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Imprint of topological degeneracy in quasi-one-dimensional fractional quantum Hall states
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We consider an annular superconductor-insulator-superconductor Josephson junction, with the insulator being
a double layer of electron and holes at Abelian fractional quantum Hall states of identical fillings. When the two
superconductors gap out the edge modes, the system has a topological ground-state degeneracy in the thermody-
namic limit akin to the fractional quantum Hall degeneracy on a torus. In the quasi-one-dimensional limit, where
the width of the insulator becomes small, the ground-state energies are split. We discuss several implications of the
topological degeneracy that survive the crossover to the quasi-one-dimensional limit. In particular, the Josephson
effect shows a 2πd periodicity, where d is the ground-state degeneracy in the two-dimensional limit. We find
that at special values of the relative phase between the two superconductors there are protected crossing points in
which the degeneracy is not completely lifted. These features occur also if the insulator is a time-reversal-invariant
fractional topological insulator. We describe the latter using a construction based on coupled wires. Furthermore,
when the superconductors are replaced by systems with an appropriate magnetic order that gap the edges via a
spin-flipping backscattering, the Josephson effect is replaced by a spin Josephson effect.
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I. INTRODUCTION

One of the hallmarks of the fractional quantum Hall effect
(FQHE) is that if the two-dimensional electron system resides
on a manifold with a nontrivial topology, it will have a
ground-state degeneracy which depends on the topology [1].
For a fractional quantum Hall state on an infinite torus,
the degeneracy of the ground state equals the number of
topologically distinct fractionalized quasiparticles allowed in
that state. Since this degeneracy is topological, it does not
originate from any symmetry, and in particular does not require
the absence of disorder. Furthermore, no local measurement
may distinguish between the degenerate ground states.

When the torus is of large but finite size, the degeneracy
is split, but the splitting is exponentially small in L, where
L = min {Lx,Ly} and Lx,Ly are the two circumferences of
the torus. In the thin torus regime, where one circumference of
the torus is infinite and the other is smaller or comparable to
the magnetic length, the fractional quantum Hall state crosses
over into a charge density wave (CDW), and the degenerate
ground states correspond to different possible phases of the
CDW [2–4]. In that regime, a local impurity may pin the charge
density wave and lift the degeneracy between the ground states.
Equivalently, a local measurement is able to identify the phase
of the CDW, and hence the ground state.

In this work, we consider two systems that are topologically
equivalent to a torus, and, unlike the torus, are within
experimental reach. The first is that of an annular-shaped
electron-hole double layer in which the electron and hole
densities are equal, and are both tuned to the same FQHE
state [see Fig. 1(a)]. In the absence of any coupling between
the layers, both the interior edge and the exterior edge of the
annulus carry pairs of counterpropagating edge modes of the
electrons and the holes. These pairs may be gapped by means
of interlayer backscattering, resulting in a fully gapped system
with the effective topology of the torus. In fact, this system

is richer than a seamless torus since the interior and exterior
edges may be gapped in different ways. In particular, gapping
the counterpropagating edge modes by coupling them to a
superconductor may have interesting consequences. Some of
these consequences are central to this paper.

The second realization we consider is that of a two-
dimensional time-reversal-invariant fractional topological in-
sulator [5]. To be concrete, we assume that it is constructed
of wires subjected to spin-orbit coupling and electron-electron
interaction [see Fig. (1(b)]. In this realization, electrons of
spin up form a FQHE state of filling factor ν, and electrons of
spin down form a FQHE of filling factor −ν. Similar to the
particle-hole case, the edges carry pairs of counterpropagating
edge modes with opposite spins that may be gapped in different
ways. Remarkably, when the edge modes are gapped by being
coupled to superconductors, the system is invariant under time
reversal, yet topologically equivalent to a FQHE torus.

We use these realizations of a toroidal geometry and their
interrelations to investigate the transition of a fractional quan-
tum Hall system from the thermodynamic two-dimensional to
the quasi-one-dimensional regime of a few wires. In particular,
we find signatures of the topological ground-state degeneracy
of the two-dimensional (2D) limit (akin to that of fractional
quantum Hall states on a torus) that survive the transition to the
quasi-one-dimensional (1D) regime and propose experiments
in which these signatures may be probed. For example, for an
Abelian fractional quantum Hall state, we find a 2πd-periodic
Josephson effect, where d is the degeneracy in the 2D ther-
modynamic limit. We note that related ideas were explored in
Ref. [6], where it was suggested that a signature of the ground
state degeneracy can be found by measuring the heat capacity.

The structure of the paper is as follows: In Sec. II, we
summarize the physical ideas and the main results of the paper.
In Sec. III, we define the systems in more detail and identify the
topological degeneracy in the thermodynamic limit. In Sec. IV,
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FIG. 1. (Color online) (a) The first realization we consider is that of an electron annulus (blue) and a hole annulus (red) under the action
of a uniform magnetic field. It is evident that coupling the annuli’s edges forms the topology of a torus. The second realization we suggest is
that of a fractional topological insulator. (b) Shows a possible model for a fractional topological insulator. We have an array of N wires, with a
strong spin-orbit coupling. The spin-orbit coupling is linear with the wire index n. The similarity of the resulting spectrum [see Fig. 3(a)] to the
one corresponding to the wires’ construction of quantum Hall states suggests an equivalence to two quantum Hall annuli subjected to opposite
magnetic fields (each annulus corresponds to a specific spin). The use of the wires construction enables us to include interaction effects using
a bosonized Tomonaga-Luttinger liquid theory for the description of the wires. (c) The edge modes of the two above models can be gapped
out by proximity coupling to superconductors. In the case of a thin (quasi-1D) system, the phase difference between the inner and the outer
superconductors leads to a Josephson effect mediated by tunneling across the region of a fractional quantum Hall double layer or a fractional
topological insulator. The spectrum as a function of the phase difference ϕ is depicted in Fig. 2. The edge modes can also be gapped using
proximity to magnets, in which case one can measure the spin Josephson effect.

we discuss the quasi-one-dimensional regime, and point out
observable signatures of the topological degeneracy in that
regime. Our discussions in these sections focus on the ν = 1

3
case. In Sec. V, we discuss how the results of the previous
sections are generalized to other Abelian QHE states.

II. MAIN RESULTS AND THE PHYSICAL PICTURE

A. Systems considered

The electron-hole double-layer system is conceptually
simple to visualize [see Fig. 1(a)]. We consider an electron-
hole double-layer shaped as an annulus with equal densities
of electrons and holes, and a magnetic field that forms
FQHE states of ±ν in the two layers. The system breaks
time-reversal symmetry, but its low-energy physics satisfies
a particle-hole symmetry. For most of our discussion we
focus on the case ν = 1

3 . In that case each edge carries a pair
of counterpropagating ν = 1

3 edge modes. The edge modes
may be gapped by means of normal backscattering (possibly
involving spin flip, induced by a magnet) or by means of
coupling to a superconductor. In line with common notation,
we refer to these two ways as F and S, respectively.

To model the fractional topological insulator we consider
an array of N coupled quantum wires of length Lx , each
satisfying periodic boundary conditions [Fig. 1(b)]. The wires
are subjected to a Rashba spin-orbit coupling, and we consider
a case in which the spin-orbit coupling constant in the nth wire
is proportional to 2n − 1 (similar to the model considered by
Ref. [7]). Effectively, this form of spin-orbit coupling subjects
electrons of opposite spins to opposite magnetic fields. While
this particular coupled-wire model of a time-reversal-invariant
topological insulator does not naturally allow for the regime
of a large N , other realizations, such as those proposed in
Refs. [7,8], allow for such a regime. These realizations require
more wires in a unit cell, and are therefore more complicated
than the one considered here. Most of the results of our analysis
are independent of the specific realization of the fractional

topological insulator, and we present the analysis for the
realization that is simplest to consider.

For noninteracting electrons, the spectrum of the array
we consider takes the form shown in Fig. 3(a). Single-
electron tunneling processes (which conserve spin) gap out the
spectrum in all but the first and last wires, which carry helical
modes [Fig. 3(b)]. If the chemical potential is tuned to this gap,
then in the limit of large N the system is a topological insulator
(TI), and therefore the gapless edge modes are protected by
time-reversal symmetry and charge conservation [9]. This
construction is then equivalent to two electron QH annuli with
opposite magnetic fields.

