broken” by the presence of a measurement.
The minimal-cut representation of S0 yields an effective

classical optimization problem: finding the optimal cut
through a bond percolation configuration. We use this
mapping to characterize the scaling behavior of the
entanglement (S0) and mutual information (I0) at and on
both sides of the critical point of the toy model, which is at
the bond percolation threshold pc. The growth of entan-
glement in the three regimes is illustrated schematically in
Fig. 2 for a 1þ 1D system initialized in an area-law state.
The logarithmic entanglement growth at pc is a conse-
quence of scale invariance, which also leads to power-law
correlations of a certain type between distant spins. We
show that the three types of growth in Fig. 2 also character-
ize the regimes of the generic problem.
The existence of a transition in the toy model has a very

simple interpretation, which applies in any spatial dimen-
sion d. Namely, when the measurement rate exceeds pc, we
effectively break enough bonds for the circuit to fall apart
into disconnected pieces. Such pieces are disentangled
from each other, and the circuit no longer mediates long-
range correlations.
As we show below, the generic transition occurs at a

value of pc that is smaller than the value suggested by the
dynamics of S0. In other words, as p is increased,
entanglement production ceases well before the circuit
falls apart in the above sense. We diagnose the generic
transition using the von Neumann entanglement entropy
(and higher Rényi entropies). We focus on 1þ 1D spin
chains, where quantum simulations are feasible up to at

least L ¼ 24 using matrix product states [20]. The results
from the toy model guide our analysis of the data from
these systems. Strikingly, many qualitative features of the
toy model continue to hold, and we show clear evidence for
a transition at a finite pc. The universality class of the
transition, however, is distinct from classical percolation, as
we show by computing the correlation length exponent
close to the transition. In particular, as the transition is
approached, the characteristic length scale and timescale
diverge as ξ ∼ jp − pcj−ν and τ ∼ jp − pcj−νz, respectively,
with ν ¼ 2.03ð5Þ and a dynamical exponent z that is
consistent with z ¼ 1. We obtain consistent exponent
estimates for two different models, including a determin-
istic Floquet circuit and a random unitary circuit (each with
random measurements).
The specific models we study all have discrete time

dynamics. While this discretization is important in order for
the dynamics of S0 to be well defined [21] (i.e., for the
construction of the toy model), we do not expect that it will
affect the existence or universality class of the generic
transition that is manifest in physically meaningful quan-
tities (such as the von Neumann entanglement entropy S1 or
the mutual information between separated spins). It is also
possible to consider a continuous quantum measurement
process, which is obtained as a limiting case of very
frequent “weak” measurements [22,23]. The production
of entanglement in this setting has been considered for free
fermions in Ref. [24], where an arbitrarily weak measure-
ment was found to lead to an area-law state. This result was
explained in terms of a quasiparticle picture, making use of
integrability [24]. We conjecture that nonintegrable models
subjected to continuous measurement behave similarly to
the models we study here.
We briefly discuss the outlook for an analytical descrip-

tion of the dynamical transition that we find, making
connections with recent results for random unitary circuits
[9,18,25,26] and random tensor network states [27,28].

FIG. 2. Schematic illustration of entanglement production after
a quench from a product state in 1þ 1D. The growth of bipartite
entanglement entropy between the two semi-infinite halves of an
infinite chain is shown. In the entangling phase (p < pc; upper
curve), the entanglement grows “ballistically” with time. At the
critical point (p ¼ pc; middle curve), the entanglement grows
logarithmically. In the disentangling phase (p > pc; lower
curve), the entanglement saturates to a finite value. (Random
fluctuations are averaged over.)

Disentangling 
phase

Entangling
phase

Critical
dynamics

FIG. 1. Phase diagram as a function of p, the rate at which
measurements are made for each degree of freedom. Arrows
indicate renormalization-group flow.
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Recently, Ref. [28] discussed an entanglement phase
transition in a random tensor network state [27] as the
bond dimension was varied. We discuss the possibility that
the conformal field theory discussed there also describes
the dynamical transition.
The entanglement structure of a quantum state has a

direct bearing on how difficult it is to simulate the dynamics
of that state using a classical computer [29]. Thus, the
entanglement transition may have important implications
for simulating quantum evolution with measurement, as we
discuss in Sec. VI B.
Finally, we mention earlier work by Aharonov [30], who

considered the possibility of a transition in which the state of
a quantum computer is affected by decoherence. Aharonov
used the percolation connectivity of the circuit to demon-
strate that when decoherence events are sufficiently fre-
quent, themixed state of the qubitsmust be associatedwith a
finite entanglement length scale. On the other hand, in the
presence of active quantum error correction, a very low rate
of decoherence can allow for nontrivial entanglement of
qubits implementing a certain algorithm. We emphasize,
however, that the transition envisaged in Ref. [30] is in the
density matrix of amixed state (with the mixing arising from
environmental decoherence). In the problem we study here,
on the other hand, there is no transition of this type: The
mixed state obtained by averaging over measurements is
trivial throughout the phase diagram, as we emphasize in
Sec. II. The transition we introduce is in the entanglement
structure of pure states.

II. MODELS AND SETTING

The dynamics we study consists of unitary evolution of a
spin-1=2 chain interspersed with single-spin measure-
ments. We use quantum dynamics in discrete time, where
each time step involves the application of unitary gates to
pairs of adjacent spins. This discretization allows us to
define a nontrivial solvable toy model (the discrete-time
dynamics of S0), and it simplifies the numerical study of the
generic problem. The dynamical protocol we describe
could be modified in various ways, but we expect the
universality class of our generic transition to be robust (see
the discussion at the end of this section).
Our 1þ 1D quantum circuits are arranged with a

“running bond” configuration of unitaries, as in Fig. 3.
We define units of time such that one time step involves
applying one layer of unitaries (the time period of the
circuit is two layers).
Measurement events take place randomly: After each

layer of unitaries, each spin has a probability p of having its
z component (Sz) measured. A detail regarding the boun-
dary conditions is that Fig. 3 shows a layout in which the
two boundary spins have two opportunities to be measured
for each unitary that is applied to them: We use this layout
in Sec. III as it is natural for our classical mapping, but for
the quantum simulations in Sec. IV, the boundary spins

have only one chance to be measured per unitary applied
to them.
In addition to the randomness in the times and locations

of measurements, which we have put in by hand, there
is intrinsic randomness in the measurement outcomes,
which occur with the usual probabilities jh↑jΨðtÞij2 and
jh↓jΨðtÞij2, where jΨðtÞi is the state prior to the measure-
ment. After measuring, we project onto the value of Sz
obtained. The state must be renormalized after each
projective measurement, so its dynamics are both stochastic
and nonlinear. Nonetheless, the state remains pure. This
pure state determines the probabilities for measurements,
conditioned on the outcomes of previous measure-
ments [31].
We simulate two types of quantum dynamics:
(i) Random unitary dynamics, in which every “brick” in

Fig. 3 is chosen randomly and independently from
the unitary group (with the Haar measure). Studying
1þ 1D random unitary circuits and related models
has elucidated the coarse-grained dynamics of en-
tanglement and quantum operators in more realistic
systems [9,13,18,25,32–43]. Here, we extend the
model to dynamics with measurement.

(ii) “Floquet” dynamics, in which the unitary circuit is
deterministic and periodic in time (in the absence of
measurements). We study this case in order to check
that our results are not dependent on the randomness
of the unitaries in case (i). The fixed unitary we use
(the elementary brick for Fig. 3) is a product of two
noncommuting unitaries. For spins at positions x and
xþ 1, the unitary is (Ŝi ¼ σ̂i=2)

Ux;xþ1 ¼ e−i½ϕxxσ̂xðxÞσ̂xðxþ1Þþθxσ̂xðxÞþθxσ̂xðxþ1Þ�

× e−i½ϕzzσ̂zðxÞσ̂zðxþ1Þþθz σ̂zðxÞþθzσ̂zðxþ1Þ�: ð1Þ

FIG. 3. Circuit representation for evolution of the quantum
system. Bricks indicate unitary operators (specified in the text).
Dots indicate spacetime locations where measurements may take
place. Note that the full dynamics is nonlinear since the state must
be renormalized after each projective measurement event.
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where ϕxx ¼ 0.3, ϕzz ¼ 0.6, θx ¼ 0.2, and θz ¼ 0.4.
This unitary operation defines a version of the
Floquet Ising model with longitudinal and transverse
fields.

