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Abstract: Two-dimensional materials have emerged as 
promising candidates to augment existing optical net-
works for metrology, sensing, and telecommunication, 
both in the classical and quantum mechanical regimes. 
Here, we review the development of several on-chip pho-
tonic components ranging from electro-optic modula-
tors, photodetectors, bolometers, and light sources that 
are essential building blocks for a fully integrated nano
photonic and quantum photonic circuit.
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1  Introduction
Photonic integrated circuits (PICs) allow compact opto-
electronic component integration with high stability 
and low optical losses [1–3]. These properties make them 
appealing to both classical and quantum information 
processing applications. However, many applications 
demand device properties that require multiple disparate 
materials. For example, light sources must have a larger 
band gap than photodetectors. Optical modulators rely on 
materials with a strong electro-optic (E-O) effect [4], and 
still other materials may be required for non-linear optical 
functions or non-classical light sources.

Traditionally, the way to approach the problem of inte-
grating multiple materials would require heterogeneous 
material growth or wafer-bonding approaches. However, 
these approaches can be extremely complex and challeng-
ing. For instance, the integration of two types of semicon-
ductors – wafer bonding of silicon and III/V InP gain layers 
– is a major engineering challenge [5]. Two-dimensional 
(2D) materials, on the other hand, can greatly simplify 
the assembly of active optoelectronic systems on-chip. 
They can be conformally layered with relative ease and are 
“glued” sufficiently strongly by van der Waals (vdW) forces. 
The advent of such vdW material platforms has proven 
extremely rich and fruitful for not only electronic [6] but 
also photonic devices and systems [7]. The primary appli-
cations of vdW materials integrated into PICs are in optical 
interconnects and quantum information processing. Here, 
we review recent progress in these efforts, focusing on 
graphene-based E-O modulators and photodetectors, and 
light sources (classical and quantum) based on 2D transi-
tion metal dichalcogenides (TMDCs) and hexagonal boron 
nitride (hBN). For brevity, we will focus on many areas of 
our work, but seek to reference other works in the broader 
context of a wide and rapidly growing research field of 2D 
vdW materials for quantum optics and optoelectronics. 
Table 1 summarizes the list of devices that emerge for dif-
ferent nanophotonic and quantum photonic applications 
with different 2D materials (heterostructures).

2  �Heterogeneous integration of 
2D materials with nanophotonic 
devices

Nanophotonic devices, including waveguides and cavi-
ties, can control optical fields at subwavelength dimen-
sions. Coupling a nanophotonic cavity to a 2D material can 
enhance light-matter interaction to enable spectrally selec-
tive and orders-of-magnitude increased optical absorption 
and fluorescence. Coupling to nanophotonic waveguides 
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Table 1: List of applications of active nanophotonic and quantum photonic devices based on 2D materials.

Applications   Materials   Band gap   Photonics integration   Operation mechanism

E-O modulators   Graphene   Zero gap   Waveguides [8, 9]   Electro-absorption
  Graphene/hBN 

heterostructures
  Zero gap   PPC cavities [10]   Electro-absorption

  Graphene   Zero gap   Ring resonators [11–13]  Electro-absorption
Photodetectors   Graphene/hBN 

heterostructures
  Zero gap   Waveguides [14–16]   Photovoltaic and 

photothermoelectric effects
  BP   0.3–2 eV   Waveguides [17]   Photovoltaic and bolometric effects

(Classical) light 
emitters/lasers

  MoS2   ~ 2 eV   GaP PPC [18] cavities   Purcell enhancement
  WSe2, WS2   1.5–2.5 eV   PPC cavities/micro-disk 

resonators [19, 20]
  Purcell enhancement/lasing

Bolometers/single 
photon detectors

  Graphene/hBN 
heterostructures

  Zero gap   PPC cavities   Johnson noise thermometry [21]

Single photon 
emitters

  hBN   ~ 6 eV   N/A   Atomic defects [22]
  TMDCs   1.5–2.5 eV   N/A   Atomic defects [23, 24]

provides broadband enhancement. In this section, we 
discuss theory and experiments of heterogeneously inte-
grated 2D materials with optical cavities and waveguides.