The edge modes may be gapped by coupling the two
external wires (n = 1 and N ) to a superconductor or to
a system with appropriate magnetic order. A Zeeman field
that is not collinear with the spin-orbit coupling direction is
necessary to couple the different spin directions. Moreover, in
our coupled-wires model the spin-up and the -down electrons
at the n = N edge have different Fermi momenta, so that edge
would not be gapped by a simple ferromagnet. In order to
conserve momentum, one would need to introduce a periodic
potential that could modulate the coupling to the ferromagnet
at the appropriate wave vector, or one would need to use a spiral
magnet with the appropriate pitch. In more sophisticated wire
models, such as those discussed by Refs. [7,8], or in actual
realizations of topological insulators, the two edge modes can
have the same Fermi momenta, so a simple ferromagnet can
be used.

In order to construct a fractional topological insulator, we
first tune the chemical potential such that the density is reduced
by a factor of 3, to ν = 1

3 . For an array of wires in a magnetic
field and spinless electrons, Kane et al. [10] have introduced
an interaction that leads to a ground state of a FQHE ν = 1

3 .

Furthermore, they argued that there are a range of interactions
that will flow to the topological phase described by this state
[10–12]. Here, we show that the same interaction, if operative
between electrons of the same spin only, leads to a formation of
a fractional topological insulator, i.e., to the spin-up electrons
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forming a ν = 1
3 state and the spin-down electrons forming

a ν = − 1
3 state. Note that the same type of interaction terms

were used by several authors to construct various 2D fractional
topological states [7,8,13] and 1D fractional states [12,14–16].

Our analysis is based on bosonization of the wires’ degrees
of freedom, and a transformation to a set of composite chiral
fields, that may be interpreted as describing fermions at filling
ν = 1. In terms of the composite fields, one can repeat the
process which led to a gapping of the noninteracting case either
by normal or by superconducting mechanisms. In terms of
the original electrons, these mechanisms involve multielectron
processes, which either conserve the number of electrons or
change it by a Cooper pair.

Both the electron-hole double layer and spin-orbit wire sys-
tem have counterpropagating edge modes. They are distinct,
however, in a few technical details. An electron-hole double-
layer system has been realized before in several materials,
such as GaAs quantum wells and graphene. The requirements
we have here, i.e., no bulk tunneling, sample quality that is
sufficient for the observation of the fractional quantum Hall
effect, and a good coupling to a superconductor or a magnet,
are not easy to realize, but are not far from experimental
reach [17–19]. In addition, we assume that the two layers
are far enough such that interlayer interactions do not play
an important role, but close compared to the superconducting
coherence length to enable pairing on the edges.

The array of wires we describe can in principle be formed
using semiconducting wires such as InAs and InSb [20–22],
where variable Rashba spin-orbit coupling could be achieved
by applying different voltages to gates above the wires. We
stress that the wires construction is nothing but a specific
example of a fractional topological insulator, and that any
fractional topological insulator is expected to present the
effects we discuss. Two-dimensional topological insulators
were conclusively observed [23–29], and more recently prox-
imity effects to a superconductor were demonstrated on their
edges [30–32]. However, fractionalization effects due to strong
electron-electron interaction were not observed yet in these
systems and are less founded theoretically.

We emphasize that our construction, which is equivalent to
a single-layer quantum Hall state on a torus, is different from
toroidal geometry of a double-layer quantum Hall state.

B. Ground-state degeneracy and its fate in the
transition to one dimension

In Sec. III, we investigate the topological degeneracy of the
ground state in the 2D thermodynamic limit. Using general
arguments, we find that the degeneracy depends on the gapping
mechanism of the edges: when both edges are gapped by the
same mechanism, be it proximity coupling to a superconductor
or to a magnet, the topological degeneracy is three, as expected.
However, if one edge is gapped using a superconductor and
the other is gapped using a magnet, the ground state of the
system is not degenerate.

Physically, the degeneracy is most simply understood in
terms of the charge on the edge modes. For an annular
geometry there are two edges, in the interior and the exterior of
the annulus, and therefore four edge modes with four charges
q1,q2,q3, and q4 (here we use the subscripts 1 and 2 to denote

the two counterpropagating edge modes on the interior edge,
and 3 and 4 to denote the modes on the exterior edge. Edges
1 and 4 belong to one layer (or one spin direction) and edges
2 and 3 belong to the other layer (other spin direction); see
Fig. 1(a). It will be useful below to distinguish between the
integer part of qi , which we denote by ni , and the fractional part
denoted by fi , to which we assign the values fi = − 1

3 ,0, 1
3 ,

such that qi = ni + fi .
When a pair of counterpropagating edge modes, say with

charges q1,q2, are gapped by normal backscattering of single
electrons, their total charge q1 + q2 is conserved. Since there
is an energy cost associated with the total charge, it assumes
a fixed value for all ground states. (The tunneling between the
edges gaps the system and makes it incompressible, leading to
an energy cost associated with a change of the total charge.)
For simplicity, we fix this value to be zero, making q1 =
−q2. A strong backscattering term makes n1 − n2 strongly
fluctuating but leaves the fractional part f1 = −f2 fixed. As
a consequence, there are three topological sectors of states
that are not coupled by electron tunneling, characterized by f1

being 0, 1
3 , or − 1

3 .
Since each of the layers (in the double-layer system) or each

spin direction (in the spin-orbit-coupling system) must have an
integer number of electrons, the sums q1 + q4 and q2 + q3 must
both be integers. This condition couples the fractional parts of
the charges on all edges. Combining all constraints, we find
that when both edges are gapped by a normal backscattering,
the following conditions should be fulfilled:

f1 = −f2, f3 = −f4, (1)

f1 = −f4, f2 = −f3. (2)

There are three solutions for these equations describing three
ground states, with fl = (−1)l p

3 , where p may take the values
0,1, − 1 and l = 1,2,3, and 4. When both edges are gapped
by a superconductor, f2 and f4 change sign in Eq. (1) and the
fractional parts satisfy f1 = f2 = −f3 = −f4 = p/3. Finally,
when one edge is gapped by a superconductor and the other by
normal backscattering, only one of the two equations labeled
(1) changes sign and the only possible solution is fl = 0 so
that all q’s must be integers, and the ground state is unique.

Formally, the degeneracy of the ground state may be shown
by an explicit construction of two unitary operators Ux and Uy

that commute with the low-energy effective Hamiltonian and
satisfy the operator relation

UxUy = UyUxe
2π
3 i . (3)

The existence of a matrix representation of this relation,
acting within the ground-state manifold, requires a degenerate
subspace of minimal dimension 3.

We construct such operators for the electron-hole system
under the assumption that the only active degrees of freedom
are those of the edge, and for the coupled-wires system when
we confine ourselves to an effective Hamiltonian. For both
cases, one of these operators, say Ux, measures the fl’s and
the other operator Uy changes the fl’s by ± 1

3 (the sign depends
on l and on the type of gapping mechanism). We choose to
work with a representation of Ux,Uy in which both operators,
projected to subspace of ground states, are independent of
position.
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Even when Lx is infinite, a finite Ly splits the degeneracy.
The source of lifting of the degeneracy is tunneling of
quasiparticles between the two edges of the annulus, i.e.,
tunneling of quasiparticles from the first to the last wire. More
precisely, we find that as long as the bulk gap does not close,
the only term that may be added to the low-energy Hamiltonian
is of the form

λUy + λ∗U †
y . (4)

This term is generated by high orders of perturbation theory
that lead to a transfer of quasiparticles between edges. The
amplitude λ decays exponentially with the width of the system.
For the wires’ realization this translates to an exponential decay
with N , the number of wires. Other factors that determine
the magnitude and phase of λ are elaborated on in the next
subsection.

If Lx is also finite, there will be additional terms in the
Hamiltonian proportional to Ux and U

†
x , with coefficients that

fall off exponentially in Lx . The physical explanation of these
terms is that when Lx is finite, root-mean-square fluctuations
in the total charge in an edge mode are not infinite, but are
proportional to L

1/2
x . This leads to energy differences between

states with different values of the fractional charge fl that
decrease exponentially with increasing Lx .

C. Remnants of the degeneracy in the
quasi-one-dimensional regime

The topological degeneracy is lifted in the transition from
a two-dimensional system to a quasi-one-dimensional one,
but it leaves behind an imprint which can in principle be
measured. This is seen when we add another parameter to
the Hamiltonian. For a torus, this parameter may be the flux
within the torus. For the systems we consider here, when
gapped by one superconductor at the interior edge and one
superconductor at the exterior edge, this parameter may be the
phase difference ϕ between the two superconductors. In this
case, the fractional quantum Hall torus forms the insulator in a
superconductor-insulator-superconductor Josephson junction.