Our main tools for characterizing the dynamics are the
Rényi entanglement entropies for subsystems A of the spin
system,

SnðAÞ ¼
1

1 − n
log2 TrAρnA; ð2Þ

where ρA ¼ TrĀjΨihΨj is the reduced density matrix of A.
At n → 1, this definition reproduces the von Neumann
entropy

S1ðAÞ ¼ −TrAρA log2 ρA: ð3Þ

We measure all entropies in bits.
It is worthwhile to note that the entanglement entropy Sn

for n > 1 is constrained by the inequalities [44]

S∞ ≤ Sn ≤
n

n − 1
S∞; ð4Þ

where S∞ ¼ limn→∞Sn ¼ log2ð1=λmaxÞ, and λmax is the
largest eigenvalue of ρA. These inequalities imply that any
entanglement entropy Sn with n > 1 can differ from S∞ by
at most a constant factor n=ðn − 1Þ, and consequently, all
Sn with n > 1must have the same scaling with system size.
As we show below, this is borne out in our numerical
results, which indicate a single transition for all Sn
with n ≥ 1.
We also study the Rényi mutual information Inða;bÞ

between two separated spins (labeled here a and b):

Inða;bÞ≡ SnðaÞ þ SnðbÞ − Snða ∪ bÞ:

In a random system, the In are useful measures of the
strength of quantum correlations between spins a and b
because they are independent of the choice of local bases
for these spins [45]. We show below that, in the present
case, they reveal a remarkable scale-invariant entanglement
structure at the transition.
Let us briefly clarify what the dynamical transition does

and does not imply. For simplicity, assume for a moment
that the dynamics is deterministic except for the intrinsic
randomness in the measurement outcomes. As noted above,
the evolving quantum state remains pure. This pure state,
which we temporarily denote jΨðo1;…;oNÞi, depends on the
previous measurement outcomes o1;…; oN , and it deter-
mines the probabilities for measurement outcomes at a
particular time given these previous outcomes. This pure
state must be contrasted with the mixed state that is
obtained if we average over measurement outcomes. Let
us denote the average over measurement outcomes by
Eo1;…, and let h� � �io1;… be the expectation value of an

observable in the state jΨðo1;…;oNÞi. The averaged density
matrix is

ρav ¼ Eo1;…;oN jΨðo1;…;oNÞihΨðo1;…;oNÞj: ð5Þ

This mixed state ρav evolves linearly, in a standard way.
Generically, we expect it simply to evolve to a trivial
infinite-temperature Gibbs state, for any nonzero rate of
measurement. The dynamical phase transition we discuss is
therefore not apparent in this object, and thus, it is not
apparent in correlation functions such as

Eo1;…hσ̂zðaÞσ̂zðbÞio1;… ≡ Trρavσ̂zðaÞσ̂zðbÞ ð6Þ

that are straightforwardly averaged over previous meas-
urement outcomes. As noted above, the transition is
detected by more complex local correlation functions,
for example,

Eo1;…½hσ̂zðaÞσ̂zðbÞi2o1;… − hσ̂zðaÞi2o1;…hσ̂zðbÞi2o1;…�: ð7Þ

The squares inside the average imply that experimental
measurement of such a quantity would be a severe
statistical challenge, as a result of the need for extensive
postselection. Therefore, a more likely application of our
results is to questions of computational difficulty (see
Sec. VI B).
To end this section, let us discuss the issue of robustness

of our results to the choice of protocol. Recall that we study
both a toy model that describes the transition of S0 and the
more physical (generic) transition that is captured by the
higher Rényi entropies. The question of robustness is
mostly of interest for the latter, but let us first comment
on the former.
The dynamics of S0 (specifically) is very sensitive to the

fact that the dynamics is of circuit type. Note that S0 is not
typically a physically significant quantity [46] because of
its extreme sensitivity to weak perturbations of the state.
Nevertheless, within the setting of circuit dynamics, the
universal results we find for S0 are robust for that quantity.
Our classical percolation mapping is exact for any circuit of
the form shown in Fig. 3, irrespective of the choice of
unitaries in the circuit, so long as they are not fine-tuned.
While a full presentation of results is left for later

sections, we note here that, in terms of the physical
transition, our results suggest that protocols (i) and (ii) listed
above are in the same universality class. In Table I, we show
the location of the critical point (which, of course, depends
on the nature of the unitary operator being applied and is
therefore nonuniversal) and the correlation length exponent
[48] obtained for each type of dynamics by studying the
different Rényi entropies. For a given type of dynamics,
different Rényi entropies with n ≥ 1 all give compatible
estimates of pc, consistent with the idea that there is just a
single physical transition in the entanglement structure.
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The protocols we defined above could be varied in many
ways. For example, one could replace circuit dynamics with
Hamiltonian dynamics in continuous time (with measure-
ments remaining discrete events). We expect this difference
to be unimportant for the long-length-scale physics of the
transition. Note, for example, that there is generically no
difference in symmetry between the two situations. In the
absence of measurements, continuous-time Hamiltonian
dynamics (with a constant Hamiltonian) have time trans-
lation symmetry, but this symmetry is destroyed by mea-
surements, which inevitably induce randomness.
The intrinsic randomness of measurement outcomes also

leads us to conjecture that the universality class of the
transition can persist for dynamics in which the randomness
in the times and locations of measurements is removed
since the dynamics remains random anyway. For example,
for continuous-time dynamics, one could make measure-
ments in some periodic fashion, with a variable period t0,
and we expect a transition as a function of the dimension-
less rate ℏ=ðt0JÞ, where J is the energy scale of the
Hamiltonian. “Weak”measurements can also be substituted
for projective measurements [24].
For the rest of the paper, we focus on the circuit dynamics

(i) and (ii) and higher-dimensional generalizations.

III. ZEROTH RÉNYI ENTROPY AND
CLASSICAL OPTIMIZATION

The zeroth Rényi entropy of entanglement between a
subsystem and its exterior, S0, counts the number N of
nonzero eigenvalues of the reduced density matrix:
S0 ¼ log2N. Since arbitrarily small eigenvalues are counted,
S0 can change discontinuously in response to a small
perturbation, and as a result, we do not usually think of it
as a physically significant quantity. Still, in an idealized
system, it can be a useful conceptual starting point for

thinking about the von Neumann and higher-order entangle-
ment entropies [49].
The tool for calculating S0 is the “minimal cut,” a

geometrical upper bound on entanglement in a tensor
network which is a useful starting point for thinking about
the scaling of entanglement in various situations ranging
from holography [27,50,51] to unitary dynamics [6,9,13].
The minimal cut gives S0 exactly for our dynamics (for
both choices of unitaries in Sec. II), as would be expected
from parameter counting and as we confirm numerically
below [52].
We expect the mapping below for S0 to be exact

for the present circuit geometry for any non-fine-tuned
choice of the unitaries in the network, whether random or
deterministic. This mapping is also likely to describe higher
Rényi entropies in special limiting cases, as discussed in
Sec. VI C, though not generically.
In the absence of projective measurements, S0ðAÞ is

given exactly by the number of links in the circuit that must
be cut in order to separate the physical “legs” (external
bonds at the top boundary) for the spins in A from those for
the spins outside A. In the presence of projective measure-
ments, there is a simple generalization of this picture, which
is illustrated in Fig. 4.
When a projective measurement is made, the state of the

measured spin at that point in its history is fixed, for
example, to ↑. To express the wave function (for a given
outcome of the measurement), it is then no longer necessary
to sum over the spin index on this site. One can therefore
think of a measurement as “breaking a bond” in the
classical network.
If the broken bonds are sufficiently dense that one

subsystem is completely isolated from the other—i.e., if

FIG. 4. Mapping between circuit dynamics with measurement
(left panel) and bond percolation on the square lattice (right
panel). For the purposes of the minimal-cut picture, a projective
measurement breaks a bond. The minimal cut may pass through
broken bonds at zero cost. For the figure on the right, which is
topologically equivalent to the one on the left, we represent each
unitary as the vertex of a square lattice. Broken bonds are dashed
(unoccupied), and unbroken bonds are solid (occupied). This
configuration corresponds to bond percolation on the square
lattice, with a probability 1 − p for a bond to be occupied. The
minimal cut lives on the dual square lattice.

TABLE I. Critical measurement rate pc and correlation length
exponent ν obtained numerically by studying different orders n of
the Rényi entropy Sn and different dynamical protocols.

