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Magic-angle twisted bilayer graphene (MATBG) has recently emerged as a highly

tunable two-dimensional (2D) material platform exhibiting a wide range of phases,

such as metal, insulator, and superconductor states.1–4. Local electrostatic control

over these phases may enable the creation of versatile quantum devices that were

previously not achievable in other single material platforms. Here, we exploit the

electrical tunability of MATBG to engineer Josephson junctions and tunneling tran-

sistors all within one material, defined solely by electrostatic gates. Our multi-gated

device geometry offers complete control over the Josephson junction, with the ability

to independently tune the weak link, barriers, and tunneling electrodes. We show

that these purely 2D MATBG Josephson junctions exhibit nonlocal electrodynamics

in a magnetic field, in agreement with the Pearl theory for ultrathin superconductors5.

Utilizing the intrinsic bandgaps of MATBG, we also demonstrate monolithic edge tun-

neling spectroscopy within the same MATBG devices and measure the energy spec-

trum of MATBG in the superconducting phase. Furthermore, by inducing a double

barrier geometry, the devices can be operated as a single-electron transistor, exhibit-

ing Coulomb blockade. These MATBG tunneling devices, with versatile functionality

encompassed within a single material, may find applications in graphene-based tun-

able superconducting qubits, on-chip superconducting circuits, and electromagnetic

sensing in next-generation quantum nanoelectronics.

Tunneling devices are ubiquitous in modern electronics, with applications ranging from tun-

neling diodes to magnetic tunnel junctions and superconducting Josephson Junctions (JJ). These

devices typically involve heterojunctions of different materials to achieve conducting electrodes in

series with a weak link or insulating barrier6,7. In superconducting circuits, state-of-the-art JJs
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utilizing oxide tunnel barriers often suffer from disorder and localized states in the noncrystalline

barriers8. Semiconductor-based JJs necessarily involve heterojunctions, and thus potentially non-

ideal interfaces, but offer some advantages for integrated electronics, such as partial tunability of

the semiconducting weak link9,10. While this offers a number of different operation regimes, the

ability to independently tune the electrodes into different phases would enable an exponentially

larger number of tunable configurations, qualitatively changing the nature of the device in situ.

A superconducting junction made of a single clean material, which simultaneously offers a high

degree of tunability both in the weak link and in the superconducting electrodes themselves, is

therefore highly desirable, but has not been realized to date.

The recent discovery of correlated insulators and superconductivity in MATBG accessible via

electrostatic doping1–4 makes this possible, introducing MATBG as an unexplored material plat-

form for superconducting electronics. In twisted bilayer graphene, a moiré pattern emerges from

the coupling between two vertically-stacked graphene lattices with a relative twist angle11. Near

the first ‘magic-angle’, a nearly-flat electronic structure12,13 leads to a large density of states and

electron localization in real space around the AA-stacked regions1,2,14, resulting in strong electronic

interactions and emergent many-body correlated states. Using electrostatic gating, a plethora of

possible regimes, including p-n junctions, superconducting regions, metallic leads, and insulating

islands, among others, become accessible in a single device, making this system attractive both for

scientific and technological applications. We exploit this unprecedented tunability to create an all-

in-one device that can be used both for superconducting electronics and normal-state operations,

bridging the fields of tunable van der Waals materials and superconducting circuits. This could

open the door towards fully integrated superconducting electronics, where entire circuits are made

out of a single material with local gates and customizable coupling within and between each of the

electronic components.

In this Letter, we demonstrate the versatility of multiply-gated MATBG devices. We report

on fully tunable lateral JJs, where both the superconducting electrodes and the weak link can

be locally controlled. Such JJs additionally provide definitive evidence of superconducting phase

coherence in MATBG. Independent control of the weak link is performed via applying a top gate

voltage, achieving a junction that can be continuously switched from insulating, metallic, to su-

perconducting regimes, generating a tunable critical supercurrent. In the same multi-gated devices

we obtain spectroscopic evidence of the superconducting gap in MATBG by utilizing its intrinsic

bandgaps to create lateral tunneling barriers. Finally, inducing barriers on either side of a narrow

MATBG strip allows us to transform the device into a single-electron transistor displaying periodic
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Coulomb diamonds.