2.1  �Absorption enhancement in cavity-
integrated 2D materials

Using a temporal coupled mode theory (CMT) that consid-
ers the absorption of 2D materials coupling to an optical 
cavity [25], Gan et al. showed that the reflection, transmis-
sion, and absorption of a cavity strongly depend on two 
fundamental parameters: the intrinsic cavity loss rate κc 
without 2D materials and the excess loss rate introduced 
by the absorption of 2D materials κ2D in the cavity. There 
are two important regimes for such a coupled 2D materi-
als-cavity system: strong attenuation of either the cavity 
reflection or transmission with large κ2D/κc ratio and, on 
the contrary, maximum absorption in 2D materials with a 
critical coupling condition, i.e. κ2D = κc.

We now discuss an experimental example of the 
enhanced absorption in graphene integrated with a planar 
photonic crystal (PPC) cavity. Figure 1A shows the finite-
difference time-domain (FDTD) simulation of the cavity 
field of a PPC cavity fabricated by drilling periodic holes 
on a suspended gallium phosphide (GaP) membrane 
(180 nm). The PPC has a lattice constant a of 420 nm with 
an air-hole radius of 0.29a. A linear three-missing-hole 
(L3) defect in the middle of the PPC lattice serves to form 
confined resonant modes. Figure 1B shows the reflection 
spectrum of the cavity under the illumination of a broad-
band (super-continuum laser) source via a cross-polariza-
tion confocal microscope. The blue spectrum corresponds 
to the cavity without graphene deposition, showing a 

single sharp resonant peak. The graphene was prepared 
by mechanical exfoliation and then transferred on top of 
the cavity [27], as shown in the optical image in Figure 1B. 
The coupling of the graphene sheet to the evanescent field 
of the cavity results in reduction of the cavity Q from 2640 
to 360, while the resonance red-shifts by 1.8 nm, indicated 
by the red spectrum acquired after graphene deposition. 
The cavity reflection dropped by 20 dB at 1477.3 nm (the 
resonance wavelength of the unloaded cavity). Thus, the 
naturally weak absorption (2.3%) of graphene [28] from 
normal incidence is dramatically amplified by coupling to 
the nanocavity.

From CMT, we deduced the decay rates of κc and κcg 
to be 1.9 × 10 − 4 ω0 and 2.4 × 10 − 2 ω0, respectively [25], indi-
cating that graphene loss accounts for approximately 
92% of the total loss inside the nanocavity. By correlat-
ing the optical conductivity of graphene to the cavity loss 
and cavity field distribution, we extracted the single-layer 
graphene (SLG) complex dielectric function on top of the 
cavity to be σg// = 4.64 + 4.62i and σg⊥ = 2.79 at a wavelength of 
1477 nm, in good agreement with other reported values [29].

2.2  �Fluorescence enhancement of 2D 
materials in an optical cavity

Because the local density of optical states is enhanced 
in a nanocavity, the spontaneous emission (SE) rate of 
fluorescent materials is also increased, due to the Purcell 
effect. This Purcell enhancement has been used to greatly 
improve the SE internal quantum efficiency of 2D mate-
rials [18, 30]. Here, we review both experimental results 
and quantitative analyses of the SE rates of 2D materials 
coupled to PPC cavities similar to those in the previous 
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section. These cavities, which are also based on GaP mem-
branes, have resonant modes in the wavelength range of 
600–700 nm, overlapping with the fluorescence of molyb-
denum disulfide (MoS2), a direct band-gap 2D semicon-
ductor belonging to the group of TMDCs [31, 32].

We measure the fluorescence of the cavity-MoS2 
system on a micro-photoluminescence (PL) confocal 
microscope with a 532-nm continuous-wave excitation 
laser, focused to a beam diameter of 400 nm with a power 
of 50 μW. Figure 1C shows the PL collected from the L3 
defect, exhibiting several narrow peaks with enhanced 
PL intensity compared with MoS2 deposited on a GaP sub-
strate without the cavity. The PL exhibits strong polari
zation dependence, which is resolved by collecting the PL 
at a polarization angle φ with respect to the cavity along 
y-axis. Blue, red, and green curves show the PL at φ = 0°, 
45°, and 90°, respectively. The two peaks of the MoS2-cav-
ity PL agree to the expected resonant wavelengths, and the 
polarization dependence of the peaks corresponds well to 
that of the L3 cavity given by 3D FDTD simulations [33, 
34]. The SE rate of the MoS2 in the cavity is proportional to 

the Purcell factor, which is a function of the cavity Q and 
the effective mode volume Vmode. In this particular sample, 
we deduced Purcell factors ranging from 20 to 80 with a 
cavity Q ~ 300, yielding a maximum seven-fold enhance-
ment in the PL intensity.

