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ABSTRACT: Extreme confinement of electromagnetic energy
by phonon polaritons holds the promise of strong and new forms
of control over the dynamics of matter. To bring such control to
the atomic-scale limit, it is important to consider phonon
polaritons in two-dimensional (2D) systems. Recent studies have
pointed out that in 2D, splitting between longitudinal and
transverse optical (LO and TO) phonons is absent at the Γ
point, even for polar materials. Does this lack of LO−TO
splitting imply the absence of a phonon polariton in polar
monolayers? To answer this, we connect the microscopic phonon properties with the macroscopic electromagnetic response.
Specifically, we derive a first-principles expression for the conductivity of a polar monolayer specified by the wave-vector-
dependent LO and TO phonon dispersions. In the long-wavelength (local) limit, we find a universal form for the conductivity
in terms of the LO phonon frequency at the Γ point, its lifetime, and the group velocity of the LO phonon. Our analysis reveals
that the phonon polariton of 2D is simply the LO phonon of the 2D system. For the specific example of hexagonal boron nitride
(hBN), we estimate the confinement and propagation losses of the LO phonons, finding that high confinement and reasonable
propagation quality factors coincide in regions that may be difficult to detect with current near-field optical microscopy
techniques. Finally, we study the interaction of external emitters with 2D hBN nanostructures, finding an extreme enhancement
of spontaneous emission due to coupling with localized 2D phonon polaritons and the possibility of multimode strong and
ultrastrong coupling between an external emitter and hBN phonons. This may lead to the design of new hybrid states of
electrons and phonons based on strong coupling.

KEYWORDS: Phonon polaritons, two-dimensional materials, polar materials, hexagonal boron nitride, light-matter interactions,
quantum optics

Phonon polaritons, hybrid quasiparticles of photons and
optical phonons supported in polar materials, hold

promise for nanoscale control of electromagnetic fields at
mid-infrared and terahertz frequencies. Qualitatively, phonon
polaritons share many features with plasmon polaritons in
conductors. Recently, it has been shown that phonon
polaritons enable the confinement of light to volumes ∼106

times smaller than that of a diffraction-limited photon in free-
space.1−17 Due to this remarkable confinement and their
relatively high lifetimes (around picoseconds), phonon polar-
itons open new opportunities for vibrational spectroscopy,18

radiative heat transfer,19 and the control of dynamics in
quantum emitters.20−23

Thus far, extreme confinement of phonon polaritons has
been achieved by the use of thin films (or nanostructuring),
which shrink the in- and out-of-plane wavelength of polaritons
with decreasing feature size (such as the film thickness).4,24 A
monolayer is the ultimate limit of this effect, making it critical
to have a fundamental understanding of the optical response of
2D polar materials.25 Concerning the optical response, the
transition from three-dimensional (3D) to two-dimensional
(2D) polar materials is nontrivial, however, because in a polar
monolayer, the LO−TO splitting that gives rise to phonon

polaritons in 3D is absent at the Γ point.26−29 This raises a
fundamental question about the nature of electromagnetic
modes in polar monolayers.
To resolve this question, a connection between the

microscopic phonon properties and the macroscopic electro-
magnetic response is required. To that end, we develop a first-
principles framework for phonon polaritons in polar 2D
materials and illustrate it with quantitative, concrete examples.
We derive a universal form for the conductivity of a polar
monolayer, which depends solely on the LO and TO phonon
frequencies (and their dispersion with momentum) in the 2D
system. Using parameters from ref 29 for the canonical 2D
polar monolayer, hexagonal boron nitride (hBN), we present
the confinement and propagation losses of the 2D phonon
polariton modes, identifying the frequency region where they
should be most easily detected. Finally, we find that these
modes enable extreme light−matter interactions between
emitters and polar materials, showing that for atom-like
emitters, their spontaneous decay can be enhanced by up to 8
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orders of magnitude through the emitter−LO phonon
coupling. For an infrared emitter with a sufficiently high free-
space radiative decay rate (≳106 s−1), we find that the
associated line width of the emitter is comparable to the
spacing between different phonon polaritonic resonances of an
hBN nanostructure. This suggests the possibility of realizing
the multimode strong coupling and ultrastrong coupling
regimes of quantum electrodynamics in a 2D hBN platform.
Our results for hBN are particularly relevant due its widespread
use in 2D van der Waals heterostructures. In addition to
providing functionality as a layer that improves the electrical
and optical properties of other 2D materials, e.g., graphene, our
results suggest that in these heterostructures, hBN layers could
provide a mid-infrared platform for nanophotonics and
quantum optics. While we focus on hBN in this manuscript,
the salient features of our findings apply to other polar
monolayers as well.
1. Optical Response of Optical Phonons in Two