To demonstrate these effects, we have measured three superconducting devices labeled A, B,

and C. All devices were fabricated using the tear-and-stack dry-transfer technique1,15,16, which

enables us to achieve high-quality devices with clean interfaces and twist angles close to the first

magic angle, θ ∼ 1.1◦ (see Supplementary Information for the details of the fabrication process).

Here, we focus on device A with a twist angle 0.95◦±0.02◦ (see Supplementary Information for

devices B and C). Fig. 1a shows the dual-gated device structure. An optical micrograph of the

device is shown in the inset of Fig. 1b. The entire device is gated by the back gate, while

the top gate is patterned into a narrow strip (∼ 160 nm) at the center of the device to enable

independent control of the region underneath it. Fig. 1b shows the temperature dependence of

the resistance of device A at the optimal doping with no top gate voltage applied, Vtg = 0 V, and

back gate Vbg = −1.4 V (corresponding to the blue square in Fig. 1c), displaying a superconducting

transition at Tc ∼ 0.85 K, as estimated from 50% of the normal state resistance (see Supplementary

Information for devices B and C). The non-linear I-V curves captured near optimal doping, shown

in the inset of Fig. 1c, display zero resistance up to a critical current Ic ∼ 35 nA.

To map out the complex electrostatic response of these devices, we now explore the complete

dual-gate parameter space available, which exhibits a number of different insulating, metallic, and

superconducting states. Using the back gate and narrow top gate together, we can define three

separate regions within the same device with independent phases in series. In each region of the

MATBG, when the four-fold valley and spin-degenerate bands are fully filled or fully depleted at

densities n = ±ns, where ns = 4/A and A is the area of the moiré unit cell, the system behaves as

a band insulator16–18. In the following, we denote the insulator at −ns as I, and the insulator at

ns as I’. Correlated insulator states are observed at n = ±ns/2, and we denote them as C (−ns/2)

and C’ (ns/2), respectively. Similarly, S and S’ denote the superconducting states near ∓ns/2,

respectively. Let us also denote D as the charge neutrality (Dirac) point, and n (n’) the normal

metallic states at fillings n < −ns (n > ns), when the higher energy dispersive bands become

populated by holes (electrons). Metallic states are also observed throughout the flat bands, away

from charge neutrality and the correlated fillings, denoted as N. Fig. 1d shows a vertical line cut

of the resistance map at Vtg = 0 V. From top to bottom, the peaks correspond to the states C’, D,

C, and I, respectively, while the dips indicate the superconducting states S’ and S. The transition

between the different series combinations of the central and outside regions are readily seen from

the horizontal and diagonal features of the Vtg-Vbg resistance map shown in Fig. 1c. We interpret

the diagonal features (dependent on both Vtg and Vbg) as stemming from the dual-gated region
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FIG. 1: Device ’A’ structure and transport characterization . (a) Schematic illustration: A narrow
top gate (∼ 160 nm wide) controls the electronic state of the region underneath. (b) Resistance vs.
temperature curve measured at the blue square in panel (c)). Upper left inset: optical image of the
final device. A back gate (BG) tunes the electron density in the overlapping region of the MATBG.
The narrow top gate (TG) controlling the electronic state of the weak link can be seen at the center
of the device. A bias voltage Vbias is applied between the drain and source electrodes, and the 4-
probe resistance Rxx = Vxx/I is measured. The scale bar corresponds to 4 µm. Lower right inset:
moiré pattern in twisted bilayer graphene. The displayed twist angle is enlarged for clarity with
respect to the first magic angle θ ∼ 1.1◦. The moiré wavelength is given by λm = a/[2 sin(θ/2)],
where a = 0.246 nm is the lattice constant of monolayer graphene, and θ is the twist angle. (c)
Resistance as a function of the back gate and the top gate. The dark regions correspond to the
superconducting states. Horizontal dashed lines and labels in red denote features induced by the
back gate (see main text for explanation), and diagonal lines and labels in green denote features
under the influence of both the top and the back gates. White labels of the form SXS or S’XS’
indicate that at these points the source and drain are in S or S’ state while the top-gated regions
is in the X=I’, C’, D, S, S’, C, or I state. Color-coded triangles indicate the points at which
Fraunhofer patterns are taken in Fig. 2. Inset: Current-Voltage curves measured at Vbg = −1.6 V,
Vtg = 0 V at different temperatures. (d) Line-cut in panel (c) along Vtg = 0. I = Full filling
band insulating state, S = Superconducting, C = Correlated Insulator at Half Filling, D = Dirac
(charge neutrality) point. Primes denote positive fillings (i.e., electron doping). (e) Resistance as