The dependence of the spectrum on these parameters is
encoded in the amplitude λ of Eq. (4). In particular, since
the tunneling charge is 2

3 of an electron charge, which is 1
3

of a Cooper pair, we find that the tunneling amplitude at
the point x along the junction is proportional to the phase
factor eiϕ(x)/3, where ϕ(x) is the phase difference between
the two superconductors at the point x. For the fractional
topological insulator, no magnetic flux is enclosed between the
superconductors, and the equilibrium phase difference does
not depend on x. In contrast, for the electron-hole quantum
Hall realization, the magnetic flux threading the electron-hole
double layer makes ϕ(x) vary linearly with x, such that the
phase of the tunneling amplitude winds as a function of
the position of the tunneling. The amplitude λ of Eq. (4)
is an integral of contributions from all points at which the
superconductors are tunnel coupled,

λ =
∫

dx T (x), (5)

where T (x) is the local tunneling amplitude.

FIG. 2. (Color online) The spectrum of the three low-energy
states as a function of the phase difference ϕ between the two super-
conductors (see text for elaboration). The amplitude of oscillations
falls exponentially with the number of wires N . For a finite N , each
eigenstate has a periodicity of 6π . At the special points ϕ = πn

the spectrum remains twofold degenerate. If the system is of finite
length Lx , the degeneracy at these points is lifted by a term that is
exponentially small in Lx .

When the superconductors are tunnel coupled only at a
single point (say x = 0), such that T (x) ∝ δ(x), the spectrum
of the three ground states as a function of ϕ, which is now the
argument of T (x = 0), can be written in the explicit form

�Eα = 2t0 cos

(
ϕ − 2πα

3

)
, (6)

where α = 0,1, − 1 enumerates the ground states. This is
shown in Fig. 2.

While the amplitude t0 is exponentially small in the width
Ly , or in the number of wires N , we find that the spectrum
as a function of the phase difference across the junction has
points of avoided crossing in which the scale of the splitting
between the two crossing states is proportional to e−Lx/ξx , i.e.,
is exponentially small in Lx (here, ξx is a characteristic scale
which depends on the microscopics). Thus, in the quasi-one-
dimensional regime, where Ly or N are small but Lx is infinite,
the three states are split, but cross one another at particular
values of ϕ.

Remarkably, this crossing cannot be lifted by any perturba-
tion that does not close the gap between the three degeneracy-
split ground states and the rest of the spectrum. This lack of
coupling between these states results from the macroscopically
different Josephson current (from the inner edge to the outer
edge) that they carry. The Josephson junction formed between
the two superconductors will show a 6π -periodic dc Josephson
effect for as long as the time variation of the phase is slow
compared to the bulk energy gap, but fast compared to a time
scale that grows as eLx/ξx . This Josephson current distinguishes
between the three ground states. This current oscillates as
a function of the position of the tunneling point for an
electron-hole quantum Hall system and is position independent
for the fractional topological insulator.

When tunneling between edges takes place in more than
one point, T (x) in (43) is nonzero at all these points, and has

245144-4



IMPRINT OF TOPOLOGICAL DEGENERACY IN QUASI- . . . PHYSICAL REVIEW B 91, 245144 (2015)

to be integrated. A particularly interesting case is that of a
uniform junction. In that case T (x) and the Josephson current
are constant for the fractional topological insulator, while in
the electron-hole double layer the phase of T (x) winds an
integer number of times due to the magnetic flux between the
superconductors, and the Josephson current averages to zero.

A magnetic coupling between the electron and hole layers,
or between electrons of the two spin directions, may lead to
a “(fractional) spin Josephson effect,” in which spin current
takes the place of charge current in the Josephson effect
[33–35]. In this case, assuming that the spin-up and -down
electrons are polarized in the z direction, coupling between
the edge modes occurs by a magnet that exerts a Zeeman
field in the x-y plane. The role of the phase difference in
the superconducting case is played here by the relative angle
between the magnetization at the interior and exterior edges,
but an interesting switch between the two systems we consider
takes place. In the electron-hole quantum Hall case the
direction of the magnetization is uniform along the edges and
a uniform and opposite electric current flows in the two layers.

For the fractional topological insulators, the edges are
gapped only when for one of the edges the direction of the
magnetization in the x-y plane winds as a function of position.
As a consequence, in our coupled-wires model the spin current
oscillates an integer number of oscillations along the junction,
and thus averages to zero.

Our discussion may be extended beyond the case of
ν = 1

3 . For Abelian states, we find that the periodicity of
the Josephshon effect is 2π/e∗, where e∗ is the smallest
fractional charge allowed in the state. In any Abelian state,
this is also 2π times the degeneracy of the ground state in the
thermodynamical limit.

III. GROUND-STATE DEGENERACY IN THE
THERMODYNAMIC 2D LIMIT

In this section, we derive in detail the degeneracy of the
ground state in the thermodynamic two-dimensional limit of
the two systems we consider.

A. Description in term of edge modes only

The systems we consider have two edges, each of which
carries a pair of counterpropagating edge modes. In the absence
of coupling between the layers, the bosonic Hamiltonian of the
edges is composed of the kinetic term

H0 = v

2

∫
dx

∑
l=1,2,3,4

(∂xχl)
2. (7)

Here, we assumed all edge velocities to be the same and
neglected small-momentum interaction between the edges, for
simplicity.

The fields χi satisfy the commutation relation

[χl(xl),χj (xj )] = i 1
3 (−1)lπδlj sign(xl − xj )+i 1

9π sign(l−j ).

(8)

Coupling between the edge modes has the form

H1 = λ

∫
dx cos 3(χl ± χj ), (9)

where l,j = 1,2 for the interior edge and l,j = 3,4 for the
exterior edge. The plus sign refers to superconducting coupling
and the minus sign to normal backscattering. The edge is
gapped when the coupling constant λ is large, which we
assume to be the case.

The charge on the lth edge modes is related to the winding of
χl , namely, ql = (−1)l 1

2π

∫
dx ∂xχl(x), where ql is the charge

in units of the electron charge. For uncoupled edge modes, the
charges ql are quantized in units of the quasiparticle charge
1
3 . When two edge modes are coupled through a normal or
superconducting coupling, the charge on each edge heavily
fluctuates. However, due to the fact that only whole electrons
may be transferred between edge modes on different layers,
or between edge modes and an adjacent superconductor, the
operators ei2πql commute with both parts of the Hamiltonian
equations (7) and (9). We therefore characterize the different
states according to these operators, i.e., according to the
fractional part of the charge on the various edges. The fact
that the total charge on each layer is an integer gives the two
general constraints

exp [i2π (q1 + q4)] = 1,
(10)

exp [i2π (q2 + q3)] = 1,

regardless of the mechanism for coupling the edges. Two other
relations come from energy considerations, which depend on
the gapping mechanism. For the case where the two edges are
gapped using a superconductor, it is energetically favorable to
form singlets, such that

q1 = q2,
(11)

q3 = q4.

Notice that if Eq. (11) is not satisfied, the edge carries a nonzero
spin which cannot be screened by the superconductor. This
configuration is therefore energetically costly.

In the case where both edges are gapped by normal
backscattering processes, which we refer to as the FF case,
it is energetically favorable to preserve total charge neutrality
because an insulating magnet cannot screen charge. This gives
us the conditions

q1 = −q2,
(12)

q3 = −q4.

Altogether, then, for the SS and FF gapping mecha-
nisms, there are three possible values for ei2πq1 , namely,
1, ei2π/3,ei4π/3, and the eigenvalue of this operator fixes the
values of all operators ei2πql (for l = 2,3,4). These operators
are of course equal to the ei2πfl introduced above. In fact,
the operators ei2πql may all serve as the unitary operators Ux

from Eq. (3). To establish a ground-state degeneracy, we need
to find an operator that commutes with the Hamiltonian and
varies Ux . This operator is the one that transfers a charge of 1

3

in each layer (for the SS case), or charges of 1
3 , − 1

3 (for the
FF case) from the interior to the exterior. For example, if we
choose Ux = e2πiq1 , then

Uy = exp [−i(χ1 ± χ2 − χ3 ∓ χ4)]. (13)

245144-5



SAGI, OREG, STERN, AND HALPERIN PHYSICAL REVIEW B 91, 245144 (2015)

Here, the upper sign refers to superconducting coupling and
the lower sign to coupling to a magnet. The fields χi in (13)
are all to be evaluated at the same point x.