Dimensions. In this section, we develop a theory of
electromagnetic response due to optical phonons in 2D
systems. The key response function of interest is the
conductivity of the monolayer. To that end, we consider the
response of the ions of the monolayer due to an electric
potential ϕ. For that case, the interaction Hamiltonian is:

∫ ∫ρϕ ϕ= = − ∇·H x d x Pd ( )int
2 2

(1)

with ρ being the induced charge density and P being the
induced polarization density associated with the ionic motion.
Note that boldfaced quantities refer to vectors or tensors as
appropriate. Within linear response theory, the polarization
density can be straightforwardly evaluated from the displace-
ment κu of every atom κ within the unit cell. Specifically, to
first order, the polarization density is:

∑ ∑− = ·∇ ≡
Ωκ

κ
κ

κ κκ
P P u P Z u( )

1
u

0

(2)

where ≡ Ω∇κ κ
Z Pu is the Born effective charge tensor of ion κ

and Ω is the unit cell area. P0 is the equilibrium polarization in
the absence of displacements, which is zero here. With this
relation between polarization and ionic displacements, the
interaction Hamiltonian in eq 1 couples the scalar potential
and the ionic displacements. We consider the response of the
monolayer to a potential of the form ϕ(r, t) =ϕ ω ω· −q( , )e tq ri i ,
where q is a 2D wave-vector in the plane of the monolayer.
Such a potential corresponds to a longitudinal electric field

ϕ=E r q r( ) i ( ).
In what follows, we assume the validity of the random-phase

approximation (RPA) in accounting for Coulombic inter-
actions between ions in the polar lattice. Within the RPA, these
Coulombic interactions are accounted for by taking the
induced polarization ωP q( , ) to be proportional to the total
electric field, ωE q( , )tot , defined to be the sum of the externally
applied electric field and the electric field created by the
induced polarization. The polarization and total field are
connected by the polarization-polarization response (tensor)
function ωΠ q( , ) via

ω ω ωΠ= ϵP q q E q( , ) ( , ) ( , )0 tot (3)

The polarization−polarization response function is related
to the conductivity via the relationship σ(q,ω) =−iωϵ0Π(q,
ω). From the Kubo formula, it follows that the conductivity is:

∑σ ω ω
ω

= −
Ω

⊗
ℏ + +

−β β
+

− −

E
q

P q P q
( , )

i ( ) ( )
i0

(e e )
m n

mn nm

nm

E E

,

m n

(4)

where m nand are eigenstates in the phononic Fock space of
the monolayer, ≡ ∑ ⟨ | | ⟩κ κ κm nP q Z u q( ) ( )mn are matrix ele-
ments of the polarization associated with phonon modes
[where κu q( ) is the Fourier transform of the phonon
displacement operator], Em (En) is the energy of state m (n),
β ≡ k T1/ B is the inverse temperature, and is the grand
partition function. We now evaluate the contribution of optical
phonons to the polarization-polarization response in the low-
temperature limit ω≪ ℏT k/ph B, with ωph being a character-
istic optical phonon frequency. Considering the long-wave-
length (small wave-vector) limit and taking a material with
long-wavelength isotropy, such as hBN, we only have to
consider the qq component of the response tensor, where qq
denotes a pair of directions parallel to the wave vector.
Denoting σqq as simply σ, we find that the conductivity is given
by:30

σ ω ω ω

ω ω ωτ
= −

ℏΩ − −
| ̂·⟨ | | ⟩|−q q P q( , )

i 2

i
1 ( ) 0 L

q

q
q q

,L

,L
2 2 1 ,L ,

2

(5)

where the L subscripts denote longitudinal polarization, | ⟩0q,L

(| ⟩1q,L ) denotes a state with no (one) longitudinal phonon of
wave-vector q , and q̂ denotes a unit vector in the direction of
q . We have also phenomenologically included the phonon
dissipation rate τ−1, consistently with a relaxation-time
prescription. The frequency ωq,L in the denominator, as in
the case of bulk phonons, is the frequency of the longitudinal
phonon of wave-vector q prior to considering LO−TO
splitting31 (and near the Γ point is approximately equal to
the TO phonon frequency). This is consistent with the fact
that LO−TO splitting is a collective effect arising from
Coulomb interactions and the fact that the equation above
represents a single-particle susceptibility. Coulomb interactions
are accounted for in the random phsase approximation, and to
include them in the single-particle response amounts to an
uncontrolled double-counting.
Next, we express the polarization matrix element in eq 5 in

terms of the Born effective charges of the monolayer and the
phonon displacement eigenvectors. Considering the longitudi-
nal phonon contribution to the second-quantized ionic
displacement, as in ref 32, we find that the conductivity within
the RPA is given by:

η
σ ω ω

ω ω ωτ
= −

Ω
̂·∑
− −

κ κ κ
−q

q Z
( , )

i
iq

2

,L
2 2 1

(6)

We have defined scaled eigendisplacements ηκq ≡ eκ̂q,L/

κM , where κ̂e q,L is the unit-normalized polarization vector of
atom κ in the unit cell oscillating according to a longitudinal
phonon of wave vector q , and κM is the mass of atom κ.
While the conductivity is the main electromagnetic quantity

of interest for electrodynamics applications, we briefly state the
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form of the 2D permittivity because its zeros immediately yield
the longitudinal modes of the system, which are the LO
phonons. The permittivity within the RPA, denoted as ϵRPA , is
related to the polarization−polarization response function via33

ωϵ = ϵ + Πq q( , )RPA env
1
2

and the conductivity via ϵRPA = ϵenv
+ iqσ(q, ω)/2ϵ0ω. Here, ϵenv is the average permittivity of the
bulk above and below the monolayer and is added to take into
account the polarization arising from these bulk materials.
Note that we have neglected any intrinsic high-frequency
screening in the monolayer itself, which is only relevant for
wave vectors comparable to the inverse layer spacing between
monolayers. When considering nonlocal corrections to the
conductivity at these large wave-vectors, these must be taken
into account25,29,34 Based on eq 6, the zeros ωq of the RPA
dielectric function satisfy:

∑ ηω ω− =
Ω

| ̂· |
κ

κ κ
V q

e
q q Z

( ) 1
q
2

TO
2

2
2 2

(7)

where V q( ) is the Coulomb interaction in Fourier space,

which, in two dimensions, is given by = ϵ ϵV q e q( ) /22
0 env .

Given that the zeros of the dielectric function are associated
with longitudinal modes, one expects that ωq is in fact the
frequency of the LO phonon mode. This is consistent with the
result of ref 29, in which Sohier et al. show that in 2D polar
materials, the extra restoring forces on LO phonons relative to
TO phonons, due to the Coulomb interaction, lead to a wave-
vector-dependent LO−TO splitting and zero LO−TO splitting
at the Γ point of the Brillouin zone.
Given these results, we now re-express the conductivity

explicitly in terms of the 2D phonon dispersion and derive a
universal form for the conductivity in the local ( →q 0) limit
specified in terms of three parameters: the LO phonon
frequency at the Γ point (i.e., ωTO), the group velocity of the
LO phonon at the Γ point, and the damping rate. From eq 7,
we can immediately write the conductivity as:

σ ω
ω ω ω

ω ω ωτ
=

− ϵ ϵ −

− − −q
q( , )

2i
i

q0 env ,LO
2

TO
2

TO
2 2 1

(8)

In this expression, ωL, the LO phonon frequency prior to
LO−TO splitting, has been renamed as ωTO, the transverse
optical phonon frequency, because in the absence of LO−TO
splitting, they are degenerate. The RPA zeros ωq have also
been renamed as ωq,LO. This is done to make the form of the
final results more closely resemble their 3D counterparts, in
which the dielectric function is expressed in terms of the TO
frequency (see, for example, eq 13).
For small q, the Born charges are (to lowest-order) constant,

and so the LO phonon dispersion takes the form

ω ω ω ω= + ≃ +v q v q2q,LO TO
2

g TO TO g , where vg, the LO

phonon group velocity, is defined from microscopic parameters
through the relationship:

η
ω

=
̂·∑ |

ϵ ϵ Ω
κ κ κv

q Z

4g

2

0 env TO (9)

Thus, in the long-wavelength limit, we have the following
universal parametrization of the conductivity of a polar
monolayer:

σ ω
ωω

ω ω ωτ
=

− ϵ ϵ

− − −

v
( )

4i

i
0 env TO g

TO
2 2 1

(10)