a function of current bias and top gate voltage, for Vbg = −1.8 V in the superconducting state.
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beneath the top gate, and the horizontal features (independent of Vtg) as coming from the regions

outside the top-gated area. The intersection between a few horizontal (red) and diagonal (green)

lines are labeled with black circles in Fig. 1c. For example, DDD denotes the coincidence of

the Dirac points in all three regions, whereas DC’D occurs when the central region enters the C’

correlated insulator state and the outside regions are at charge neutrality, and similarly for other

intersections of the dashed lines. More interesting device behavior is obtained by doping away from

the horizontal lines in the dual-gate map. For instance, supercurrent through a variable Josephson

junction is observed across the device if we use Vbg to globally tune the MATBG into S and use

Vtg to form a weak link in the central region with another state such as I, I’, or C’ (as indicated by

the diagonal labels in Fig. 1c). Figure 1e illustrates the wide region of supercurrent observed (dark

blue), whereas the ability to continuously vary the barrier strength with Vtg is indicated by the

evolution of the critical current (where the differential resistance becomes finite). We can turn off

the supercurrent completely by gating the central region deep into the insulating state (beyond full

filling). In this regime the superconducting coherence across the junction is lost, and a dissipative

junction is obtained.

Next we address the expected behavior for 2D JJs in the presence of magnetic flux. 2D su-

perconductors screen external magnetic fields in a fundamentally different way from their bulk

(3D) counterparts. In ultra-thin superconductors where the film thickness is less than the London

penetration depth λ, the characteristic length that governs the spatial magnetic field distribution

is given by the Pearl length5 Λ = 2λ2/d� λ, where d is the film thickness. In the case of MATBG,

the thickness is less than 1 nm and the Pearl length can reach macroscopic dimensions, exceeding

the dimensions of the device itself. Under such conditions, the screening currents cannot effectively

expel the external magnetic field (illustrated in Fig. 2a), in striking contrast with bulk samples

(Fig. 2b). The origin of this effect can be understood by recognizing that the self-field of the

screening current in a thin-film superconductor scales as w
ΛB, where w is the lateral dimension

of the sample and B is the external magnetic field19. When w � Λ, the self-field is therefore

negligible compared to the external field, allowing finite field penetration.

The distribution of Josephson current and magnetic flux in a JJ is altered in the 2D limit as

well. In a bulk JJ, the magnetic field only penetrates a distance ∼ λ into the superconductor and

is therefore mostly confined within the junction barrier. The phase difference across the junction

is a simple function that only depends on λ and B. On the other hand, for edge-type Josephson

junctions in ultra-thin films, the magnetic field distribution is not confined to the tunneling barrier.

An additional distinction between bulk and edge-type 2D JJs is that the Josephson electrodynamics
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are nonlocal in the 2D case, that is, the magnetic flux in the junction results from a non-negligible

superconducting phase gradient in both 2D superconducting regions6,20–22.

To further understand the physical implications of these differences, we simulate the magnetic

field and the screening currents in a bulk JJ and a 2D JJ with similar dimensions as device A, placed

in an external magnetic field B = B0ẑ
19,23,24 (see Supplementary Information for details). While

in bulk superconductors, the magnetic field decays exponentially at the edges within a distance λ

(Fig. 2d), in the 2D case, it is essentially unaltered across the entire sample area (Fig. 2c). From

the magnetic field distribution, we can obtain the distribution of the phase difference across the

junction which gives rise to the Fraunhofer interference pattern (see Supplementary Information).

Our calculated field dependence of the maximum supercurrent in the 2D JJ, in agreement with

previous analytical and numerical predictions19,23–25, differs noticeably from the typical Fraunhofer

pattern of bulk junctions in two ways (Fig. 2e). First, the high-field periodicity ∼ 1.8Φ0/w
2

depends solely on the geometry of the sample and is usually much smaller than the bulk periodicity

Φ0/w(a+ 2λ), where a is the length of the weak link itself. Second, unlike the bulk case, the zeros

of Ic(B) for edge-type thin-film junctions are not equidistant at low-fields.