It is easy to see that this assignment of Ux,Uy satisfies
Eq. (3), thus establishing the ground-state degeneracy of the
Hamiltonian in Eqs. (7) and (9) for the cases of SS and FF

gapping mechanisms. In the case where the two edges are
gapped using different mechanisms (FS or SF ), the only
solution is the one where ei2πql = 1 (for l = 1,2,3,4), and
the ground state is therefore nondegenerate.

For a finite system, the threefold degeneracy is split. In
particular, in the quasi-1D regime in which Lx is infinite and
Ly is finite, the splitting is a consequence of tunnel coupling
between the interior and the exterior. This regime will be
explored in the following. Before doing that, however, we
introduce the coupled-wires system and study its ground-state
degeneracy directly.

B. Coupled-wires construction for a fractional
topological insulator

In this section, we explain how a fractional topological
insulator may be constructed from a set of coupled wires, as
a result of a combination of spin-orbit coupling and electron-
electron interaction. We start with the case of noninteracting
electrons, in which case a 2D topological insulator is formed,
and then introduce interactions that lead to the fractionalized
phase.

1. The integer case: A noninteracting quantum spin Hall state

We consider an array of N quantum wires, with a Rashba
spin-orbit coupling [see Fig. 1(b)]. Each wire is of length Lx

and has periodic boundary conditions. We tune the Rashba
electric field (which we set to be in the y direction, for
simplicity) such that the spin-orbit coupling of wire number n

is linear with n. The resulting term in the Hamiltonian takes
the form

Hso,n = (2n − 1)ukxσz, (14)

where σz is the spin in the z direction, and u is the spin-orbit
coupling. The spectrum of wire number n is therefore

En(k) = [kx + (2n − 1)ksoσz]2

2m
, (15)

where m is the effective mass, and kso = u
m

. The energy of the
different wires as a function of kx is shown in Fig. 3(a).

The similarity of the spectrum to the starting point of the
wires’ construction of the QHE [10,11,36] is evident. This
system is then analogous to two annuli of electrons of opposite
spins subjected to opposite magnetic fields or to the electron-
hole double layer we discussed above [see Fig. 1(a)].

Following the analogy with the wires’ construction of the
QHE, we define the filling factor as

ν = k0
F

kso
, (16)

where k0
F is the Fermi momentum without a spin-orbit coupling

[see Fig. 3(a)].
In the “integer” case ν = 1, the chemical potential is tuned

to the crossing points of two adjacent parabolas.

We linearize the spectrum around the Fermi points, and use
the usual bosonization technique to define two chiral bosonic
fields φ

R/L
n,σ , where n is the wire index, σ is the spin index, and

R (L) represents right (left) movers. In terms of these bosonic
fields, the fermion operators take the form

ψR/L
n,σ ∝ ei(φR/L

n,σ +k
R/L
n,σ x), (17)

where

kρ
n,σ = −σ

[
(2n − 1)kso + ρk0

F

]
is the appropriate Fermi momenta in the absence of interactions
and tunneling between the wires, with σ = 1 (−1) corre-
sponding to spin up (down), and ρ = 1 (−1) corresponding to
right (left) movers. The chiral fields satisfy the commutation
relations[

φσ
nρ(x),φσ ′

n′ρ ′ (x ′)
]

= iρπδσ,σ ′δρ,ρ ′δn,n′sign(x − x ′)

+ iπ sign(n − n′) + δn,n′π
(
σσ,σ ′

y + δσ,σ ′σρ,ρ ′
y

)
. (18)

Equation (18) guarantees that the fermion fields defined in Eq.
(17) satisfy Fermi statistics.

Once we linearize the spectrum, it becomes convenient
to present it diagrammatically by plotting only the Fermi
momenta as a function of the wire index. Figure 4 shows the
diagram corresponding to ν = 1, where a right (left) mover is
represented by the symbol � (⊗).

One sees that single-electron tunneling operators of the type

Ht↓ = t

N−1∑
n=1

∫
dx

(
ψ

L†
n+1,↓ψR

n,↓ + H.c.
)

= t
k0
F

π

N−1∑
n=1

∫
dx cos

(
φL

n+1,↓ − φR
n,↓

)
,

Ht↑ = t

N−1∑
n=1

∫
dx

(
ψ

R†
n+1,↑ψL

n,↑ + H.c.
)

= t
k0
F

π

N−1∑
n=1

∫
dx cos

(
φR

n+1,↑ − φL
n,↑

)
(19)

are allowed by momentum conservation (these operators are
represented by the arrows in Fig. 4). In the above equation, we
fixed the gauge for each wire such that the interwire tunneling
takes a cos form. Noting that these operators commute with
one another, the fields within the cosines may be pinned, and
therefore the bulk is gapped. These terms, however, leave four
gapless modes on wires 1 and N : φR

1,↑,φL
1,↓,φL

N,↑,φR
N,↓. In fact,

the above model is a topological insulator, and the gapless
helical modes are the corresponding edge modes, protected by
time-reversal symmetry and charge conservation. Although
our model also has a conservation of Sz, this is not actually
necessary to preserve the gapless edge modes. To completely
gap out the spectrum, we have to gap out the two edges
separately. This can be done using two mechanisms: proximity
coupling of wire 1 and N to a superconductor which breaks
charge conservation, or to a magnet which breaks time-reversal
symmetry. The terms in the Hamiltonian that correspond to
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(a) (b)

FIG. 3. (Color online) (a) The spectrum of a system consisting of three wires [see Fig. 1(b)] with noninteracting electrons subjected to
spin-orbit coupling whose magnitude depends on the wire index according to Eq. (14), when tunneling between the wires is switched off. The
spectra in blue, red, and green correspond to wires number 1, 2, and 3. Solid lines correspond to spin down, and dashed lines correspond to spin
up. (b) The resulting spectrum when a weak spin-conserving tunneling amplitude is switched on between the wires. The bulk is now gapped,
with helical modes localized on the edges.

these cases are

HS
1 = �1

∫
dx cos

(
φR

1,↑ + φL
1,↓ + δ1

)
,

HF
1 = B1

∫
dx cos

(
φR

1,↑ − φL
1,↓ + β1

)
,

(20)

HS
N = �N

∫
dx cos

(
φL

N,↑ + φR
N,↓ + δN

)
,

HF
N = BN

∫
dx cos

(
φL

N,↑ − φR
N,↓ + βN + 4ksoNx

)
.

The phases δ1,δN are the phases of the superconducting order
parameter of the superconductors that couple to the wires 1,N

respectively. The phases β1,βN are the angles of the Zeeman
fields (which lie in the x-y plane) coupling to the wires 1,N ,
respectively, with respect to the x axis. As the last equation
shows, for the magnetic field coupled to the nth wire to allow
for a momentum-conserving backscattering, we must have
βN = −ksoNx, i.e., the Zeeman field acting on the N th wire
must rotate in the x-y plane at a period of 2π/(ksoN ). This
field then breaks translational invariance.

2. The fractional case: A fractional topological insulator

We now consider the case ν = 1
3 , depicted diagrammati-

cally in Fig. 5. Single-electron tunneling processes of the type
we considered above do not conserve momentum (see Fig. 5)

for this filling factor, and one has to consider multielectron
processes in order to gap out the bulk. The problem is
simplified if one defines new chiral fermion fields in each
wire according to the transformation

ψ̃R/L
n,σ = (

ψR/L
n,σ

)2(
ψL/R

n,σ

)† ∝ ei(pR/L
n,σ x+η

R/L
n,σ ), (21)

with

ηR/L
n,σ = 2φR/L

n,σ − φL/R
n,σ ,

(22)
pR/L

n,σ = 2kR/L
n,σ − kL/R

n,σ .

Strictly speaking, the operators in (21) should operate at
separated yet close points in space, due to the fermionic nature
of ψ

R/L
n,σ .