We note that despite its appearance, σ ω( ) does not depend
on ϵenv because vg has an inverse dependence on ϵenv . From this
relationship, it follows that given the properties of the 2D
phonons (from experiments or from ab initio calculations),
one can immediately specify the conductivity. Alternatively,
from optical measurements (including far-field measurements)
that allow one to extract the conductivity, it becomes possible
to extract the group velocity of 2D LO phonons and thus the
small-wave vector dispersion of those phonons.
Before moving on to analyze the electrodynamics of 2D

phonon polaritons, we make three comments on lack of LO−
TO splitting in 2D polar materials. The first is that this
situation is in stark contrast to the situation of polar materials
in 3D, which have a finite LO−TO splitting at the Γ point. In
the absence of such LO−TO splitting in 3D, there would be
no frequency compatible with the existence of a phonon
polariton. On the contrary, we will show that in 2D, despite the
absence of LO−TO splitting at the Γ point, there persists a
strongly confined evanescent electromagnetic mode with a
high local density of states, which, in all respects, is similar to a
phonon polariton of a thin film but is in fact the 2D LO
phonon of the polar monolayer (thus, the phrases “phonon
polariton” and “2D LO phonon” may be used somewhat
interchangeably as is the case in plasmonics, in which the terms
“plasmon polariton” and “2D plasmon” are often used
interchangeably).
The second comment is that much of what has been

discussed here has a strong analogy with the theory of optical
response in electron gases in 2D and, in particular, the relation
between plasmons in 2D and 3D. To elaborate on this analogy,
we take eq 7 in the case of a two-atom unit cell (such as hBN)
and note that the term in the sum over Born charges can be
written as η̂ ·∑ ≡ * *κ κ κ Q Mq Z /2 2 , with *Q being an effective
charge and *M being an effective mass. Then, the LO−TO

splitting can be written as ω ω− = *
ϵ ϵ *

q
Q

Mq q
2

,TO
2

2

2

0 env
. Now we

note that the RHS is exactly the squared-frequency ωqp
2 for a

plasma oscillation in a 2D gas of charged particles with charge

*Q and mass *M . To connect to LO−TO splitting in phonons,

this squared frequency ωqp
2 can be thought of as the “LP−TP”

splitting between longitudinal and transverse plasma oscil-
lations. Of course, there are no transverse plasma oscillations
due to the structure-less nature of the electron, and so “ωTP”
should be considered equal to zero. In the three-dimensional
plasmon case, “ω = 0TP ”, but the difference between the
squared longitudinal and transverse plasma oscillation
frequencies at zero-wave vector is nonzero and given by ωp

2.
In other words, the plasma frequency in electron gases is
analogous to the LO−TO splitting in polar materials. The
change in the dispersion of 3D versus 2D plasmons, like 3D
versus 2D LO phonons, arises from the change in
dimensionality of the Coulomb interaction from 3D to 2D.
This analogy between phononic and plasmonic behavior as a
function of dimension is illustrated schematically in Figure 1b,c
to help unify the understanding of 2D plasmonics and
phononics. These considerations should also extend to the
one-dimensional case.
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The third comment is that the considerations of this section
can be extended to few-layer systems, such as hBN bilayers,
which remain two-dimensional from an electromagnetic
perspective for polariton wavelengths large compared to the
bilayer thickness. Concretely, the LO−TO splitting in such
quasi-2D systems is still given by eq 7, provided that the
appropriate eigendisplacements of the few-layer system are
employed and suitable modifications of the Coulomb
interaction are made. For N weakly coupled layers, the sum
of Born effective charges η̂ ·∑κ κ κq Z 2, which is essentially an

oscillator strength, is approximately * *NQ M/2 , i.e. enhanced
N-fold relative to the monolayer or, equivalently, proportional
to the thickness t.29 For few layers, i.e., for ≪qt 1, where the
Coulomb interaction remains essentially 2D, this simple
geometric effect enhances the LO−TO splitting by a factor
N. At larger qt values, the Coulomb interaction must
eventually approach its 3D limit; to study this transition
from monolayer to bulk explicitly, a quasi-2.5D Coulomb
interaction25 can be employed in eq 7. Specifically, for a film of
thickness t, the interaction is approximately

i
k
jjjjj

y
{
zzzzz=

ϵ ϵ
−

∞

−V q
e

q t qt
e

qt
( ) 1

2
sinh

2
qt

Q2.5D

2

0
2

/2

with the static electronic screening ϵ∞ interpolating between its
monolayer value, 1, and its bulk value, ϵ∞. The →qt 0 and