We now present measurements of Josephson behavior in a perpendicular magnetic field to test

these predictions experimentally. Based on the analytical expression 1.8Φ0/w
2, we expect an

interference period ∼ 1.7 mT in device A (w ∼ 1.5 µm). We first gate the device into the SIS

regime, pushing the middle region as far as possible into the insulating region while maintaining

superconducting coherence across the junction (Fig. 2f). We observe oscillations in the critical

current with a periodicity of ∼ 1–1.5 mT for the finest oscillations. If one only considers the

physical length and width of the junction, an approximation of the bulk formula Φ0/wl using l ≈ a

gives a periodicity of 8.5 mT, significantly larger than the measured oscillation period. However,

our measured periodicity of ∼ 1–1.5 mT is clearly in agreement with the simulations shown in

Fig. 2e and consistent with the Pearl regime governing the ultrathin superconducting electrodes.

This anomalous periodicity is further corroborated by two additional devices (B and C), shown

in the Supplementary Information. Critical current oscillations with similar periodicity are also

observed close to the SC’S (Fig. 2g) and SI’S (Fig. 2h) configurations. Although there are slight

deviations from ideal Fraunhofer behavior and differences between each pattern, these details may

be attributed to inhomogeneities and asymmetries across each junction. Overall, SIS-type junction

behavior is clearly achievable in this geometry using different insulating phases. Alternatively,

if we bring the weak link into the SS’S regime, the oscillations in the critical current disappear

(Fig. 2i). Notably, in this arrangement, there is a complex spatial variation of the carrier density
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across the junction, which continuously traverses the phase diagram from the S state to the S’

state and back to the S state. Despite this spatial density profile, the junction simply behaves like

3 superconductors in series, where the global critical current is determined by the smaller critical

current of the S’ region. The lack of oscillations and the presence of two clear critical current

peaks in the dVxx/dI at zero field (green arrows in Fig. 2i) supports this conclusion. In addition

to the anomalous periodicity of the measured Fraunhofer patterns, another piece of evidence for

the nonlocal Josephson effect in our samples21 is the resistance as a function of the magnetic field

and temperature of the junction close to the SIS regime (Fig. 2k). The oscillation period does not

change as the temperature approaches Tc. This is in contrast to the expected behavior in the local

regime where, since λ(T ) diverges as T → Tc, one expects the oscillation period, which is inversely

proportional to λ, to be progressively suppressed with temperature26.

In the SnS regime, we find oscillatory behavior of the critical current with respect to Vtg, as

shown in Fig. 2j. We attribute this to a Fabry-Pérot-like resonance from the interfaces between

the dual-gated region and the singly gated regions, which occurs in high-quality devices close to

the ballistic transport regime27,28. In a JJ, Ic and the normal state resistance RN typically scale

inversely with each other, a behavior known as the Ambegaokar-Baratoff relationship6. When the

Fabry-Pérot resonance of the electron wave becomes prominent, RN is periodically modulated by
√
n+ ns, and so is the critical current in the opposite way. We observe the resonance only in

the SnS regime, likely due to the low effective mass and high mobility in the dispersive band at

−|n| < −|ns|.

We now turn our attention to devices B and C with the structure shown in Fig. 3a. Instead

of the narrow top gate in device A, here we pattern two isolated top gates separated by a narrow

gap, allowing us to realize a p-n junction. In Fig. 3b, we show the simulated charge carrier density

distribution across a gate-defined p-n junction in a scenario similar to device B (see Supplementary

Information for simulation details). The density evolves continuously and crosses the value n = −ns

at a position between the left gated and right gated regions. Due to quantum capacitance effects

in MATBG, a narrow region in the p-n junction is kept inside the bandgap at −ns and acts as

a tunneling barrier. If we put one side of the junction in the S state, we then realize an nIS

configuration, enabling edge tunneling spectroscopy into the S state. Using this configuration, in

Fig. 3c-f we show tunneling spectra of MATBG in the superconducting regime.