It is simple to check that[
ησ

nρ(x),ησ ′
n′ρ ′ (x ′)

] = 3iρπδσ,σ ′δρ,ρ ′δn,n′sign(x − x ′)

+ iπ sign(n − n′)

+ δn,n′π
(
σσ,σ ′

y + 3δσ,σ ′σρ,ρ ′
y

)
. (23)

Equation (23) implies that ψ̃ satisfies Fermi statistics. In
addition, if one draws the diagram that corresponds to the p’s,
the effective Fermi momenta of the ψ̃ fields, one gets the same
diagram as in the ν = 1 case (Fig. 4). The linear transformation
defined in Eq. (22) can therefore be interpreted as a mapping
from ν = 1

3 for the electrons to ν = 1 for the fermions ψ̃ . The

FIG. 4. (Color online) A diagrammatic representation of the spectrum in the case ν = 1. Once we linearize the spectrum around the Fermi
points, it becomes convenient to plot only the Fermi momenta as a function of the wire index (n). The symbol � (⊗) represents a right
(left) mover. Blue (red) symbols represent the spin-down (spin-up) component. One can observe that single-electron spin-conserving tunneling
operators conserve momentum, and can therefore easily gap out the bulk in this case.
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FIG. 5. (Color online) A diagrammatic representation of the fractional case ν = 1
3 . Now, we find that only multielectron processes can

gap out the bulk. The processes we consider are represented by colored arrows. In terms of the composite ψ̃ fields, however, the diagram
corresponding to the fractional case is identical to the one corresponding to the integer case ν = 1 (Fig. 4). In this case, the complicated
multielectron processes are transformed into single-ψ̃ tunneling operators. The transformation from ψ to ψ̃ therefore proves very useful in
analyzing the fractional case.

mapping from ν = 1
3 to ν = 1 suggests a relation between the

local transformation defined in Eq. (22) and the Chern-Simons
transformation that attaches two flux quanta to each electron,
making it a composite fermion. This relation will be explored
in a future work [37]. Single-ψ̃ tunneling operators conserve
momentum, and one can repeat the process that led to a gapped
spectrum in the integer case. First, we switch on single-ψ̃
tunneling operators of the form

H̃t↓ = t̃

N−1∑
n=1

∫
dx

(
ψ̃

L†
n+1,↓ψ̃R

n,↓ + H.c.
)

= t̃

4

(
k0
F

π

)3 N−1∑
n=1

∫
dx cos

(
ηL

n+1,↓ − ηR
n,↓

)
,

H̃t↑ = t̃

N−1∑
n=1

∫
dx

(
ψ̃

R†
n+1,↑ψ̃L

n,↑ + H.c.
)

= t̃

4

(
k0
F

π

)3 N−1∑
n=1

∫
dx cos

(
ηR

n+1,↑ − ηL
n,↓

)
. (24)

While these operators are simple tunneling operators in terms
of the ψ̃ fields, they represent the multielectron processes
described by the arrows in Fig. 5. In terms of the ψ̃ fields, it
is clear that one cannot write analogous interactions between
electrons of opposite spins, and therefore the dominating terms
are those that couple electrons with the same spins. Notice that
as opposed to the integer case, these operators are irrelevant in
the weak coupling limit. However, they may be made relevant
if one introduces strong repulsive interactions [10–12], or a
sufficiently strong t̃ .

For N wires, Eqs. (24) introduce 2N − 2 tunneling terms,
which gap out 4N − 4 modes, and leave four gapless chiral
η modes on the edges. Two counterpropagating modes are at
the j = 1 wire, and two are at the j = N wire. Notice that the
gapless η fields on the edges are related to the corresponding
χ fields defined in Sec. III A by χ = η/3. Once again, these
may be gapped by proximity coupling to a superconductor or
a magnet. Operators of the type shown in Eq. (20), however,
do not commute with the operators defined in Eq. (24). The
arguments of the cosines in (20) cannot then be pinned by
Eq. (24). The lowest-order terms that commute with the

operators in Eq. (24) are

H̃ S
1 = �̃1

∫
dx cos

(
ηR

1,↑ + ηL
1,↓ + δ̃1

)
,

H̃ F
1 = B̃1

∫
dx cos

(
ηR

1,↑ − ηL
1,↓ + β̃1

)
,

(25)
H̃ S

N = �̃N

∫
dx cos

(
ηL

N,↑ + ηR
N,↓ + δ̃N

)
,

H̃ F
N = B̃N

∫
dx cos

(
ηL

N,↑ − ηR
N,↓ + β̃N + 4ksoNx

)
.

Again, for the magnetic coupling to gap the edge modes on
the nth wire, it must wind in the x-y plane with a period of
2π/(ksoN ). The electronic density is three times smaller than
in the previous case, so on average there is 1

3 of an electron per
period. Guided by the analogy between the above construction
and the ν = 1

3 FQH state on a torus, we expect the ground state
to have a threefold degeneracy.

Using the present formalism, will be able to see how this
degeneracy is lifted as one goes from an infinite array to the
limiting case of a few wires.

3. Ground-state degeneracy in the wire construction

For simplicity, we focus first on the FF case, where the
analogy to the FQHE on a torus is explicit. In this case, we
define the idealized Hamiltonian as

HI = H̃K + H̃t↑ + H̃t↓ + H̃ F
1 + H̃ F

N , (26)

where

H̃K = 1

2

∑
n

∑
ρ,ρ ′

∑
σ,σ ′

∫
dx

(
∂xη

σ
nρ

)
V

σ,σ ′
ρ,ρ ′

(
∂xη

σ ′
nρ ′

)
(27)

is the quadratic term that contains the noninteracting part of the
Hamiltonian, and small-momentum interactions (for simplic-
ity, we consider only intrawire small-momentum interactions).
We assume that all the interwire terms become relevant and
acquire an expectation value. To investigate the properties of
the ground-state manifold, we define the two unitary operators

Uy(x) = ei 1
3 [

∑N
n=1(ηR

n,↑−ηL
n,↑+ηR

n,↓−ηL
n,↓)]

= eiυ(x)ei 1
3 (ηR

N,↓−ηL
N,↑+ηR

1,↑−ηL
1,↓), (28)

Ux = ei 1
3

∫ L

0 ∂xη
R
1,↑dx. (29)
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All the η fields are functions of position x. The phase υ(x) in
Eq. (28) is given by

υ(x) = 1

3

[
N−1∑
n=1

(
ηR

n+1,↑ − ηL
n,↑

) −
N−1∑
n=1

(
ηL

n+1,↓ − ηR
n,↓

)]
.

(30)

Since all the operators in the sum are pinned by the bulk
Hamiltonian, they may be treated as classical fields, and their
value becomes x independent in any one of the ground states.
Similarly, the combination of operators (ηR

N,↓ − ηL
N,↑ + ηR

1,↑ −
ηL

1,↓) which appears on the right side of Eq. (28), is pinned by
the coupling to the boundary, and becomes independent of
x. Therefore, the operators Uy(x) may be considered to be
independent of x within the manifold of ground states.

Notice that the second equality in Eq. (28) shows that Uy(x)
defined in terms of the wires’ degrees of freedom is identical to
Eq. (13) (up to a phase). The form of Uy(x) shown in the first
equality of Eq. (28) is useful because it allows us to express
Uy(x) as a product of electronic operators:

Uy = ei[
∑N

n=1(φR
n,↑−φL

n,↑+φR
n,↓−φL

n,↓)], (31)

where the x dependence of the operators is omitted for brevity.
It can be verified that

[Uy(x),Uy(x ′)] = 0 (32)

and that

[Ux,HI ] = [Uy,HI ] = 0, (33)

so that operating Uy(x) or Ux on a ground state leaves the
system in the ground-state manifold. Using Eq. (23), it can
also be checked directly that

UxUy(x) = Uy(x)Uxe
2π
3 i , (34)

independent of x. The smallest representation of this algebra
requires 3 × 3 matrices [38], which shows that the ground state
of the idealized Hamiltonian (26) must be at least threefold
degenerate.

The operators Uy (Ux) can be interpreted as the creation of
a quasiparticle-quasihole pair, tunneling of the quasiparticle
across the y (x) direction of the torus and annihilating the pair
at the end of the process. In fact, if we adopt this interpretation,
Eq. (34) is a direct consequence of the fractional statistics of
the quasiparticles [38].

A similar analysis can be carried out for the SS case. Ux

is identical to the operator used in the FF case, but now Uy

takes the form

Uy = ei 1
3 [

∑N
n=1(ηR

n,↑−ηL
n,↑+ηL

n,↓−ηR
n,↓)], (35)

and the entire analysis can be repeated.