Rényi
entropy
order, n

Simulation
dynamics

Critical
measurement

rate, pc

Correlation
length

exponent ν

0 (Exact) 1=2 4=3
Classical simulation 0.51� 0.01 1.24� 0.13
Random unitaries 0.50� 0.05 1.36� 0.10
Floquet dynamics 0.51� 0.01 1.36� 0.21

1 Random unitaries 0.26� 0.08 2.01� 0.10
2 0.27� 0.03 2.31� 0.75
∞ 0.26� 0.08 2.25� 0.25

1 Floquet dynamics 0.21� 0.16 1.74� 0.45
2 0.22� 0.05 2.07� 0.22
∞ 0.21� 0.05 2.03� 0.07
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one can make a cut that separates the two subsystems
without passing through any unbroken bonds—then the
two subsystems can have no entanglement. If no such cut is
possible, then the zeroth Rényi entropy is equal to the
number of unbroken bonds that must be cut in order to
separate the two subsystems.
The above picture applies for each set of measurement

outcomes, which we should, in principle, average over
using Born’s rule. However, this picture shows that S0 is
independent of the measurement outcomes and depends
only on their times and locations.
In this way, the problem of calculating S0 for some

subsystem becomes equivalent to an optimization problem
in a classical percolation configuration. Some proportion p
of bonds in a network are broken, and one must determine
the minimal number of additional bonds that should be cut
in order to separate the subsystem from the rest of the
network. This mapping is illustrated in Fig. 4.
One can generalize this mapping to any number

of dimensions. If the number of spatial dimensions
is d, the minimal cut is a surface of d − 1 dimensions
(see Sec. V). For the rest of this section, we restrict our
attention to 1þ 1D, where the minimal cut is a path.
Problems of finding a minimal-cost path in a disordered
mediumarewell studied in themathematical literature under
the name “first passage percolation” [53]. Reference [54]
contains rigorous results for the present case, where steps of
the path cost either zero or unity. Below, we give a heuristic
discussion that is consistent with Ref. [54].
The classical percolation problem can be approached

computationally using standard numerical algorithms,
which we describe in Appendix B. Briefly, we simulate
a rotated square lattice (as shown on the right-hand side of
Fig. 4) with width L and depth t, of which each bond has a
cost of either zero (with probability p) or unity (with
probability 1 − p). Here, L is the number of spins in the
spin chain, which is equal to the number of steps on the
dual lattice required to traverse the network from left to
right. The time t is equal to the number of layers of unitary
operations applied, which is the number of steps required to
traverse the network from top to bottom. (For example,
Fig. 4 shows L ¼ 6 and t ¼ 5.) For a given random
realization of the network, and for a given choice of
subsystem, we search deterministically for the minimal-
cost pathway that separates the subsystem from the rest of
the network. (Such a pathway may, in general, extend
outside the network and may not be unique.) Note that S0 is
defined as the total cost of this minimal-cost pathway,
which corresponds to the number of unbroken bonds that
must be cut in the circuit in order to separate the subsystem
from the rest of the network. All data presented in this
section are averaged over many random realizations of the
network for each choice of parameters.
In Fig. 5, we check the results of this approach against

data from a full matrix product state simulation of the

random unitary circuit (we modify the boundary condition
of the percolation problem to match those used in the
quantum simulation, Sec. II). One can see that the two sets
of data are very close. A small systematic error appears in
the quantum estimation of S0 due to spurious small
eigenvalues of the reduced density matrix that arise from
numerical truncation error. This issue is discussed further in
Appendix B 2.
In the remainder of this section, all results are taken from

the classical percolation network simulation, which is
significantly faster computationally.

A. Universal dynamics of S0ðtÞ
Given the percolation picture, one can understand the

dynamics of the Hartley entropy S0 as a function of time t
using the following scaling arguments. Let the initial state
at time zero be unentangled. We first study the growth
of entanglement, between two halves of the system, in the
limit where the system size L → ∞. In this case, the
minimal cut meanders from the top to the bottom of
the circuit, as illustrated in Fig. 4 [55].
One can understand the existence of two phases for S0 by

considering the properties of this cut deep in either of the
two phases, where p is either close to zero or close to unity.
At small p, broken bonds exist only in small, isolated

clusters. The minimal cut is therefore forced to pass
through a number of unbroken bonds that is proportional
to t with an Oð1Þ coefficient. This situation is shown in
Fig. 6. In this phase, randomness in the location of
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FIG. 5. Example comparison between the unitary circuit and
classical percolation results for the zeroth Rényi entropy, S0,
between two halves of a spin chain that has undergone unitary
evolution. In this example, the circuit contains L ¼ 24 spins, and
the evolution time is t ¼ 48. The value of p on the horizontal axis
represents the probability of measurement for each spin after each
time step. The magenta circles with error bars show the result of
the full simulation of the unitary circuit, while the black line
shows the result of the classical percolation simulation. The inset
shows the same data on a logarithmic scale.
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measurements has a subleading effect on the entangle-
ment, giving subleading Kardar-Parisi-Zhang fluctuations
[56,57], as for purely unitary dynamics with random-
ness [9,18,42].
At p close to unity, on the other hand, broken bonds

predominate over unbroken bonds, and there is a connected
cluster of unbroken bonds that spans the entire system.
Thus, at p > pc, the only contribution to the entanglement
comes from passing through unbroken bonds located near
the starting point of the cut. (For the bipartite entanglement,
this starting point is at the top center of the network.) Once
this small set of unbroken bonds has been traversed, the
minimal cut can proceed arbitrarily far in the time direction
using only broken bonds, and consequently, the average S0
becomes independent of t at large t. This case is illustrated
in Fig. 7.

Let us now consider scaling at and near the critical point.
The percolation threshold for the square lattice is pc ¼ 1=2.
At p ¼ pc, the clusters of broken bonds have a scale-
invariant fractal structure. A key point is that adjacent
clusters of some large size, of order l, approach each other
to a distance of one lattice spacing (in fact, clusters that
approach each other to unit separation do so at a large
number of different places, of order l3=4 [58]).
Consequently, the minimal cut can pass from one large
“empty chamber” to an adjacent one, of similar scale, for
unit cost.
At the top of the network, where the cut is anchored, the

minimal path typically passes into an empty chamber of
size Oð1Þ. It then passes through a sequence of larger
chambers until it reaches one of size OðtÞ and exits the
system. Typically, at each step, the path can find a chamber
that is larger by an Oð1Þ factor than the previous one. This
progression is illustrated schematically in Fig. 8. Therefore,
the total number of chambers in the sequence is only of
order ln t, and

S0ðt; pcÞ ≃ A ln t: ð8Þ

This logarithmic scaling for a critical first passage is
proved in Ref. [54]. The coefficient A, which can be
thought of as an entanglement per scale, is universal as a
result of the scale invariance of the process. Below, we
estimate A ¼ 0.27ð1Þ.
The typical size ξ of the empty chambers is finite for

p≲ pc, but it diverges with the correlation length exponent
as pc is approached:

ξ ∼ 1=jp − pcjν: ð9Þ

t 

x 

FIG. 6. Cartoon of the minimal cut in the entangling phase for
S0 (at L ¼ ∞). The small white domains are clusters of broken
bonds: We only show those clusters that the minimal cut passes
through. A minimal cut is shown traversing the spacetime patch.
The red sections have nonzero cost per unit length, while the
green regions have zero cost. In the entangling phase, the cost of
the minimal cut scales like t (with subleading KPZ fluctuations),
so S0ðtÞ ∼ t.

t 

x 

FIG. 8. Cartoon for the scaling argument showing S0ðtÞ ∼ log t
at the percolation critical point (cf. Figs. 6 and 7). The minimal
cut passes through the sequence of white domains shown in blue
and white. Writing the linear sizes of consecutive domains in this
sequence as R1; R2;…, the ratio Riþ1=Ri is typically larger than 1
(see text), so for an i of order log t, the minimal cut reaches a
cluster of OðtÞ size that borders the boundary and the sequence
ends. Domains i and iþ 1 typically approach each other to within
one lattice spacing, so the cost scales as the number of domains in
the sequence.

t 

x 

FIG. 7. Cartoon of the minimal cut in the disentangling phase
for S0 (cf. Fig. 6). The clusters of broken bonds now percolate,
forming the infinite white region. The cost of the minimal cut
remains finite as t → ∞: Only a finite number of unbroken bonds
need to be traversed to reach the infinite white cluster. Therefore,
S0ðtÞ ∼ t0.
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For classical percolation in two dimensions, the critical
exponent ν ¼ 4=3. The part of the minimal cut within ξ of
the top of the sample costs A ln ξ, as above. At farther
distances from the starting point, the path travels through
chambers with size of order ξ. Each chamber-to-chamber
crossing involves passing through an order-unity number of
unbroken bonds, and consequently, the minimal cut passes
through a total number S0 ∼ t=ξ of unbroken bonds; thus,