For other heterogeneous TMDC material systems, Wu 
et al. integrated WSe2 with PPC cavity (Q ~ 8000), showing 
enhanced Purcell factor of F ~ 600 [19]. Ye et al. coupled 
WS2 to the whispering gallery mode of a Si3N4/HSQ micro-
disk resonator [20], and Salehzadeh et  al. implemented 
MoS2 with SiO2 disk resonators [35]. In the above studies, 
strongly enhanced PL in 2D TMDCs resulted in reduced 
lasing thresholds, promising low-threshold on-chip light 
sources in 2D materials-based heterostructures. When the 
coupling rate of the 2D materials to the cavity field becomes 
even higher, the cavity-2D material coupling enters the 
strong coupling regime, where the energy of cavity polari-
ton mode splits and the exciton dipoles undergo Rabi 
oscillations. Liu et al. observed MoS2 strongly coupled to 
a distributed Bragg reflector microcavity [36], showing a 
Rabi splitting energy of ~ 50 meV.
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Figure 1: (A) Simulated electric field distribution of a PPC L3 cavity. Bottom panel shows the cross-sectional view of the cavity mode. The 
graphene layer on the surface of the suspended PPC membrane can couple to the evanescent field of the resonant mode. (B) Reflection 
spectrum of a GaP PPC cavity before and after coupling to a single layer of graphene. Inset: Optical image of the graphene-PPC cavity device. 
(C) Fluorescence of single-layer MoS2 coupled to a PPC cavity [18]. Red, blue, and green curves show the PL collect at a polarization angle 
of 0°, 45°, and 90°. (D) Top: Optical image of a 70-μm-long graphene couples to a silicon waveguide. Bottom: Simulated waveguide mode 
couples to the graphene sheet deposited on the top surface of silicon [26].
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2.3  �Absorption enhancement of 2D materials 
integrated with optical waveguides

Thus far, we have described the enhancement of the 
light-matter interaction via optical resonators. This effect 
is inherently narrowband due to the narrow resonant 
bandwidth of the resonators. Coupling 2D materials with 
a nanophotonic waveguide can enhance the light-matter 
interaction non-resonantly and hence span a broader 
bandwidth [16]. The top panel of Figure 1D provides an 
example device consisting of a bilayer graphene flake 
deposited across ~ 70 μm over a 520-nm-wide silicon-on-
oxide (SOI) waveguide, fabricated from an SOI wafer with 
a 220-nm-thick Si membrane using the standard shallow 
trench isolation module. To prevent the graphene from 
fracturing at the edges of the waveguide, the chip was pla-
narized by backfilling with a thick SiO2 layer and polish-
ing the surface with a chemical-mechanical polishing step 
to reach the top Si layer.

The quasi TE-mode field simulation in the bottom 
panel of Figure 1D shows the evanescent field overlap 
to the graphene. From the complex effective index of 
graphene, we can estimate an absorption coefficient of 
0.085 dB/μm. Experimentally, we observed that a 70-μm-
long graphene bilayer causes a transmission loss around 
6.2 dB over the wavelength range from 1510 to 1580 nm. 
The transmission loss deduced from the simulation 
results [16] is ~ 5.95 dB, and we attribute the measured 
excess loss to the interface scattering between graphene 
and the waveguide surface.

The absorption coefficient could be greatly increased 
(to ~ 0.2 dB/μm) by a stronger evanescent field of the wave-
guides that support a transverse magnetic guide mode [8, 
37] or by thinner waveguides. Other strategies to enhance 
the absorption include sandwiching the graphene layer 
inside a dielectric slot waveguide [38] or modifying the 
electric field distribution by creating an air slot in the 
middle of a channel waveguide. Wang et  al. achieved 
absorption as high as ~ 1 dB/μm by coupling graphene to 
such a silicon air-slot waveguide [39].

3  �Active optoelectronics 
based on PIC-integrated vdW 
heterostructures

In the following sections, we discuss 2D materials-based 
E-O modulators and photodetectors integrated with nano-
photonic cavities and waveguides.