C. Coupled-wires construction of an electron-hole double layer

In this section, we explain how one can model a quantum
Hall electron-hole double layer at a fractional filling factor
ν = 1

3 using a set of coupled wires. Most of the analysis is very
similar to the analysis presented for the fractional topological
insulator, but some technical differences are worth pointing
out.

We examine a system with two layers, each containing an
array of wires. In one layer, the electron layer, we tune the
system such that only states near the bottom of the electronic
band are filled. In this case, we can approximate the spectra of
the various wires as parabolas. If we add a constant magnetic
field B perpendicular to the layers, and use the Landau gauge
to write the electromagnetic potential as A = −Byx̂, the entire
band structure of wire number n will be shifted by an amount
2kφn, where kφ is defined as kφ = eBa

2�
. The energy of wire

number n is therefore written in the form (if we choose the
position of wire number 1 to be at y = a/2)

En(k) = [kx − (2n − 1)kφ]2

2m
+ Ue, (36)

where Ue is a constant term, and m is the effective mass. In
the hole layer the bands of the various wires are nearly filled,
such that we can expand the energy near the maximum as

En(k) = − [kx − (2n − 1)kφ]2

2m
+ Uh. (37)

In the above, we assumed that the effective masses of the
electron and the hole layers have the same magnitude and
opposite signs. We assume that Uh > Ue, and tune the
chemical potential to be μ = Ue+Uh

2 . Defining δε = Uh−Ue

2 , we
get the spectra

En(k) − μ =
[

[kx − (2n − 1)kφ]2

2m
− δε

]
σ, (38)

where σ = 1 (−1) for the electron (hole) layer. This way the
system has a built-in particle-hole symmetry in its low-energy
Hamiltonian. Notice that as a result of the magnetic field, the
spectra of the two layers are shifted in the same direction. This
is a consequence of the common origin of the electron and
hole spectra from a Bloch band whose shift is determined by
the direction of the magnetic field.

We define k0
F = √

2mδε, and the filling factor is now given

by ν = k0
F

kφ
. In the case ν = 1, the corresponding spectrum is

given by Fig. 6(a). As before, if we apply tunneling between
adjacent wires in the same layer, we get the gapped spectrum
in Fig. 6(b). Furthermore, we see that each edge carries a pair
of counterpropagating edge modes (one for each layer).

It is straightforward to generalize this to the case of filling
ν = 1

3 , shown in Fig. 6(c). To treat this case, we follow exactly
the same steps as in Sec. III B: we first linearize the spectrum,
and write the problem in terms of the chiral bosonic degrees
of freedom φ

R/L
n,σ , where now σ = e,h represents the layer

number, and n represents the wire index. To treat the fractional
case, we define new chiral fields η

R/L
n,σ = 2φ

R/L
n,σ − φ

L/R
n,σ . Like

before, it can be checked that these modes behave like modes
at filling 1, so we can repeat the analysis performed in this case.

This process leaves us with two counterpropagating η

modes on each edge: ηL
1,e,η

R
1,h,η

R
N,e,η

L
N,h. These modes can

be gapped out by terms analogous to the terms in Eq. (25):

H̃ S
1 = �̃1 cos

(
ηL

1,e + ηR
1,h + δ̃1

)
,

H̃ F
1 = B̃1 cos

(
ηL

1,e − ηR
1,h + β̃1

)
,

(39)
H̃ S

N = �̃N cos
(
ηR

N,e + ηL
N,h + δ̃N + 4kφNx

)
,

H̃ F
N = B̃N cos

(
ηR

N,e − ηL
N,h + β̃N

)
.
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(a) (b) (c)

FIG. 6. (Color online) (a) The spectrum of the wires model for an electron-hole double layer at filling ν = 1 when all the interwire terms
are switched off. The spectra in blue correspond to wires in the electron layer, and the spectra in red correspond to wires in the hole layer.
(b) The spectrum when tunneling between wires in the same layer is switched on. A gap is formed in the bulk, and we get achiral edge modes.
(c) The spectrum in the fractional case ν = 1

3 .

In contrast to the case of the fractional topological insulator,
here the backscattering terms conserve momentum, i.e., do not
include phases that are linear in x. Rather, the superconducting
term H̃ S

N appears not to conserve momentum. However, the
flux between the two superconductors will lead to a winding
of the phase difference between them, which can cancel the
x-dependent phase of HS

N .
Let us first consider the situation where the bounding

superconductor wires are thin enough that there are no
vortices inside them. The energy of a superconducting ring
is minimized when �φ, the change in the superconducting
phase around the ring is equal to 2e�, where � is the
magnetic flux enclosed by a circle embedded at the center
of the wire. The value of �φ is quantized in multiples of
2π , and in practice there may exist a number of metastable
states where it differs from 2e� by a finite amount and the
wire carries a supercurrent around its circumference. Let us
consider a model where there is a distance a′ between the
center of the innermost superconductor and the center of our
first electron-hole nanowire and a similar separation between
the N th nanowire and the outer superconductor. If the centers
of the nanowires are separated from each other by a distance
a, then the flux � is equal to BaLx[N − 1 + 2(a′/a)]. In this
case, if the superconductors are in their ground states, we get
δ̃1 = (−2 + 4 a′

a
)kφx + δ̃0

1 and δ̃N = −(4N − 2 + 4 a′
a

)kφx +
δ̃0
N , where δ̃0

1(N) do not depend on x. If a′ is tuned to a′ = a/2,
the oscillating phases are eliminated from Eq. (39).

If a′ differs from a/2, it may be still possible to gap out
the edges. If the phase mismatch is small, and if coupling
to the superconductor is not too weak, then there can be
an adjustment of the electron and hole occupations in the
nanowires nearest the two edges, which allows the phase
change around the nanowires to match the phase change in
the superconductors. The energy gain due to formation of a
gap can exceed the energy cost of altering the charge densities
in the nanowires.

If the difference between a′ and a/2 is too large, then
carrier densities in the inner and outer nanowires will not
change enough to satisfy the phase matching condition. In
this case, a variation of the magnetic field of order 1/N

would eliminate the x dependence of the phases at the cost
of introducing quantum Hall quasiparticles in the bulk of the
system. For large N , the density of these quasiparticles will
be small. Presumably, they will become localized and not take
the system out of the quantum Hall plateau.

We note that the separation a′ can be engineered, and, in
principle can even be made negative. Consider, for example, a
situation where the superconducting wire sits above the plane
of the nanowires, so that depending on the shape of a cross
section of the wire, its center of gravity may sit inside or
outside of the line of contact to the outermost nanowire.

The degeneracy of the ground states in both the SS and
FF cases may be shown by defining the two operators Ux and
Uy in exactly in the same form as we did in Sec. III B 3 (with
↓→ e and ↑→ h), and following the same analysis.

IV. MEASURABLE IMPRINT OF THE TOPOLOGICAL
DEGENERACY IN QUASI-ONE-DIMENSIONAL SYSTEMS

We now look at the quantum Hall double-layer system with
ν = ± 1

3 . As long as the bulk gap does not close, in the limit of
infinite Lx and infinite N (or Ly), we expect deviations from
the idealized Hamiltonian not to couple the three ground states.
When N and Ly are finite and Lx is still infinite, coupling does
occur, and the degeneracy is lifted.

Generally, Hermitian matrices operating within the 3 × 3
subspace of ground states of the idealized Hamiltonian may
all be written as combination of nine unitary matrices Oj,k:

�H =
(1,1)∑

(j,k)=(−1,−1)

λj,kOj,k, (40)

where

Ojk = Uj
x Uk

y (41)

and λjk = λ∗
−j,−ke

− i2πjk

3 . Note that a direct consequence of
Eq. (34) is that U 3

x = U 3
y = 1. (This can most easily be under-

stood by recalling that the operators transport quasiparticles
across the torus. Acting three times with each of them is equiv-
alent to transporting an electron around the torus, which cannot
take us from one ground state to another.) However, in the limit
of infinite Lx local operators cannot distinguish between states
of different fractional charges, and therefore cannot contain the
operator Ux . Thus, up to an unimportant constant originating
from λ00, deviations from the idealized Hamiltonian (projected
to the ground-state manifold) take the form of Eq. (4):

�H = λUy + λ∗U †
y . (42)

The coefficient λ may be expressed as an integral

λ =
∫

dx T (x), (43)
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and we expect that the absolute value of the amplitude T (x)
should fall off exponentially with N , as discussed in Sec. II B.
One can see this explicitly in the various models we have
constructed from coupled wires. For example, in the case of a
fractional topological insulator with magnetic boundaries, the
operator Uy , according to (32) and (17), involves a product
of factors involving four electronic creation and annihilation
operators on each of the N wires. The bare Hamiltonian
contains only four-fermion operators on a single wire, and
two-fermion operators that connect adjacent wires, with an
amplitude t that we consider to be small. The operator Uy can
only be generated by higher orders of perturbation theory, in
which the microscopic tunneling amplitude t occurs at least
2N times. In our analysis, we have assumed that interaction
strengths on a single wire are comparable to the Fermi energy
EF , so we expect T to be of order |t/EF |2N or smaller.
Similar arguments apply to the other cases of superconducting
boundaries or electron-hole wires. We also note that if the
system is time-reversal invariant, we must have T = T ∗.