S0ðt; pÞ ∼ ðpc − pÞν × t; ðp≲ pcÞ: ð10Þ

In other words, the entanglement S0 at p < pc grows
without bound as a function of time, with a growth rate that
vanishes as p → pc.
At p≳ pc, the minimal cut escapes to the infinite cluster

of unbroken bonds after a section of length OðξÞ at the top
of the lattice. On scales smaller than ξ, the critical scaling
applies, giving a cost A ln ξ, so that

S0ðt; pÞ ≃ Aν ln

�
1

p − pc

�
ðp≳ pcÞ: ð11Þ

The above results are all limiting cases of the general
scaling form

S0ðt; pÞ ¼ A ln ξþ Fðt=ξÞ; ð12Þ

which can be obtained by imagining rescaling both t and ξ
by a constant factor and repeating the considerations above.
The asymptotics of F for large and small arguments are
determined by Eqs. (10) and (11). Generalizations of
Eq. (12) will be useful to us below in extracting exponents
numerically. This sort of scaling form (with length in place
of time) has also been derived for scaling of higher Rényi
entropies in critical random tensor network states [28], by a
different kind of reasoning.
The scaling results of Eqs. (8)–(12) can be easily

generalized to the case where the system size is finite and
the time t ≫ L. In this case, the minimal cut travels a total
horizontal distance L=2, moving from the top center of the
lattice to one of the lateral edges. The above results hold ifwe
replace t with L in Eqs. (8)–(12), except that the scaling
function F in Eq. (12) is different. If t and L are both finite,
the scaling form has an additional dependence on t=L. In
general, a nonuniversal speed v would enter, but here it is
fixed to unity by the symmetry of the square lattice between
timelike and spacelike directions. We comment further on
the symmetry between t and L in the following section.
The scaling expectations above can be tested using our

numerical simulations. First, Fig. 9(a) shows S0ðtÞ for a
range of values of p (in a system of fixed aspect ratio,
L ¼ 4t). As expected, S0 grows linearly in t when p < 1=2
and remains constant in the limit of large t at p > 1=2.
The inset shows that our data are also consistent with the
logarithmic dependence S0 ∝ ln t at p ¼ 1=2.

In the entangling phase, we may define an asymptotic
entanglement growth rate (for a quench from an area-law
state) as well as an entropy density s0 associated with the
volume-law entanglement after saturation. The latter is
given by

S0ðt → ∞; LÞ ≃ s0 ×
L
2
: ð13Þ

The growth rate is given by

S0ðt; L → ∞Þ ≃ v0s0 × t; ð14Þ
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FIG. 9. Growth of the minimal-cut cost S0 separating two
halves of the classical percolation network, as measured by
numerical simulations. (a) Dependence of S0 on time t for a
network with aspect ratio L ¼ 4t (note the double logarithmic
scale). Different curves correspond to different values of p,
ranging from p ¼ 0 (topmost curve) to p ¼ 0.9 (bottom curve) in
steps of 0.1. The dashed lines show, respectively, the dependence
S0 ∝ t and S0 ¼ const. The inset shows S0 at p ¼ 0.5 on a
semilogarithmic scale, and the thin solid line shows a fit
to the form S0 ¼ A ln tþ B, which gives A ¼ 0.27� 0.01 and
B ¼ 0.063. (b) The rate of entanglement growth v0s0 as a
function of p, extracted by measuring the linear slope of the
data in panel (a). The red line shows v0s0 ∝ ðp − pcÞ4=3, as
suggested by Eq. (10). (c) The coefficient of the volume-law
entanglement, s0, as a function of p, which is extracted by
measuring the linear slope of the dependence S0ðLÞ ∝ s0L for
networks with t ¼ 4L. The red line is identical to the one in (b).
All data in this figure are averaged over 4000 realizations of the
random network.
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where (by definition) v0 is the “entanglement speed” for the
zeroth Rényi entropy. The quantities v0s0 and s0 are plotted
as functions of p in Figs. 9(b) and 9(c). Both vanish as
p → pc, consistent with Eq. (10) (and the analogous
equation for the opposite regime of aspect ratio), from
which we expect

s0 ∼ ðpc − pÞ4=3; ð15Þ
for the entropy density at p≲ pc. The equivalence between
v0s0 and s0 as a function of p [seen in Figs. 9(b) and 9(c)]
suggests an entanglement velocity v0 ∼ 1, which is implied
by the symmetry of the lattice.
More generally, in the entangling phase, one can under-

stand the coarse-grained dynamics of the entanglement
using a coarse-grained minimal membrane picture similar
to that in the unitary case [9,26,59]. This picture applies to
more general initial states and more general choices of
subsystem, and to general dimensionality.
Let us now consider how to make use of the scaling form

Eq. (12) to extract pc and ν in numerics. In a system of
fixed aspect ratio (we now take t ¼ 4L), we have the
scaling form S0ðt; pÞ ¼ A lnLþ GðL=ξÞ, as noted above.
This scaling means that if we subtract S0ðt; pcÞ from
S0ðt; pÞ, we obtain a pure scaling function, without the
logarithmic term:

S0ðL; pÞ − S0ðL; pcÞ ¼ G̃ððp − pcÞL1=νÞ: ð16Þ
We should therefore see a scaling collapse if we plot the
left-hand side as a function of ðp − pcÞL1=ν. Such a
collapse is demonstrated in Fig. 10.
In the present case, pc and ν are known analytically, but

this kind of scaling collapse will be useful in the next
section, where the analogous quantities must be determined
empirically. To get an idea of the precision of this process,
here one can also attempt to do an unbiased search for the
values of pc and ν that produce the best scaling collapse of
the data. Our algorithm for this search is described in
Appendix A. Briefly, this algorithm seeks to minimize an
objective function that is equal to the sum of the square
residuals of all curves S0ðp; LÞ − S0ðpc; LÞ from their
common mean at a given value of ðp − pcÞL1=ν, summed
over all unique values of ðp − pcÞL1=ν that are present in
the data set. A simple gradient descent search returns the
values of pc and ν that minimize this objective function.
Performing such a search using the data in Fig. 10(a)

yields pc ¼ 0.51� 0.01 and ν ¼ 1.24� 0.13, as listed in
Table I. Closely matching results are obtained if one
analyzes data for S0 obtained from the “quantum” simu-
lations of the random unitary circuit or Floquet dynamics,
which are restricted to smaller size. These scaling collapses
are shown below in Figs. 14(b) and Table I, and all are
consistent with the exact values pc ¼ 1=2 and ν ¼ 4=3 for
two-dimensional percolation. In Sec. IV, we apply our
algorithm for data collapse to the higher-order Rényi

entropies S1, S2, and S∞ near the generic transition, where
no such exact values are available.

B. Spatial correlations and long-range entanglement

The critical stationary state at pc has power-law spatial
correlations that reflect its unusual scale-invariant entan-
glement structure. The simplest set of measures for these
correlations is the set of Rényi mutual informations In
between a pair of distant spins a and b (Sec. II):

Inða;bÞ ¼ SnðaÞ þ SnðbÞ − Snða ∪ bÞ: ð17Þ

In this section, we discuss I0, which is critical at the
percolation critical point. The quantities In with higher n
are instead critical at the generic entanglement transition that
occurs at smaller p. Note that I0 can be computed numeri-
cally using minimal-cut configurations with three different
boundary conditions corresponding to the terms in Eq. (17).
Let I0ðxÞ be the mutual information for a pair of spins

separated by a distance x, averaged over realizations. For
simplicity, consider an infinite spin chain that has been
evolved for infinite time and thus is in the steady state
corresponding to a particular p.
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FIG. 10. Demonstration of critical behavior in the zeroth Rényi
entropy near the percolation threshold pc ¼ 1=2. (a) S0 as a
function of p for different values of the system size L, with
t ¼ 4L. (b) Critical scaling of this same data, with ν ¼ 4=3 and
pc ¼ 1=2 taken from the known values for two-dimensional
percolation on the square lattice. The vertical axis is
S0ðp; LÞ − S0ðpc; LÞ, where S0ðpc; LÞ is the measured value
of S0 at p ¼ 1=2 for a given value of L.
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Note first that I0ðxÞ decays exponentially with x on both
sides of the critical point. The disentangled state is “close” to a
product state, and connected correlations fall off rapidly with
distance. In the entangling phase, subsystems are strongly
entangled with their exterior, but the mutual information
shared between any two small subsystems is negligible: The
average of S0ða ∪ bÞ is exponentially close to that of
S0ðaÞ þ S0ðbÞ. For example, consider p ¼ 0: The reduced
density matrices thermalize to “infinite temperature,” and all
local correlations vanish. However, at the critical point,
neither of these mechanisms destroys correlations.
The mutual information for a pair of spins separated by

distance x, I0ðxÞ, is plotted in Fig. 11. (We use a chain of
length L ¼ 3x that has been evolved for a time t ¼ L,
rather than an infinite system, but this does not change the
exponent below.) As expected, there is exponential decay
for p > pc and p < pc. But at p ¼ pc, the data at large
distances are consistent with