3.1  �Graphene-cavity high-speed E-O 
modulators

Graphene modulators rely on the Pauli blocking effect [40, 
41], which is illustrated in Figure 2A. Electrostatic gating 
raises (lowers) the Fermi level EF of graphene, causing 
reduction in graphene’s optical absorption for photon fre-
quencies ħω < 2 |EF − ECNP|, where EF − ECNP is the difference 
in the electron Fermi energy from the charge neutrality 
point (CNP). Using the Pauli blocking effect in a 50-μm-
long SLG coupled to a SOI waveguide [8], Liu et al. demon-
strated broadband modulation for wavelengths from 1.35 
to 1.6 μm with 3 dB modulation depth. Recently, improved 
device designs using mutually gated SLG capacitor struc-
tures on waveguides achieved modulation depths of 6 dB 
[9] and 16 dB [42].

Resonators can shrink the size of such graphene mod-
ulators. For instance, we demonstrated a graphene mod-
ulator based on an air-slot cavity with wavelength-scale 
mode volume that achieved > 10 dB modulation depth in 
the telecommunication band [43]. The graphene was gated 
using an electrolyte layer [poly(ethylene oxide) (PEO) plus 
LiClO4], requiring a relatively small swing voltage of 1.5 V 
for a modulation contrast of 10 dB.

The relative low speed of electrolyte gating, with 
a cutoff frequency response < 1 MHz [44], prompted us 
to develop a high-speed device based on a graphene 
capacitor on the photonic crystal cavity [10], as illus-
trated in Figure 2B. The capacitor consisted of a boron 
nitride (BN)/graphene/BN/graphene/BN five-layer stack 
that was produced by the vdW assembly technique and 
transferred onto a quartz substrate [45], with lower par-
asitic capacitance compared to more commonly used 
SiO2/Si substrates. The silicon-membrane-based air-
slot PPC cavity was then transferred and aligned with 
this graphene capacitor, producing the device shown in 
Figure 2B.

Figure 2C shows the normalized cavity reflection at 
λ = 1551  nm as a function of VG, indicating a modulation 
depth of 3.2 dB. The modulation for negative bias voltage, 
− 5.6 V < VG < 0 V, mimicked that for positive voltage, as the 
doping types of the top and bottom graphene layers were 
reversed. The cavity reflectivity is symmetric about the 
CNP at VG = 0.2 V.

The measured E-O S21 parameter, shown in Figure 2D, 
indicates a 3 dB cutoff frequency of 1.2 GHz, correspond-
ing to the resistance-capacitance (RC)-limited time con-
stant of the dual-layer graphene capacitor. A CMT model 
similar to that described in Section 2.1 indicates that the 
real optical conductivity of graphene, σgr, at the maximum 
gate voltage is reduced only to half of the ungated value 
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(at the graphene CNP). Thus, a higher contrast would be 
possible at higher gate voltage, but would push the device 
dangerously close to breakdown (Vbreakdown = 0.3–0.8 V/nm 
[46, 47]) across the 10-nm-thick BN dielectric layer of the 
graphene capacitor. Higher contrast could be achieved at 
longer operation wavelengths, or with the use of high-k 
materials or chemical doping of the graphene layers near 
the Pauli blocking regime.

The graphene capacitor in Figure 2 has an area of 
~ 100 μm2, a capacitance of 320 fF, and a corresponding 
switching energy CV2/2 ~ 1 pJ/bit. Because the graphene 
parallel-plate capacitor was much larger than necessary 
as the area of the optical mode is only ~ 0.5 μm2, limit-
ing the area of the graphene capacitor to the optical 
mode (~ 200 times smaller) would lead to a reduction 
of two orders of magnitude in the switching energy and 
RC time constant. As the cavity optical bandwidth is 
large (~ 600  GHz for a Q value of 300), such graphene-
PPC modulators could enable high modulation contrast, 
exceptionally low energy consumption, and a much 
broader modulation bandwidth than Si modulators based 
on free-carrier dispersion [48–50].

Several other very promising graphene modulator 
designs have been introduced. Silicon ring resonators [11, 
12] with graphene-based modulation showed a 12.5  dB 
modulation depth, and a graphene-silicon nitride ring 
resonator enabled a high modulation contrast of 15 dB per 
10 V driving with ~ 30-GHz operation speed [13]. Finally, 
silicon Mach-Zehnder interferometers have also been 

integrated with graphene, producing a modulation depth 
of > 4 dB and cutoff of 2.5 GHz [51].