The phase of T (x) depends on the realization, electron-hole
quantum Hall versus fractional topological insulator, and on
the gapping mechanism, two superconductors or two magnets.
We start from the case of the fractional topological insulator
gapped by two superconductors. Equation (25) shows that for
the edges to be gapped, the superconductors on the two edges
should have uniform phases δ̃1,δ̃N . We choose a gauge where
δ̃1 = 0 and denote ϕ = δ̃N to be the phase difference.

In the case of a fractional topological insulator, the
proximity gapping terms are

H̃ S
1 = �̃1

∫
dx cos

(
ηL

1,↑ + ηR
1,↓ + ϕ

)
,

(44)

H̃ S
N = �̃N

∫
dx cos

(
ηR

N,↑ + ηL
N,↓

)
(note that these terms involve coupling to the superconductor,
and we therefore have �̃1(N) ∝ |�1(N)|, where �1(N) are the
corresponding superconducting order parameters). We define
new bosonic fields through the additional transformation

η̃L
1,↑ = ηL

1,↑ + ϕ

2
, η̃R

1,↓ = ηR
1,↓ + ϕ

2
, (45)

and η̃
ρ
n,σ = η

ρ
n,σ for all the other values of n,σ,ρ. If we rewrite

the Hamiltonian in terms of the new fields, the phase ϕ is
eliminated from the idealized Hamiltonian. However, this
modifies the operator Uy [defined in Eq. (28)], which now
takes the form

Uy = ei 1
3 [

∑N
n=1(η̃R

n,↑−η̃L
n,↑+η̃L

n,↓−η̃R
n,↓)]ei

ϕ

3 . (46)

Thus, a nonzero phase difference ϕ shifts the argument of λ in
Eq. (42) by ϕ

3 . In the time-reversal-symmetric case λ is real,
and we find, by diagonalizing �H , that

�E1 = 2λLx cos
(ϕ

3

)
,

�E2 = 2λLx cos

(
ϕ − 2π

3

)
, (47)

�E3 = 2λLx cos

(
ϕ + 2π

3

)
.

The resulting spectrum as a function of ϕ is depicted in Fig. 2.

At ϕ = πn, the degeneracy is not completely lifted, as
two states remain twofold degenerate. These states are not
coupled by the low-energy Hamiltonian (42) and the lifting of
their degeneracy requires terms of j �= 0 in (41). Such terms
distinguish between states of different edge charges fi and
originate from tunneling between the three physically distinct
minima of the potential (9). The amplitude for tunneling, and
hence the splitting, is proportional to e−S , with S the imaginary
action corresponding to the tunneling trajectory. Due to the
integration over x in the Hamiltonian, this action is linear
in Lx , and hence the tunneling amplitude scales as e−(Lx/ξx ).
Neglecting this splitting, Eq. (47) shows that all eigenstates
have a 6π periodicity. A measurement of the Josephson
current, given by the derivative of the energy with respect to ϕ,
can detect the 6π periodicity. Due to the exponentially small
splitting at the crossing points, this property can be observed
by changing the flux at a rate that is not slow enough to follow
this splitting.

Note that the 6π -periodic component of the spectrum is
completely determined by Eq. (34). This part of the spectrum
is therefore highly insensitive to the microscopic details, and
can serve as a directly measurable imprint of the topological
degeneracy with only a few wires. There will also be a
contribution from ordinary Cooper pair tunneling between
the superconductors, which does not distinguish between the
ground states and has 2π periodicity. This term will alter the
detailed shapes of the three spectra but not their splitting or
periodicity. In the case where time-reversal symmetry does
not hold, λ is not necessarily real. Consequently, the spectrum
in Eq. (47) is shifted according to ϕ → ϕ + Arg(λ), and the
crossing points are not constrained to be at ϕ = πn.

Similar results arise in the FF case for a quantum Hall
electron-hole double layer. Now, the angle ϕ is the relative
orientation angle of the Zeeman fields (which lies in the x-y
plane). To be precise, if we fix the Zeeman field at wire number
N to point at the x direction, and the field at wire number 1 to
have an angle ϕ relative to the x direction, we get the proximity
terms

H̃ F
1 = λ̃1F

∫
dx cos

(
ηL

1,↑ − ηR
1,↓ + ϕ

)
,

(48)

H̃ F
N = λ̃NF

∫
dx cos

(
ηR

N,↑ − ηL
N,↓

)
.

Similar to Eq. (45), we define new bosonic fields through the
transformation

η̃L
1,↑ = ηL

1,↑ + ϕ

2
, η̃R

1,↓ = ηR
1,↓ − ϕ

2
, (49)

and η̃
ρ
n,σ = η

ρ
n,σ for the other fields. Again, the gapping term

acting on the N th wire returns to its original form (with ϕ = 0),
but Uy becomes Uye

i
ϕ

3 . Therefore, the spectrum as a function
of ϕ is identical to the spectrum found in the SS case.

In the other two cases, the situation is more complicated
since ϕ depends on x. For the quantum Hall electron-hole dou-
ble layer gapped by superconductors ϕ increases linearly with
x, due to the flux penetrating the junction between the two su-
perconductors. For the fractional topological insulator gapped
by magnets, Eq. (25) requires that βN increases linearly with x.
In both cases, this winding leads to λ = ∫

dx|t(x)|ei2πnx/L+iϕ ,
with n an integer. A uniform tunneling amplitude |t(x)| then
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leads to a vanishing λ, while nonuniformity allows for a
nonvanishing λ.

V. EXTENSIONS TO OTHER ABELIAN STATES

We have shown above that it is possible effectively to
realize experimentally the ν = 1

3 FQHE state on a torus, and
that by measurement of the Josephson effect in the resulting
construction we can directly measure the corresponding
topological degeneracy. In this section, we extend the above
results to other Abelian FQHE states.

For a FQHE state described by an M × M K matrix, there
is a ground-state degeneracy of d = det K on a torus, and
d topologically distinct quasiparticles. Each quasiparticle is a
multiple of the minimally charged quasiparticle, whose charge
is e∗ = e

d
.

Repeating the analysis we carried out in Sec. III, we
consider an electron-hole double layer system or a fractional
topological insulator, and couple the counterpropagating edge
modes. Since there are now M pairs of counterpropagating
modes on each edge, we need m scattering terms. We assume
that these terms are all mutually commuting, that they are
either all charge conserving or all superconducting, and that
the M edge modes of each layer (spin direction) are mutually
coupled. Under these assumptions, each of the four edges
is characterized by a single quantum number, the fractional
part of the total charge fi (with i = 1, . . . ,4), which may
take the values − d−1

2d
, − d−3

2d
, . . . , d−1

2d
. The mutual coupling

between the M edge modes excludes the possibility of other
quantum numbers being constants of motion. Similar to the
case where ν = 1

3 , the requirements of a total integer charge
for each layer or spin direction, together with the mechanism
of gapping and the requirement to minimize the energy of the
edge Hamiltonians, relate all values of fi to one another.