I0ðxÞ ∝
1

x2Δc
; Δc ¼ 2: ð18Þ

This exponent is exact and follows from known results for
percolation [60–62], as discussed next. Our percolation

mapping also gives an intuitive picture for the scale-
invariant entanglement structure underlying Eq. (18).
In more detail, there are three possible values for the

mutual information in a given realization: I0ðxÞ ¼ 0, 1, 2.
At large x, almost all configurations give I0ðxÞ ¼ 0. The
probability of either of the nonzero values is Oðx−4Þ.
Situations that give finite I0 are like those shown in
Fig. 12. It is simplest to consider cases where I0 ¼ 2.
These occur when the topology of the percolation con-
figuration is as shown in Fig. 12 (upper panel): There is a
percolating cluster of unbroken bonds connecting the two
spins, and this cluster does not touch the boundary else-
where. The probability of such a configuration scales as
above [60–63]. A configuration with I0 ¼ 1 can be obtained
by adding a narrow bridge of occupied bonds as in
Fig. 12 (lower panel): One can argue [64] that the probability
of such a configuration also scales as x−2Δ. This idea is borne
out by our numerics: The ratio of the probabilities of the two
values of I tends to an Oð1Þ constant as x → ∞.

IV. GENERIC DYNAMICAL TRANSITION

For the entropies Sn with n > 0, there is no mapping
to classical percolation, at least in a generic model.
Nonetheless, we find that many qualitative features of

t 

x 

FIG. 12. Examples of minimal-cut configurations for S0ða ∪ bÞ
in cases where I0 ¼ 2 (upper panel) and I0 ¼ 1 (lower panel).
In the former case, the cost of the minimal cut S0ða ∪ bÞ ¼ 0,
and in the latter case, it is S0ða ∪ bÞ ¼ 1; i.e., the obstacle
marked in the upper figure is of minimal width. In both cases,
S0ðaÞ ¼ S0ðbÞ ¼ 1.
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FIG. 11. Decay of the mutual information I0 between two spins
as a function of their separation x, as determined by the classical
percolation picture. The main panel shows I0ðxÞ for three
different values of p. The dashed line indicates the dependence
I0 ∝ 1=x4 expected for p ¼ pc at large x. The inset shows the
same data plotted on a semilogarithmic scale. The dashed straight
lines in the inset indicate exponential decay, which describes the
curves at p ≠ pc. All data correspond to system size L ¼ 3x, with
the two spins located at positions L=3 and 2L=3. Data are
averaged over 3 × 106 random realizations, and the evolution
time is t ¼ L. Error bars indicate 1 standard deviation divided by
the square root of the number of realizations.
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the toy model carry over to the physical entanglement
dynamics, including the existence of a finite threshold pc
separating entangling and disentangling phases, and a
nontrivial scale-invariant state at pc. We show below
that the threshold pc is lower than that in the toy model:
For example, in the random unitary circuit, we find
pc ¼ 0.26� 0.08, compared to pc ¼ 1=2 in the toy model.
Therefore, there is a regime of measurement rate given by
pc < p < 1=2 in which S0 grows linearly with time and the
minimal-cut picture suggests a volume-law entanglement,
but the von Neumann and higher-order entropies, in fact,
obey area-law scaling [65]. We also find an exponent ν that
is different from 4=3, implying that the critical behavior for
Sn with n ≥ 1 is in a universality class that is distinct from
two-dimensional percolation.

A. Dynamics of Sn at the generic transition

Our main tool for studying the dynamics of the entangle-
ment is a numerical simulation of the unitary circuit
with measurements (we use the ITensor package to manipu-
late matrix product states [20]). Details of these simulations
are provided in Ref. [9] for the case without measurements.
We modify these simulations only by the stochastic
application of projective measurements after each unitary
operation. The outcome of each measurement is chosen
randomly with a probability determined by the Born rule.
For each value of p and each type of simulation dynamics
(either random unitary or Floquet), results for the entangle-
ment are averaged over many random realizations.
An example of our simulation results is plotted in

Fig. 13(a), which shows the von Neumann entropy S1
for the case of random unitary dynamics, as a function of p,
for different system sizes. At small p, the value of S1
depends strongly on system size, suggesting a volume-law
entanglement. At large p, however, data from different
system sizes collapse onto a single value, suggesting area-
law behavior.
We demonstrate that there is indeed a transition between

two phases using a scaling collapse of the type described at
the very end of Sec. III A. We show in Sec. III that at the
transition of the zeroth Renyi entropy, we have the scaling
form S0 ¼ A ln tþ Fðut=ξ; ut=LÞ (here, u is a nonuniversal
speed, which in the lattice model of Sec. III, is fixed to
u ¼ 1 by symmetry). Our results for the generic transition
are consistent with the same scaling form for the higher
entropies, Sn ¼ An ln tþ Fnðvt=ξ; ut=LÞ. The value of pc
is different for the generic transition, as are universal
constants such as the correlation length exponent ν;
we also allow for dependence of An and Fn on the
Rényi index n. We give evidence below that the dynamical
critical exponent at the transition, z, is unity; thus, x and t
behave the same way under rescaling, and our assumption
that t=L is the appropriate scaling variable is justified.
This scaling form implies that for a system of fixed

aspect ratio, the difference

SnðL; pÞ − SnðL; pcÞ

depends on L and p only through the combination
ðp − pcÞL1=ν, which enables us to perform a numerical
scaling collapse. The values of pc and ν are estimated using
the algorithm described in Sec. III A and detailed in
Appendix A.
The resulting scaling collapse is shown in Fig. 13(b) for

the von Neumann entropy in the case of random unitary
dynamics. As noted in Table I, the values of pc and ν
obtained are pc ¼ 0.26� 0.08 and ν ¼ 2.01� 0.10.
The full set of scaling collapses, for both types of

dynamics and for Rényi indices n ¼ 1; 2;∞ (and also
for n ¼ 0, which is in the different universality class
discussed in the previous section) is shown in Fig. 14.
In all cases, the scaling collapse is of a similar quality to
that in Fig. 13(b). The corresponding values of pc and ν
are listed in Table I. For all the “physical” entropies
(n ¼ 1, n ¼ 2, n ¼ ∞), we find consistent pc estimates
for a given type of dynamics, and we find consistent ν
estimates for both types of dynamics. An uncertainty-
weighted average of all six measured values at n > 0 gives

ν ¼ 2.03� 0.05: ð19Þ
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FIG. 13. Critical behavior of the von Neumann entanglement
entropy S1 for the random unitary circuit. (a) S1 as a function of p
for different values of the system size L, with t ¼ 2L. (b) Critical
scaling of these same data. The inset shows a zoomed-in view of
the same data near the origin (with the solid lines suppressed).
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The functional form of the scaling functions at large positive
and negative values of the scaling variable also appear to be
compatible with what is implied by matching to linear
growth of entanglement in the entangling phase and satu-
ration in the disentangling phase.
For a given n ¼ 1, 2, or ∞, the shape of the scaling

functions looks slightly different for the two dynamical
protocols (Floquet and random unitary). However, note that
the scaling function depends on the aspect ratio, which
differs between the two cases (note that the aspect ratio
should be thought of not as t=L but as ut=L, where u is a
nonuniversal speed that can differ for the two protocols).
Our scaling analysis above assumes that the character-

istic length scale ξ and the characteristic timescale τ diverge

with the same power of jp − pcj, rather than behaving as
ξ ∼ jp − pcjνL and τ ∼ jp − pcjνt with distinct νL and νt,
and a dynamical exponent z ¼ νt=νL different from 1.
Evidence for z ¼ 1 comes from comparing results for the
entanglement in the limits t → ∞ and L → ∞. We approxi-
mate these limits by extrapolating the data for random
unitaries at fixed L as a function of t and then separately
extrapolating the data at fixed t as a function of L. A
separate scaling analysis is performed for each set of
extrapolated data, and the resulting estimates for the critical
exponents are νL ¼ 1.99� 0.20 and νt ¼ 2.00� 0.37.
These are consistent with each other and with the other
results in Table I.