The data show clear spectroscopic evidence of a superconducting gap, including well-defined

coherence peaks and a minimum at zero bias. To obtain a quantitative measure of the gap that

incorporates the entire spectral lineshape, we fit the data to a model for the quasiparticle den-
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FIG. 2: Nonlocality and tunability of MATBG JJs. (a-b) Schematic representation of (a) a
planar 2D Josephson junction and (b) a bulk Josephson junction in an external magnetic field.
(c-d) Simulated distribution of the normalized magnetic field Bz in a Josephson junction located
at x = 0 in the case of (c) planar and (d) bulk superconductor. The streamlines denote the
flow of screening currents in the superconductor. The bulk case assumes a penetration depth of
λ = 100 nm. (e) Calculated critical current (normalized) as a function of the magnetic field for bulk
and planar Josephson junctions. (f-i) Measured Fraunhofer pattern in device A (f) close to SIS
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of peaks in the curve correspond to the critical currents of the S and S’ states, respectively (green
arrows in main panel). (j) Fabry-Pérot-like oscillations in the critical current. (k) Resistance as a

function of magnetic field and temperature of the junction close to the SIS regime.

sity of states. Choosing the simplest such model, that of a conventional isotropic s-wave order

parameter6, we incorporate the effects of thermal and lifetime (Dynes) broadening, and extract a

gap of ∆fit = 44 µeV at T = 95 mK for device B, and ∆fit = 51 µeV at T = 100 mK for device

C (see Supplementary Information for fitting details). The tunneling conductance minimum and

coherence peaks are well captured by this fit, including the absence of a hard gap due to thermal

broadening at the lowest experimental temperature. Taking the ∆fit = 51 µeV for device C as a

lower bound for the superconducting gap at zero temperature (∆fit . ∆0), we can estimate an as-

sociated transition temperature from the BCS approximation Tc & ∆fit/(1.764kB) ≈ 340 mK. This

value is reasonable considering the transition temperature extracted from 50% of the normal-state
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resistance at a nearby doping value, ∼ 400 mK (see Supplementary Information). However, we

emphasize that such a fitting procedure cannot distinguish the symmetry of the superconducting

order parameter in our data, as there is significant spectral broadening due to temperature, disor-

der, and the lateral junction geometry. In fact, we have found equally good quality fits using other

non s-wave order parameters. Direct measurements of the pairing symmetry in MATBG remain a

fundamental yet unresolved question in the field, and these device structures may be adapted to

shed light on this topic.

As the temperature is increased above ∼ 300 mK (for both devices B and C), the coherence

peaks are significantly broadened due to thermal excitations. As the temperature is further in-

creased, the dip at Vbias = 0 is suppressed and eventually disappears, indicating that the system is

no longer superconducting. Similarly, by applying a perpendicular magnetic field at base temper-

ature, the coherence peaks are also suppressed at B ∼ 50 mT for device B (B ∼ 100 mT for device

C), comparable to the upper critical field observed in transport in magic-angle devices with similar

Tc
2. The closing of the gap and suppression of the coherence peaks with temperature and magnetic

field further support a superconducting origin for the observed gap. Notably, a portion of the tun-

neling minimum at zero bias persists to much larger magnetic fields. However, a similar tunneling

minimum is observed above the critical field for a wide range of densities outside of the supercon-

ducting dome, without associated coherence peaks at zero field (see Supplementary Information),

and thus arises from a distinct mechanism. Such a suppression in the tunneling spectra may be

related to the Efros-Shklovskii-type Coulomb gap that arises at the Fermi level due to localization

in disordered semiconducting thin films29,30, or alternatively, it may result from electronic inter-

actions during the tunneling process31–33. Although we consistently observe a suppression in the

tunneling conductance at zero bias for all three measured devices (see Supplementary Information),

further detailed studies are required to determine the precise origin of this spectral feature.

Further exploiting the flexibility of the split-gate geometry, we can create a single-electron

transistor (SET) within the same multipurpose devices. In a SET, electrons are spatially confined

in a central region by tunneling barriers that weakly connect it to the drain and source electrodes.

To achieve this, we tune the left and right top gates to bring the two sides of the device into

metallic states with densities n < −ns. The central narrow region, being singly gated, is brought

into the density range −ns < n < −ns/2. With similar arguments as those mentioned above, two

insulating plateaus with n = −ns form around the central region of the sample, resulting in an

isolated island in the middle. Fig. 4a illustrates such an nINIn configuration, as seen from above,