We work in a basis |f 〉 where the fractional charges fi

are well defined. We define the unitary operator Uy which
transfers a single minimally charged quasiparticle, analo-
gously to the operator defined before, such that Uy |f 〉 =
|(f + e∗/e)mod(1)〉. It follows that Ul

y |f 〉 = |(f + le∗/e)
mod(1)〉, and that Ud

y = 1. We therefore have in general

(
Ul

y

)† = Ud−l
y . (50)

Again, in the quasi-1D limit where Lx is infinite and N is
finite, Hermitian combinations of the operators Ul

y are the only
operators capable of lifting the degeneracy. The amplitude of
these terms falls exponentially with N . In order to analyze the
effects of these perturbations, we consider terms of the form

�H =
(d−1)/2∑

l=1

(
λlU

l
ye

iδl + H.c.
)
, (51)

where λl ∝ e−N/ξl is a real coefficient (note that we expect
terms with l > 1 to result from higher orders in e−N ; more
specifically, we expect ξl ∝ 1

l
). The summation was terminated

at (d − 1)/2 because of Eq. (50) and the requirement that
the Hamiltonian is Hermitian. Again, the resulting spectrum
depends on the realization, the gapping mechanism, and the
uniformity of the tunneling amplitude. This dependence is
similar to the one discussed for ν = 1

3 . For example, for

uniform tunneling between two superconductors separated by
a fractional topological insulator, a relative phase ϕ between
the two superconductors translates to δl = ϕ e�

e
l.

The spectrum of this Hamiltonian for the time-reversal-
symmetric case is then

�Ep = 2
(d−1)/2∑

l=1

λl cos

(
l

d
(ϕ + 2pπ )

)
, (52)

with p = 1 . . . d. Each eigenstate has a 2πd periodicity, and
like the ν = 1

3 case we find that the overall periodicity is 2π

times the degeneracy of the system in the thermodynamic limit.
In addition, similar to the ν = 1

3 case, at the time-reversal-
invariant points ϕ = πn, we have degeneracy points protected
by the length of the wires. For example, at ϕ = 0, we have
d−1

2 pairs of states |p〉,|d − p〉 (p = 1, . . . d−1
2 ) which have

the same energy. It can easily be checked from Eq. (52) that
the same number of crossings occurs for any ϕ = πn. Hence,
if the spectrum is measured, the degeneracy d can found by
simply counting the number of crossing points at ϕ = πn.
Note that due to the terms with l > 1, we can have additional
crossing points at ϕ �= nπ . Again, if time-reversal symmetry
does not hold, the crossing points can be shifted. One can
still show that in the most general case there must be at
least the same number of crossing points as the number of
crossing points at ϕ = πn in the time-reversal-invariant case.
The smallest number of degeneracy points occurs when the
functions �Ep have a single maximum and a single minimum
between 0 and 2πd. In that case, the energies that correspond
to two different values of p must cross at two points between
0 and 2πd. We therefore have two crossing points for each
pair p1,p2, The total number of degeneracy points, summed
over all the pairs p1,p2 is therefore 2(d2) = d(d − 1), which is
the number of crossing points at all the values ϕ = πn in the
time-reversal-invariant case. Depending on the values of λl , we
may have more than a single minimum and a single maximum,
in which case we can get additional crossing points.

FIG. 7. (Color online) The spectrum corresponding to ν = 2
5

with λ2/λ1 = 0.2 as a function of the relative phase difference ϕ.
The periodicity of each eigenstate is 10π . At the points ϕ = πn, we
find two crossing points whose splitting falls exponentially with Lx .
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As an example, we examine the case ν = 2
5 , which can be

characterized by the K matrix

K =
(

3 2
2 3

)
. (53)

The degeneracy on a torus in this case is d = 5 and the
spectrum (in the time-reversal-invariant case) is

�Ep = 2λ1 cos

(
1

5
(ϕ + 2pπ )

)
+ 2λ2 cos

(
2

5
(ϕ + 2pπ )

)
,

(54)

with p = 1 . . . 5. If we take, for example, λ2/λ1 = 0.2, the
resulting spectrum is shown in Fig. 7.

VI. CONCLUSIONS

The topological degeneracy on a torus is perhaps the
defining property of a fractionalized phase, and the most
prominent signature of a topological order. As such, it is
unfortunate that for the most accessible fractionalized phase,
the fractional quantum Hall effect, it is impossible to to
directly create a toroidal geometry, that requires magnetic
monopoles. In this work, we study two annular geometries that
are topologically equivalent to that of a torus. One geometry
is based on an electron-hole double layer where the electrons
and the holes are at fractional quantum Hall states of opposite
filling fractions. The other is based on a fractional topological
insulator at which the two spin directions of the electrons are
at fractional quantum Hall states of opposite filling fractions.
Both geometries carry counterpropagating edge modes on
the interior and the exterior edges of the annuli, and these
edge modes may be coupled and gapped in two mechanisms:
backscattering and proximity coupling to superconductors.

Considering the two-dimensional regime where the annuli
are too wide to have a significant coupling between the interior
and the exterior edges, we established here the topological
degeneracy that characterizes each of the geometries we
consider, and their dependence on the gapping mechanism on
each of the edges. Furthermore, we used the quantum number
of the fractional charge or dipole on each of the edges to
characterize the ground states.

In the regime where the annuli are narrow such that the
interior and the exterior are coupled, the degenerate ground
states split in energy. Searching for remnants of the topological
order that survive the transition to the quasi-one-dimensional
regime, we studied the dependence of the spectrum of split
ground states as a function of the phase difference between the
two superconductors or the relative angle between the direction
of magnetization of the two magnets. We find that the spectrum
includes points in which the splitting is exponentially small in
the circumference of the annulus, and thus is not split when
the width becomes small.

At finite temperature, there will be thermally excited pairs
of quasiparticles and quasiholes in the bulk. When reaching
the edge, these excitations carry the potential of introducing
transitions between the states that cross at Figs. 2 and 7. The
density of these quasiparticles and the resulting transition rates
are expected to be exponentially small at low temperatures.

The spectra of Figs. 2 and 7 give rise to a remarkable
experimental consequence. As long as experiments are done

on time scales at which the exponentially small transitions
between states at the crossing points may be neglected,
the Josephson effects give a 2πd periodicity, where d is
degeneracy in the 2D thermodynamic limit. Despite the fact
that the degeneracy was lifted in the quasi-1D regime, it leaves
an imprint in the Josephson effect.
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APPENDIX: PROJECTION OF HERMITIAN MATRICES
ONTO THE GROUND-STATE MANIFOLD

In Sec. IV, we stated that Hermitian matrices operating
within the 3 × 3 subspace of ground states of the idealized
Hamiltonian may all be written as a combination of nine
unitary matrices as in Eq. (40). In this appendix, we prove this
statement. To do so, we show that any operator acting on this
subspace can be written as a combination of Oj,k . It follows
that in particular any Hermitian operator can be written in the
form shown in Eq. (40), if the constraint λjk = λ∗

−j,−ke
− i2πjk

3

is imposed.
The operator Ux defined in Eq. (29) measures the charge on

the edge modes. We expect that it will have three eigenvalues
corresponding to edge charges equal to 0, 1

3 , and − 1
3 . We

denote the eigenstate with zero charge on the edge by
|0〉. In addition, we introduce the notation |1〉= Uy |0〉 and
|−1〉= Uy |1〉= U 2

y |0〉.
By definition, Ux |0〉 = |0〉 and it is easy to check, using the

identity UxUy = eiαUyUx, α = 2π/3, that

Ux |1〉 = UxUy |0〉 = eiαUyUx |0〉 = eiαUy |0〉 = eiα|1〉 (A1)

and similarly we find

Ux | − 1〉 = e2iα| − 1〉 = e−iα| − 1〉. (A2)

The set |−1〉,|0〉,|1〉 forms a complete basis for the 3 × 3
subspace of ground states so that any operator Ô, projected
onto this subspace, can be written in this basis as

Ô =
∑

j,l=−1,0,1

|j 〉〈j |O|l〉〈l|. (A3)

Since

Ux = e−iα|−1〉〈−1| + |0〉〈0| + e+iα|1〉〈1|, (A4)

we find that (notice that cos α = cos 2α for α = 2π/3)

|0〉〈0| = (Ux + U †
x − 2 cos α1)/[2(1 − cos α)] (A5)

with1 = |−1〉〈−1| + |0〉〈0| + |1〉〈1| being a unit matrix in the
3 × 3 subspace. All the other |j 〉〈l| operators in the expansion
of Eq. (A3) can be obtained by multiplying the presentation of
|0〉〈0| in Eq. (A5) by Uy or U

†
y from left or right. For example,

|1〉〈0| = Uy |0〉〈0| = UyUx + UyU
†
x − 2 cos αUy. (A6)

Hence, the expansion of Eq. (40) follows.
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