B. Two-point spatial correlations

Equal-time correlations at the critical point can also be
probed using the Rényi mutual information, as discussed in
Sec. III B [66]. As in the classical case, we consider the
quantity Inða;bÞ, defined by Eq. (5), where the sets a and b
constitute single spins separated by a spatial distance x.
[The quantity I2ðxÞ is directly related to the spin-spin
correlation function in a way that is described in [45].] In
Fig. 15, we plot InðxÞ close to the critical point of the
random unitary dynamics for n ¼ 1, 2 and n → ∞. In order
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FIG. 14. Critical scaling for the bipartite entanglement Sn as
measured by numerical simulations of the random unitary circuit
(left column of plots) and the Floquet dynamics (right column).
Each plot is labeled by the corresponding value of n and shows
curves for seven different system sizes, ranging from L ¼ 6 to
L ¼ 24 [the same as in the legend of Fig. 13(a)]. The simulation
time was t ¼ 2L for the simulations of random unitaries and t ¼
8L for the Floquet dynamics. The corresponding values of pc and
ν for each plot are listed in Table I.

FIG. 15. Dependence of the mutual information In between two
spins on their separation x. The main figure shows InðxÞ for
values of p that are close to the critical value pc. The plotted data
are taken from simulations of the random unitary dynamics, for
which pc ¼ 0.267� 0.027. Blue, red, and green symbols cor-
respond, respectively, to n ¼ 1, n ¼ 2, and n → ∞, while
upward- and downward-facing triangles correspond, respectively,
to p ¼ 0.26 and 0.27. The dashed line shows the relation
I ∝ 1=x4, as in the classical problem. The inset shows these
same data on a semilogarithmic scale, along with results for
I1ðxÞ at p ¼ 0.4, which is away from the critical point. These
latter results are well fit by an exponential dependence
(red dashed line).
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to minimize finite-size effects, we choose the system size to
scale with x at large x, setting L ¼ 2ðxþ 1Þ and t ¼ L. The
data correspond to system sizes L ¼ 8, 16, 24, 32, and 40,
and the corresponding separations are x ¼ 3, 7, 11, 15, and
19. The data are consistent with power-law scaling at the
critical point. For comparison, the black dashed line in
Fig. 15 shows I ∝ x−4, as in classical percolation. Away
from the critical point, InðxÞ shows exponential decay: See
Fig. 15 inset, which shows data for p ¼ 0.4, and the
discussion in Sec. III B.

V. HIGHER DIMENSIONS

The mapping between S0 and classical percolation
implies that there is a transition in S0 in any number of
dimensions. In this section, we discuss the transition in
higher dimensions, focusing, for simplicity, on S0 only. In
other words, we discuss the higher-dimensional version of
our toy model.
The mapping of S0 to the optimal cost of a cut general-

izes directly from the 1þ 1D case. For example, Fig. 16
(left diagram) shows one choice of circuit geometry in
2þ 1D. This leads to a bond percolation problem on the
lattice shown in the right panel. In such higher-dimensional
situations, the minimal cut is a membrane whose cost is
equal to the number of unbroken bonds that pierce it.
To compute the zeroth entanglement entropy S0ðAÞ of a
region A, one must find the minimal membrane separating
the legs at the top in A from those in Ā.
As in the 1þ 1D case, there is a phase transition between

an entangling phase at p < pc and a disentangling phase at
p > pc. The disentangling phase only has area-law entan-
glement in the steady state, while the entangling phase has
linear-in-time entanglement growth and volume-law entan-
glement in the steady state. A membrane picture for the
case without measurements was introduced in Ref. [9] and
applies similarly here. The coefficient of the volume law
vanishes as p → pc from below, as in 1þ 1D.
The transition is at the bond percolation threshold for

the lattice shown [67]. Recall that in our notation, p is the
probability that a bond is broken. When p > pc, the
unbroken bonds do not percolate. It is then easy to
see that the cost per unit area vanishes for a large
minimal membrane, leading to area-law entanglement
in the steady state. When p < pc, the unbroken bonds
percolate. As a result, the membrane must cross a number
of unbroken bonds that scale with the surface area. This
scaling leads to the properties of the entangling phase
mentioned above.
One difference from 1þ 1D is that this mapping

indicates that the critical state exactly at pc is likely to
show an area law for S0 in spatial dimensions d > 1 [72].
This situation is reminiscent of ground states of higher-
dimensional critical systems described by conformal field
theories, which show area-law entanglement, in contrast to
the 1þ 1D case where they show logarithmic entanglement

[74]. Here, the dynamical transition is between area-law
and volume-law phases, so it is unlike a ground-state phase
transition, which is between area-law phases.

VI. DISCUSSION

A. Summary

This paper has presented a new dynamical phase
transition in the structure of evolving quantum wave
functions. The generic phase diagram as a function of
the measurement rate p per degree of freedom is proposed
in Fig. 1, with an “entangling” phase at low p and a
“disentangling” phase at large p. The existence of a critical
measurement rate pc means that one can induce a scale-
invariant entanglement structure simply by tuning the
frequency of measurements, without any fine-tuning of
the Hamiltonian.
It should be emphasized, however, that in order to

observe the distinction between the two phases, it is
essential to consider histories of the system with particular
outcomes of the individual measurements, rather than
simply averaging the density matrix over all possible
measurement outcomes. The transition is not apparent
in this averaged density matrix, which, for any measure-
ment rate p > 0, will generically just tend to the infinite-
temperature density matrix. We comment on possible
practical implications of our results in Sec. VI B below.
It is perhaps instructive to comment on the failure of a

naive argument that would seemingly imply area-law
entanglement at all p > 0. Consider the 1þ 1D case. In
the absence of measurements, entanglement is produced at
a nonzero rate. It is tempting to imagine that when the
entanglement S between two (say, semi-infinite) subsys-
tems is large, there is an associated length scale of order
l ∼ S, such that measuring a spin within a distance of order
l of the division between the subsystems eliminates an

FIG. 16. A 2þ 1D analogue of the correspondence in Fig. 4.
Left diagram: A simple choice of circuit geometry in 2þ 1D.
Some unitaries (bricks) are hidden in the figure, so as to expose
just six in each layer. Right diagram: Each unitary corresponds to
a node of the four-coordinated lattice shown. Measurements
break bonds of this lattice. The minimal cut (not shown) is a
two-dimensional sheet whose cost is the number of unbroken
bonds it bisects.
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Oð1Þ amount of entanglement, while measuring spins
outside this region has a negligible effect. This reasoning
would suggest that the steady-state entanglement is deter-
mined by balancing the Oð1Þ production rate against a
decay rate of order pl ∼ pS given by the total rate for
measurements in this region. This balance would yield
area-law entanglement (of order 1=p) even for small p.
The failure of this argument can be seen by thinking

about the entanglement using the minimal-cut picture.
Consider, for example, the effect of a single measurement
within the l-sized region. When the system size L → ∞
and the time t is finite, this measurement typically has a
very small effect on the entanglement because it results in
a broken bond (at the final time) that is far from the path
of the optimal cut, which is the shortest path to the initial-
time boundary. The situation is different at asymptotically
late times in a finite system; the minimal cut then goes
sideways to the spatial boundary and may take advan-
tage of the broken bond. In this regime, measurements (in
the smaller subsystem) have an Oð1Þ effect on the
entanglement.