3.2  �Graphene-waveguide high-responsivity 
photodetector

Photodetectors in PICs require a different material that 
is absorptive where the PIC is transparent. Today, these 
include epitaxial Ge photodetectors [52], wafer-bonded 
InP [53], or Si with mid-band-gap states [54]. Graphene has 
recently emerged as a promising alternative that prom-
ises simple layer-transfer integration and photoresponse 
from ultraviolet (UV) all the way to the near-infrared, 
mid-infrared, and terahertz (THz) regimes. Moreover, 
graphene detectors can be extremely fast – early studies 
in graphene-based photodetectors show ultrafast pho-
toresponse up to 40 GHz with zero bias voltage [55] – and 
graphene’s strong electron-electron interaction allows 
multiple hot electron-hole pairs to be generated for each 
incident photon [56–58], boosting detection responsivity. 
Recent advances in wafer-scale growth and transfer of 
graphene are promising for integration of graphene with 
complementary metal-oxide-semiconductor (CMOS) pro-
cesses or with arbitrary materials, likely using back-end-
of-line processing steps.

Figure 3A sketches a waveguide-coupled graphene 
photodetector [15] fabricated on a CMOS-compatible PIC. 
A stack of 40-μm-long hexagonal BN (hBN)/SLG/hBN, 
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transferred onto the PIC using vdW assembly [45], serves 
as the photodetector. Figure 3C shows the completed 
structure. The drain electrode is positioned only 200 nm 
from the waveguide to induce a pn junction [59, 60] near 
the optical mode [61].

The hBN/SLG/hBN stack decreased the waveguide 
transmission by 2.2 dB, corresponding to an absorption 
coefficient of 0.055 dB/μm, consistent with the simulated 
results for the waveguide evanescent field coupling to the 
SLG [16]. We used a polymer electrolyte (PEO and LiClO4) 
layer covering the entire chip to independently tune the 
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(B) Cross-sectional view of the side-contacted BN/SLG/BN detector. 
(C) Optical image of the finished waveguide-graphene photodetector.
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graphene Fermi level and electric field across the wave-
guide mode [62–65]. Figure 4A presents responsivity 
measurements (defined as the ratio of the short-circuit 
photocurrent Iph to the optical power Pin in the wave-
guide, i.e. R = Iph/Pin) as a function of VGS and VDS, showing 
a six-fold pattern in the photocurrent, which qualita-
tively matches the behavior of the photothermoelectric 
effect [66, 67]. The photocurrent reaches a maximum of 
0.36 A/W at VGS = 2 V and VDS = 1.2 V.

The high-speed intensity response of this detector was 
beyond the capabilities of commonly available E-O modu-
lators. As a substitute, we interfered two detuned nar-
rowband (1  MHz) telecom lasers to produce an intensity 
modulation at δf. Figure 4B plots the relative optical-to-
electrical response of the detector received on an electrical 
spectrum analyzer (maximum frequency 50 GHz) at differ-
ent δf. This measurement indicates a 3 dB cutoff frequency 
at 42 GHz, matching the highest reported graphene photo-
detector speed [14]. Sending pseudorandom on-off-keyed 
data produced a clear eye-opening diagram at 12 Gbit/s 
(inset of Figure 4B).

Waveguide-integrated graphene photodetectors 
are possible with CMOS-compatible processes [61]. In 
addition to exfoliated graphene devices, large-scale 
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chemical vapor deposition-grown graphene integrated 
with waveguides can achieve a data rate of 50  Gbits/s 
[14], and high-responsivity by integrating with a 
silicon air-slot waveguide [39]. Owing to the broad-
band absorption of graphene, waveguide-integrated 
graphene heterostructure also enables photodetectors 
for mid-infrared wavelengths [68]. For other 2D materi-
als, black phosphorus (BP)-based photodetectors have 
drawn great attention due to their small band gap that 
is promising for telecommunication and mid-infrared 
wavelength ranges [17, 69]. Heterogeneously integrated 
BP-silicon photodetectors have shown up to 6 A/W 
responsivity with > 3 GHz speed.

3.3  �Ultrafast on-chip autocorrelator

The photocurrent presented in the previous section 
exhibits a non-linear photoresponse with a peak power 
that is > 50  mW. The power-dependent curve (Figure 
4C) fits well by a power law of Iph ∝ Pin

0.47, suggesting 
supercollision-dominated cooling mechanism [70]. The 
picosecond-scale non-linear photocurrent is desirable 
for on-chip optical signal characterization, e.g. ultrafast 
optical sampling and autocorrelation measurements. In 
Figure 4D, we plot photocurrent traces as a function of 
the time delay Δt between pairs of 250-fs laser pulses for a 
range of incident powers. These traces show a clear dip at 
Δt = 0 with a width corresponding to the detector’s carrier 
relaxation time of ~ 3 ps. In this device, strong non-linear 
photoresponse at low peak power could enable a more 
efficient on-chip autocorrelator compared with existing 
autocorrelators based on free-space parametric frequency 
conversion and two-photon absorption in semiconduc-
tor waveguides [71–73], while keeping a footprint of only 
40 μm in length. The femtosecond thermalization of gra-
phene’s hot electrons suggests that the timing resolution 
of the on-chip autocorrelator is possibly down to sub-50 
fs [74]. It is also important to note that this graphene-
based autocorrelator supports a broad spectral range 
from 1500–1800 nm.