and the calculated charge carrier density distribution. At low temperatures (kBT � e2/C, where
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FIG. 3: Edge tunneling spectroscopy of the superconducting gap in MATBG. (a) Structure of
devices B and C with two top gates separated by a narrow gap. (b) Numerical calculated charge
carrier density distribution in the p-n junction regime performed for device B (device C analogous).
The left half is brought into the superconducting state S at n ∼ −0.6|ns|, while the right half
is brought into a normal metallic regime with density n ∼ −1.4|ns| (all densities are for hole
doping and thus are all negative). In the central region of the device, the density passes through
the band insulator I (n = −ns), thus creating a tunneling barrier. (c) Raw tunneling spectra
as a function of temperature, from 0.095 K to 1.295 K for device B. The black dashed line is a
theoretical fit to the quasiparticle density of states (see Supplementary Information), yielding an
extracted gap ∆fit = 44 µeV (with negligible broadening). (d) Magnetic field dependence of the
edge tunneling spectra, from 0 T to 0.8 T for device B. (e) Similarly, tunneling spectra as a function
of temperature and (f) perpendicular magnetic field for device C, with the left half of the device in
the superconducting state S at n ∼ −0.775|ns|, and the right half at a density n ∼ −1.2|ns|. The
dashed line is the theoretical fit giving an extracted corresponding gap ∆fit = 51 µeV (with Dynes

broadening 15 µeV).

C is the total capacitance of the island) and with large tunneling resistance (Rtunnel � h/e2),

electron tunneling is allowed only if there are available discrete energy levels between the Fermi

energies of the source and the drain (Fig. 4b), whereas the Coulomb blockade effect prohibits

tunneling otherwise (Fig. 4c)6,34.

In Fig. 4d, we measure the tunneling conductance of the gate-defined single-electron transistor

in device B as the back gate voltage is varied, keeping the source and drain densities fixed. The
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FIG. 4: In situ single-electron transistor and Coulomb blockade in MATBG. (a) Gating scheme
of the device and simulation of the charge density across the sample. Two effective insulating
barriers emerge, and the central island is equivalent to a single-electron transistor. (b-c) Space-
energy diagram of a single-electron transistor in the (b) non-blocked and (c) blocked regimes. µL
and µR are the chemical potentials of the source and the drain, respectively. (d) Conductance
versus the back gate voltage Vbg, while the two top gates keep the densities on the source and drain
at n ∼ −1.1ns. (e) Fourier transform of the two-probe tunneling current, showing a single peak
at 116 V−1. (f) Differential conductance as a function of back gate voltage and source-drain bias
voltage. Pronounced Coulomb diamonds, corresponding to the absence of tunneling current, are
observed. In this scan, only the back gate is swept while both top gates are fixed. (g) Schematic of
the Coulomb diamonds (see main text). N denotes the number of electrons in the central island.
The mismatch of the periodicities in panels (d-e) and panels (f-g) is attributed to cross-coupling
of the top gates and is discussed in the Supplementary Information (we have added a tilde in the
x-axis label of panel (d) to avoid possible confusion). All the data in this figure correspond to

device B (see Supplementary Information for additional data).
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signal displays fine, reproducible oscillations as a function of the back gate voltage. A Fourier

transform of the measured tunneling current reveals a single periodicity, as shown in Fig. 4e. Fig. 4f

shows the differential conductance in a narrower range of back gate voltages, as a function of the

source-drain bias voltage. We observe well-developed Coulomb diamonds with zero conductance in

the blockaded regime. These observations are in agreement with a single-electron transistor with

capacitances Cg = 40 aF, C1 ≈ C2 = 110 aF, CΣ = 310 aF (see Supplementary Information for

definitions), as shown in Fig. 4g for a charged island with an integer number of electrons on the

island, labeled by N . Thus we find that the band insulator in MATBG provides a suitable barrier

for SET physics in graphene with appropriate local gating, adding to the broad tunability of these

MATBG devices.

The unprecedented tunability of MATBG together with local electrostatic gating in this work

enables complete control of the weak link and junction electrodes, independently. With this ver-

satile platform, we demonstrate multiple Josephson junctions with differing barrier strength and

character, edge-tunneling spectroscopy of the superconducting state, and robust SET physics in a

double-barrier configuration. While multiple devices are presented here, critically, all three afore-

mentioned experiments are achievable in a single device geometry. Gate-defined tunnel junctions

present a significant advance toward probing the superconducting order parameter in MATBG,

and will inspire further advances for exploring physics within the expanding class of moiré sys-

tems. Furthermore, these multipurpose devices establish a clear path toward gate-defined circuits

with MATBG in future 2D integrated electronics, with potential applications in low-temperature

circuits, quantum computing, and electromagnetic sensing.
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