B. Implications for simulations of quantum systems

Our results may have useful implications for numerical
simulations of many-body quantum systems. In particular,
the entangling-disentangling transition is likely to be
relevant to situations where we need to simulate evolutions
(of pure quantum states) that involve measurements or
effective measurements.
First, imagine that we wish to find the state at time t,

denoted jΨðo1;…;oNÞi, given knowledge of the outcomes
o1; o2…; oN of the sequence of earlier measurements. We
assume that the Hamiltonian and initial state are also known
and that the number of measurements is extensive in both
space and time. In 1þ 1D, matrix product methods may be
used for the evolution (in principle, similar considerations
arise in higher dimensions). The computational difficulty of
these methods depends on the amount of entanglement
across cuts that divide the system into two parts [29,75].
Therefore, which side of the entangling-disentangling
transition the system is on becomes crucial. In the entan-
gling phase (fewer measurements), a matrix product
representation requires a bond dimension that scales
exponentially with the system size, and simulations quickly
become unfeasible with growing system size. On the other
hand, in the disentangling phase, where the von Neumann
entropy saturates to a finite value, we can expect rapid
convergence as a function of bond dimension, so the
dynamics is computationally tractable.
A natural context for such problems is the simulation of

open quantum systems [76]. The dynamics of open systems
is effectively nonunitary due to interaction with the
environment. For example, systems of cold atoms or
molecules may exchange photons with the environment
or may be subject to environmental noise that must be

averaged over. Formally, one can think of the environment
as measuring the internal quantum states of the particles,
except that the outcomes of these measurements are not
known and should be averaged over, yielding a mixed state.
A direct calculation of the time dependence of quantum
expectation values would require one to numerically evolve
the full density matrix, which can be prohibitively difficult
since the number of elements in the density matrix scales as
the square of the Hilbert space dimension.
Because of this limitation, an important tool for

calculations in open systems is the method of
“quantum trajectories,” or “quantum jumps” [77–87] (see
Refs. [88,89] for reviews). In this method, one calculates
the evolution of one single pure state at a time, choosing at
each instance of “measurement” a single random outcome.
The time dependence of an observable’s expectation value
may then be found by computing the expectation value in
each simulated pure state and then averaging over many
such random trajectories. In the conceptually simplest case,
the effective dynamics of the pure state involves only
unitary evolution and measurements. [More generally,
additional non-Hermitian terms are required in the
Hamiltonian (see, e.g., Refs. [88,89]); the effect of such
terms on the entanglement structure deserves further study.]
As noted above, the computational difficulty of such

calculations is determined by the amount of entangle-
ment in individual trajectories [90]. In this paper, we
have shown that there is a sharp phase transition between
different regimes, implying a well-defined easy-to-hard
transition for such numerical simulations as a function of
the rate of dissipation to the environment. Interestingly,
the logarithmic growth of the entanglement at the critical
point implies a power-law scaling of computational
difficulty; this power-law scaling is also advantageous
for numerical investigations of the entanglement phase
transition.
This phenomenology of different regimes of entangle-

ment and corresponding computational difficulty is con-
sistent with numerical simulations presented in Ref. [97].
The authors of Ref. [97] studied the time evolution of the
entanglement in quantum trajectories of the Bose-Hubbard
model at different rates of dissipation to the environment.
When the dissipation was low, the entanglement was seen
to grow as a function of time before saturating at a system-
size-dependent value. At high dissipation, on the other
hand, the entanglement quickly saturated to a small, finite
value. The authors also found that the quantum trajectory
method becomes more efficient computationally when the
dissipation is high.
A scaling analysis of how the entangling-disentangling

transition affects computational hardness might be inter-
esting. This analysis may involve studying the critical
scaling of the Rényi entropies Sn with 0 < n < 1, which
are important in the analysis of convergence of matrix-
product-state algorithms [29].
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C. Universality classes

In this paper, we have studied a toy model for the
entangling-disentangling transition as well as what we
propose is the generic version of this transition. While
similar in many respects, these problems are in different
universality classes. In certain limits, it should be possible
to study a crossover between these universality classes.
In principle, studying the entropies Sn as a function of n

with 0 < n < 1 might reveal such a crossover. However,
this does not give an obvious starting point for an analytical
treatment.
A more promising direction may be to attempt to expand

around a limit of large local Hilbert space dimension.
We have focused our discussion on chains or lattices of
spin-1=2. However, the random-unitary-dynamics-plus-
measurement protocol we have discussed may be gener-
alized to “spins” with local Hilbert space dimension q ≥ 2.
If the minimal-cut formula holds exactly in the limit q → ∞
for random unitary dynamics plus measurements, as it does
for random unitary dynamics at infinite q [9,18] and for
tensor networks with infinite bond dimension [28], then
taking q → ∞ is an alternative way to obtain the effective
classical optimization problem in Sec. III, this time for all
Sn and not just S0 [98]. Therefore, in the regime
1 ≪ q < ∞, we expect to be able to probe a crossover
between the toy model universality class of Sec. III and the
generic universality class of Sec. IV.
When q is large but finite, there will then be a large

crossover length scale ξ�, with the universal properties of
the classical optimization problem visible at smaller scales
and those of the generic universality class visible at larger
scales [99]. Following the flow to scales greater than or
close to ξ� is likely to be hard, but it should be possible to
understand the initial instability. Previous results for unitary
circuits and tensor networks [18,25,27,28,32] are sugges-
tive of a possible mechanism. In simple limits, those
mappings involve an effective statistical mechanics of
domain walls that have both “energy” and configurational
“entropy” (not to be confused with the physical entangle-
ment entropy). The crossover is likely to occur when
configurational entropy becomes comparable with energy
for these domain walls. For q ≫ 1, energy dominates and is
given by ln q times the length of the minimal cut. However,
entropy becomes significant at large scales l. Note that a
segment of domain wall of minimal cost (ln q) connecting
two adjacent white clusters of scale l (Fig. 8) has Oðl3=4Þ
choices for the connecting bond. This scaling suggests that
we should compare ln q with lnl3=4, suggesting the cross-
over length scale ξ� ∼ q4=3. This conjecture, however,
demands a proper calculation.
A natural question, which we have not addressed here, is

whether there is a field theory description of the renorm-
alization-group fixed point governing the entangling-dis-
entangling transition. A starting point may be the replica
trick, which has been used in unitary circuits and random

tensor networks [18,28] to construct mappings to (replica
limits of) effective classical spin models in which the
degrees of freedom are permutations [27,100].
Notably, Ref. [28] constructed a replica description of a

“holographic” random tensor network state (projected
entangled pair state) and used it to argue that there is a
phase transition between area-law and volume-law phases
of the tensor network state. While the transition itself is
hard to address as a result of the replica limit, the
assumption of a single transition described by a conformal
field theory leads to logarithmic scaling of the entangle-
ment with subsystem size and scaling forms analogous to
Eq. (12). The replica description also gives a formal
explanation for why all the Rényi entropies become
simultaneously critical in the tensor network: They corre-
spond to distinct correlation functions in the same con-
formal field theory [28].
Above, we found that the dynamical exponent for our

dynamical transition is consistent with z ¼ 1, so it may be
that the dynamical transition is governed by the same
conformal field theory as the tensor network state [28], with
one coordinate interpreted as time. This possibility is an
interesting subject for future numerical simulations.

D. Outlook

The results we have presented here suggest a number of
further directions that are worth exploring. Most directly, it
would be useful to make a more detailed simulation study
of the quantum problem. While we have pointed out that
the quantum and classical problems are similar in the sense
of having a scale-invariant critical point at a nonzero
measurement rate, with qualitatively similar scaling
forms, there are universal distinctions between them that
are worth exploring. One starting point is the more detailed
behavior of the mutual information InðxÞ as a function of
separation x.
It would also be enlightening to test whether, as

suggested in Sec. II, the universality class of Sec. IV
applies even for models without any randomness in the
choice of when and where to measure. We could obtain a
convenient circuit model by fixing the locations of mea-
surements and using the strength of the interaction in a
Floquet unitary to drive the transition.
The classical problem may also be interesting to explore

further, particularly in higher dimensions. In 2þ 1D, for
example, finding the entanglement S0 amounts to searching
for a minimal surface, which is an interesting statistical
mechanical problem. A numerical study might give insight
into the entangling-disentangling transition in higher
dimensions, where quantum numerics are challenging.
Finally, it will be interesting in the future to examine

more subtle features of the evolving states. For example, in
what respects is the entangling phase similar to unitary
entangling dynamics and in what respects is it dissimilar?
(Note, for example, that while unitary dynamics does not
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decrease entropy, the entangling dynamics at 0 < p < pc
can reduce the entropy of a volume-law state of a finite
system if its initial entropy density is higher than the
steady-state value.) How is the membrane picture for
entanglement growth [9,14,26] modified by weak breaking
of unitarity? Finally, one could also ask how the complexity
of the evolving state (the minimal number of local
operations required to generate it from a product state
[101–112]) behaves as the entangling-disentangling tran-
sition is traversed.
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APPENDIX A: SCALING ANALYSIS