3.4  �Ultrasensitive graphene-based 
bolometers and single photon detectors

With its exceptionally small electronic heat capacity [75–
79] and weak electronic heat dissipation [64], graphene 
is also a promising material platform for ultrasensitive 
thermal detectors [80–82]. The exceedingly low number 
of atoms in a typical graphene device and the vanishing 

density of states at the CNP result in a record-low elec-
tronic specific heat, which is on the order of one Boltz-
mann constant. Hence, a graphene-based bolometer is 
comparable to some of the best nano-calorimeters [81, 
83]. Additionally, the small size of the Fermi surface 
and the high energy of graphene’s phonons result in a 
strongly suppressed heat flow from hot electrons into the 
phonon bath. With these unique thermal properties, gra-
phene is a natural heat absorber for bolometer applica-
tions and allows for a high temperature rise by incident 
radiation, even down to the energy quanta of a single 
photon.

To investigate graphene’s thermal properties and to 
demonstrate the proof of concept of the graphene bolom-
eter, we investigated a Johnson noise thermometry circuit 
[21, 78, 84] to directly read the electronic temperature using 
the Johnson-Nyquist theorem. As shown in Figure 5A, the 
graphene device is impedance-matched with an  inductor-
capacitor (LC) matching network, which enables maximal 
transmission of the generated noise power. The signal is 
further amplified using a state-of-the-art low-noise ampli-
fier, resulting in an overall temperature sensitivity that 
approaches 0.001  K/Hz1/2. A directional coupler is used to 
apply Joule heating pulses and to simultaneously monitor 
the response of the electronic temperature, which enables 
direct measurements of the electronic cooling mechanisms 
through the study of the electronic thermal conductance Gth.

The heat transfer P is dominated by electron-phonon 
cooling and follows a high power law P = σA(Te

4 − Tp
4), 

where σ is the electron-phonon coupling parameter, A is 
the graphene area, Te is the electron temperature, and Tp 
is the phonon temperature. Figure 5B shows the typical 
data taken at different temperatures. Through the relation 
Gth = P/ΔTe, we can extract the thermal conductance, which 
we find to be on the order of 0.2 nW/K (Figure 5C). This 
corresponds to a noise equivalent power of the bolometer 
of 0.4 pW/K at 2K, as given by the product of Gth and the 
temperature sensitivity. Using a much cleaner graphene 
device at the CNP, the bolometer is predicted to reach an 
even lower NEP of ~ 10 − 21 W/Hz1/2  [78].

The above extracted parameters make it possible 
to engineer a graphene-based device that could detect 
a single photon in the frequency range from UV to GHz. 
Figure 5D shows a device concept for a thermal graphene-
based single photon threshold detector. High quantum 
efficiency can be achieved by critical coupling of the gra-
phene to a photonic crystal cavity. The graphene sheet 
is further coupled to two closely spaced superconduct-
ing electrodes that form a Josephson junction and allow 
for a supercurrent to flow through the graphene [85–87]. 
Upon absorption of a single photon, the temperature of 
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the device is increased above the critical temperature of 
the superconductor, creating a detectable voltage pulse 
across the device.

4  �vdW materials for single photon 
generation

A single photon emitter (SPE) is a critical element for 
quantum information processes, including quantum 
networks [88] and photonic quantum computing [89]. 
Layered materials have recently shown quantum light 
emission, paving the way to new applications of this 
emerging class of materials. Compared with other SPEs, 
2D materials have the potential to be easily integrated 
into complex photonic structures and enable new chip 
designs for quantum applications. Moreover, most are 
stable and can easily be gated. In this section, we review 
some of the recent discoveries of quantum optics applica-
tions of 2D materials in both TMDC semiconductors and 
insulators, and the potential high impact that this tech-
nology can bring for future efficient quantum communi-
cation devices.