In Sec. IV, we found estimates for the critical measure-
ment rate pc and the correlation length exponent ν by
searching for scaling collapse among curves Snðp;LÞ −
Sðpc; LÞ as a function of the single variable ðp − pcÞL1=ν.
Our algorithm for performing this search is as follows.
For a given value of pc and ν, one can define an objective

function Rðpc; νÞ, which should be minimized by the
search procedure, as follows. First, we estimate the value
Sðpc; LÞ for each system size L by using linear interpo-
lation between the closest points on either side of pc. We
then calculate the scaling variable x ¼ ðp − pcÞL1=ν for
each value of p and L in the data set. The result is a family
of curves yLðxÞ, one curve for each system size, where
yL ¼ Sðp; LÞ − Sðpc; LÞ. The objective function R is then
defined as the sum of the mean-squared deviations of each
curve from their common mean, summed over all unique
points xi in the data set. In other words,

R ¼
X
i;L

½yLðxiÞ − ȳðxiÞ�2: ðA1Þ

Here, yLðxiÞ indicates the value of yL at the point xi; if this
value has not been calculated explicitly, then it is estimated
by linear interpolation. Note that ȳðxÞ is the average of
yLðxÞ over all system sizes L. If the point xi lies outside the

range of values of x that have been simulated for some
curve yLðxÞ, then this term is not included in the sum. In
other words, when calculating the dispersion between
curves at some value of x, only those curves for which
there are data at the given x are taken into account.
Given a set of simulation data and an estimate for

pc and ν, one can evaluate the objective function
Rðpc; νÞ numerically. We then search numerically for the
values ofpc and ν that minimize the objective function. This
search is done using simple gradient descent and is imple-
mented in MATLAB. Care was taken to begin the search at
different initial guesses for pc ∈ ð0; 1Þ and ν ∈ ð0; 10Þ to
ensure that the solution found for each data set was globally
optimal.
In order to estimate the uncertainty in our results for pc

and ν, we examine how our results change when the
amount of data included in the scaling analysis is inten-
tionally reduced. In particular, we iteratively run the scaling
analysis for a variety of reduced data sets, in which all data
corresponding to system sizes larger than some value L0 ≤
Lmax have been removed. (Here, Lmax denotes the maxi-
mum system size in the data.) The value of L0 is varied from
Lmax=2 to Lmax. A rough estimate for pc or ν in the limit of
L0 → ∞ can be made by making a linear fit of pc or ν as a
function of 1=L0 and taking the value of the y intercept. The
uncertainty in pc or ν is estimated as the difference between
the value of pc or ν at L0 ¼ Lmax=2 and the extrapolated
value at L0 → ∞.
The results of our search algorithm and the correspond-

ing uncertainties are listed in Table I.

APPENDIX B: SIMULATION METHODS

1. Classical percolation simulation

We use the following deterministic algorithm in order to
find the minimal cut S0 through a classical network—
namely, the dual square lattice illustrated on the right-hand
side of Fig. 4—starting at some origin site o on the dual
lattice. First, we define the adjacency matrix A for sites on
the dual lattice, whose elements Aij are such that Aij ¼ 1

if site i can be reached from j by a single step (regardless
of whether that step traverses a broken or an unbroken
bond), and Aij ¼ 0 otherwise. The matrix A is entirely
defined by the topology of the lattice and has no random-
ness. We also define the connectivity matrix C, which
depends on the times and locations of the measurements,
and is defined so that Cij ¼ 1 when the bond between i
and j is broken and Cij ¼ 0 otherwise. Whether a site j
can be reached from a site i without passing across an
unbroken bond is determined by the “wetting matrix” W,
defined by

Wij ¼
(
1 if lim

n→∞
ðCnÞij > 0

0 otherwise:
ðB1Þ
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In practice, one need only calculate the Nth matrix power
of the connectivity matrix, CN , where N ∼ Lt is the
number of bonds in the network.
Let v be a vector indicating which sites are “wetted” by

the percolation process. The algorithm to find the minimal
cut begins with vo ¼ 1, where o indicates the index of the
origin site, and vi ¼ 0 for all other sites i ≠ o. Let g indicate
the index of the goal site; when calculating S0 for a group of
spins that includes the beginning or end of the chain, g
represents either the lateral or bottom boundaries of the
lattice and is adjacent to all sites along those boundaries. If
ðWvÞg > 0, then the goal site is wetted by the origin site
without the need to cross any unbroken bonds, and S0 ¼ 0.
Otherwise, one can use the following iterative process to
find S0:
(1) Replace v with a vector indicating the set of all

wetted sites, v → Wv.
(2) Add to the set of wetted sites those adjacent sites that

are not wetted, v → Av.
(3) If vg > 0, then the goal site has been reached. If not,

return to step 1.
The minimal-cut cost S0 is equal to the number of times

that steps 1 and 2 must be repeated before vg > 0.

2. Quantum simulation

To simulate the quantum-state evolution, we use exact
time evolution of a matrix product state. The matrix product
state is manipulated using the ITensor library [20]. The
unitary circuit is divided into two-site unitary operations
acting on pairs of adjacent spins, as shown in Fig. 3 and
described in Ref. [9]. The two-site gates are applied, first
over all odd-numbered bonds (where the first bond on the
left is numbered 1) and then over the even bonds.
As described in Sec. II, we consider two evolution

protocols. The first, random unitary dynamics, utilizes
two-site random Haar gates. The gates are produced by
randomly drawing four vectors from a Gaussian distribu-
tion over the complex numbers. Then, using the Gram-
Schmidt procedure, we obtain the desired unitary.
The Floquet dynamics, on the other hand, has no

inherent randomness except for the locations and outcomes
of the measurements. Here, we apply the two-site gate,
Eq. (1), in the same order as in the random dynamics.
After a unitary is applied to a pair of spins, each

of the two spins may be measured, each with probability
p. If a spin is measured, the outcome probabilities
p↑ ¼ jh↑jΨðtÞij2 and p↓ ¼ 1 − p↑ are determined. The
state is then projected into a well-defined spin state
by applying the operator ð1� σ̂zÞ=2 with probability p↑

for the up state and p↓ for the down state, and then
renormalized.
For system lengths of even bond length, the entropy

is computed each time a full double layer of unitaries
is applied (i.e., after the unitaries are applied to the

even-numbered bonds). On the other hand, for systems
with an odd number of bonds, we compute the entropy
after a single layer of unitaries is applied to the odd-
numbered bonds.
To compute S0, we use the fact that ITensor naturally

minimizes the number of eigenvalues by discarding
any redundant bond dimension. No truncation threshold
is set for the number of eigenvalues or their size (thus, they
are cut off by the numerical precision). For that reason, a
certain number of spurious eigenvalues, with value of order
of the numerical precision, are, in general, retained,
producing a systematic (positive) error in the calculation
of S0. In practice, however, we find that this systematic shift
of the quantum simulation relative to the classical simu-
lation is never larger than a few percent at any value of the
simulation parameters that we examined. Extending the
simulation to much longer times or system sizes may
increase the numerical inaccuracy of S0. We note, however,
that the higher-order Rényi entropies do not suffer from this
same source of inaccuracy since small eigenvalues con-
tribute very little to them.
The typical number of realizations used to compute the

entropy is 10 000. However, because of run-time con-
straints, we often used fewer realizations for longer system
sizes and small values of p. For example, for t ¼ 24 and
p ¼ 0.1, we used only 500 realizations, and this is reflected
in the larger error bars. Also note that, throughout the paper,
error bars indicate 1 standard deviation of the result, as
determined by the distribution of the result over all
realizations, divided by the square root of the number of
realizations.
To compute the mutual information Inða;bÞ for spins

a and b, we need to compute the entanglement entropy of
two disconnected regions, which is not straightforwardly
implemented in the ITensor library. We decompose the
reduced density matrix of the two spins into a sum of Pauli
operators

ρa;b ¼ 1

4

X
α;β¼1;…;4

wα;βσ
α
a ⊗ σβb; ðB2Þ

where the coefficients are given by

wα;β ¼ Tr½σαa ⊗ σβbρ� ¼ hσαi ⊗ σβj i ðB3Þ

and where ρ is the total density matrix. We note that here a
much greater number of realizations is required (about
100 000) because the mean value of the mutual information
is controlled by large values, which rarely occur.
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