4.1  �Single photon source in semiconductor 
TMDCs

TMDCs are layered semiconductors with direct band gap 
at the monolayer level [31, 32]. At room temperature, PL 
is mainly dominated by excitons and electron-hole pairs, 
with emission spanning over a large band depending 
on the 2D material [90]. Cryogenic measurements also 
revealed the presence of trions (excitons bound to a carrier) 
and localized excitons. The latter are excitons trapped in 
a potential well created by atomic defects or impurities in 
the crystal lattice of the TMDCs. Similar to quantum dots 
(QDs), defect-bound excitons can behave like SPEs with 
smaller energy with respect to excitons due to the binding 
energy used to pin to disorder site. Quantum emission in 
TMDCs has been reported for both exfoliated [23, 91, 92] 
and grown WSe2 [24].

For exfoliated materials, single photon emission is 
observed in localized sites along the interface between 
layers, the cracks or the edges of the flakes. In flakes 
grown by physical vapor transport [24], quantum emis-
sion is observed also in the center of the flake, suggesting 
a higher density of impurities and defects for artificially 
grown monolayers compared to the exfoliated ones. 
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Nevertheless, both systems show similar characteristics. 
A single localized exciton shows a rather narrow spec-
tral emission with a linewidth down to 10 μeV with reso-
nant excitation [93]. The lifetime has been measured to 
range from 600 ps up to 3 ns, depending on the investi-
gated emitters. Blinking and spectral diffusion have been 
reported and still remain a big challenge for quantum 
emission applications with 2D materials. These issues 
can be solved by better isolating the monolayers (i.e. by 
encapsulation with hBN) from external agents that are 
responsible of fluctuation of the electronic environment 
surrounding these thin materials. Furthermore, quantum 
emitters have been shown to be rather resistant to high 
power excitation and several temperature cycles.

Single photon emission has also been investigated 
under strong electric and magnetic fields. Anomalously 
large Zeeman effect has been reported [23, 92], sug-
gesting that the valley polarization degree of freedom, 
typical of hexagonal lattice structure, is preserved in the 
localized excitons. Several experimental works report a 
g-factor around 10, which is almost an order of magni-
tude larger than the one reported for III–V semiconduc-
tor QDs [94]. These observations strongly suggest that 
the quantum emitters in WSe2 inherit their electronic 
structure from the TMDC and indicate trapped excitons 
as candidates.

Single photon emission can also be controlled and 
modulated via electrostatic gating [91]. In particular, the 
activity of the emitters is affected by the variation of the 
local electrical environment via gating. Emission stability 
is highly affected and deteriorated with increased bias. 
Preliminary measurements also showed that lifetime 
could also be controlled by external gating.

4.2  �Single photon source in BN defect center

hBN is a vdW insulator widely used in heterostruc-
tures to improve optical and electronic properties of 2D 
semimetals and semiconductors [27]. Growing interest 
has been attracted also by its highly non-linear natural 
hyperbolic properties [95]. The recent demonstration of 
quantum emission in layered hBN opened the door to new 
applications in quantum technology as scalable single 
photon sources [96].

Different from TMDCs, where SPEs are associated to 
localized excitons, SPE in insulating hBN are attributed to 
atomic-like defects of the crystal structure, similar to color 
centers in diamond. Defects in hBN confine electronic 
levels within the band gap (~ 6 eV) and result in stable and 
extremely robust emitters.

Despite the wide use as insulator for its high quality, 
pristine hBN is not free of impurities, defects, and dan-
gling bonds. Several luminescence experiments have 
reported strong emission from a large variety of charge 
defects, impurities, and adatoms [97–99] that create pho-
toactive states within the hBN band gap [100, 101]. Recent 
studies demonstrate that these defects can be associated 
to nitrogen vacancies (NVs), a carbon atom substituted to 
an N vacancy or oxygen impurities [100]. Moreover, Tran 
et al. have shown that NVs in hBN function as SPEs [96]. 
Figure 6A shows the typical atomic structure of hBN with 
an individual atomic defect. The spectrally resolved emis-
sion of atomic defect at room temperature is shown in 
Figure 6B with the zero phonon line (ZPL) located around 
575 nm and separated by ~ 50 nm from the first phonon 
side band.

Spectroscopy of SPEs is done in confocal configura-
tion with a microscope objective of NA = 1 and a fiber-
coupled spectrometer. In detection, the excitation laser 
at 532  nm is filtered out with a polarized beam splitter 
and long pass filter. Second-order correlation measure-
ment shows good anti-bunching, unveiling the single 
photon nature of these emitters. An example is reported 
in Figure 6C where the coincidence counts are recorded 
using a Hanbury Brown and Twiss setup with continuous 
wave excitation. At zero delay time, the counts go below 
0.5 (g2(0) = 0.24), confirming the single photon emission. 
Power-dependent measurements revealed a three-level 
system with a metastable state. Moreover, these emitters 
are found to be stable over time and show high emission 
rate up to 4 million counts per second [102]. Time-depend-
ent measurements indicate a lifetime around 2 ns.

Interestingly, experiments report different spectral 
shape for quantum emitters in hBN with the ZPL energy 
spanning over a large band, from the UV up to 750 nm [96, 
103]. Figure 6D shows the spectral distribution of the ZPL 
emission energy of almost 90 emitters in our experiments.

Although individual emitters show different spectral 
shapes, the constant energy separation between the ZPL 
and the phonon side bands of ~ 160 meV suggests similar 
crystal structures [96]. It is also interesting to notice the 
correlation between the energy of the ZPL and the spectral 
shape. Recent studies suggest the presence of at least two 
families of quantum emitters in hBN with different life-
time and brightness [22].

An interesting aspect is the spectral distribution 
among the same family of emitter. Within the same family, 
the ZPL can span over the 300-meV band. The cause of 
this large distribution has been tentatively attributed to 
local strain fluctuations of the hBN flakes. Electronic dis-
order is induced in monolayer graphene by random strain 
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fluctuation due to the exfoliation process or the inhomo-
geneous adhesion to the substrate [104]. Similarly, in hBN, 
strain can result in the displacement of the lattice atoms 
and the shifting of the energy levels of atomic-like defects. 
It has been calculated that strain in the range of − 5% to 
5% can cause an energy shift of almost 200 meV, in agree-
ment with the experimental observation.

The role of strain in the energy of the single photon 
emission can open interesting possibilities for the local 
tuning of the ZPL with applications in quantum comput-
ing and quantum information where indistinguishability 
is of utmost importance.

5  �Outlook
Heterogeneous integration of 2D materials with nano-
photonics promises a new architecture of optoelectronic 
devices and quantum photonics. In addition to E-O modu-
lators and photodetectors based on graphene, a variety of 
combinations of 2D materials including TMDCs [90], BP 
[7, 17, 105], hBN, and superconducting 2D niobium disele-
nide (NbSe2) [106] could further provide on-chip devices 
including all-optical modulators [107], mode-locked ultra-
fast laser [108], thermo-optic modulators [109], light-emit-
ting diodes [110], and single photon sources [22].

Continued improvement in material and device 
fabrication is needed to facilitate the technology tran-
sition into applications. There has been significant 
progress in epitaxial, large-scale, and high-yield trans-
fer processes for certain materials including graphene 
[14, 111, 112] and MoS2 [113, 114]; on the other hand, the 
development of large-scale epitaxial hBN [115, 116] and 
other TMDCs continually advances. These developments 
could soon provide a hybrid platform that heterogene-
ously integrates 2D materials with silicon CMOS techno-
logy. To further ensure high-quality electronics and 
photonics based on 2D materials, suitable substrates 
and surface passivation are essential to ensure high-
quality 2D devices. In addition, high-quality electrical 
contacts are also important to reduce contact resist-
ance, improving device speed and power consumption. 
One-dimensional contacts to the hBN-encapsulated gra-
phene [45] and graphite-graphene contacts [117] show 
great promise. Work continues on scaling up these pro-
cesses and extending low-resistivity contacts to other 2D 
materials.

The outstanding optical and electronic properties 
of 2D materials offer a level of control, heterogeneous 
material properties, and design flexibilities that are 
probably unprecedented in optoelectronics. Here, we 
reviewed a subset of applications: optical interconnect 
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technologies including high-speed photodetectors [15, 
16, 39] and modulators [10, 13], as well as device concepts 
for photonic quantum information processing, includ-
ing progress toward efficient single photon sources and 
single photon detectors. With the exceptional progress 
of the past decade, such a scalable 2D nanophotonic 
architecture could bring remarkable impacts for these 
applications in the near future, while promising other 
directions including back-end deposited silicon photon-
ics [118], mid-infrared photonics [119], THz detection 
[120, 121] and modulation [122], and also flexible pho-
tonics [123].
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