→ ∞qt asymptotics of this interaction are the 2D and 3D

interactions, ϵe q/22
0 and ϵ ϵ∞e q t/2

0
2 , respectively, which it

interpolates between. In the large-thickness or -momentum
limit, ≫qt 1, the t scaling of the oscillator strength, the − −t q1 2

scaling of the Coulomb interaction, and the q2 factor in eq 7
cancel, producing a thickness- and momentum-independent
LO−TO splitting, as expected in the bulk.
Analogously, our considerations can be extended to 1D

polar materials, such as BN nanotubes, by employing the 1D
Coulomb interaction (and, naturally, the 1D-specific eigendis-
placements). For a 1D system of transverse extent R (e.g., the
radius of a nanotube), the 1D Coulomb interaction is

πϵe K qR( )/22
0 0, where K0 is the (zeroth-order) modified

Bessel function of the second kind. Thus, the q dependence of
the (squared) LO−TO splitting in 1D is q2K0(qR) ≃

−q2log qR. This parallels the situation in 1D plasmonics, as
expected from the discussion of Figure 1.

2. Electrodynamics of Optical Phonons in Two
Dimensions. To relate the conductivity function to the
electromagnetic modes supported by a polar monolayer, we
solve Maxwell’s equations for an evanescent electromagnetic
mode supported by a surface with conductivity σ. We consider
the monolayer to be sandwiched by a superstrate of
permittivity ϵ+ and a substrate of permittivity ϵ−. To strip
the analysis to its bare essentials, we consider optical phonon
response with in-plane isotropy in the long-wavelength limit
arising from in-plane LO oscillations. A relevant example of a
system in which these conditions are satisfied is in a hexagonal
boron nitride monolayer (see Figure 1a for a schematic atomic
structure). In a monolayer geometry with translation
invariance and in-plane isotropy, the solutions of Maxwell’s
equations can be decomposed into transverse magnetic (TM)
and transverse electric (TE) parts, where the magnetic or
electric field, respectively, is transverse to the in-plane wave
vector of the mode. In practice, it is the TM mode that is
associated with highly confined electromagnetic waves. We
consider without loss of generality a TM mode with wave-
number q along the x direction in the monolayer and magnetic
field ω−H z( )e qx ti i along the y direction of the monolayer. The
direction transverse to the monolayer is denoted as z. With
these definitions in place, the Maxwell equation satisfied by the
magnetic field is:

i
k
jjjj

y
{
zzzz

ω− + − ϵ =±z
q

c
H z

d
d

( ) 0
2

2
2

2

2
(11)

where ϵ+ applies for >z 0 and ϵ− applies for <z 0. We
consider a solution of the form = κ

±
∓ ±H z h( ) e z with

κ = − ϵ ω
± ±q

c
2 2

2 with ± corresponding to ± >z 0 respec-

tively. The boundary condition on the magnetic field is
σ− = − = −+ −h h K Ex x where K is the surface current

density, and = − ∇ ×
ωϵE H1

i
is the electric field. This

condition enforces κ− = σ
ω+ − ϵ + +

+
h h h

i
. Continuity of the

electric field in the x direction enforces ϵ−ϵ+ = −κ−h−/κ+h+.
Combining the two conditions, we obtain the usual dispersion
equation for the TM mode of a polarizable 2D monolayer,
namely κ κϵ + ϵ = σ

ω+ + − −/ /
i
. Given the deeply sub-wavelength

nature of 2D phonon polaritons, i.e., because ω≫q c/ such
that κ ≃± q, the dispersion equation can be reduced to its
quasistatic limit without consequential loss of accuracy:

ω
σ

=
ϵ ϵ

q
i2 0 env

(12)

with ϵ ≡ ϵ + ϵ+ −( )/2env . This condition, as can be seen from
the relation between Π and σ, is equivalent to ϵ = 0RPA . Thus,
the condition for phonon polaritons coincides precisely with
the condition for longitudinal optical phonons. One of the
main results of our manuscript is that despite the lack of LO−
TO splitting at the Γ point, there nevertheless exists a strongly
confined evanescent mode in many respects similar to the
phonon polaritons of thin films. We now analyze the dispersion
relation of phonon polaritons in a specific material, hexagonal
boron nitride, in more detail, showing the possibility of highly

Figure 1. LO phonons as the basic electromagnetic waves of a polar
monolayer. (a) Schematic structure of a polar monolayer such as
hexagonal boron nitride. (b) Properties of LO and TO phonons in 3D
and 2D. In 3D, there is a finite LO−TO splitting at zero wave vector,
while in 2D, there is none. Despite this, the 2D LO phonon plays the
role of the phonon polariton in 3D and thin films. (c) Analogous
physics appears in electron gases in 3D and 2D, where the 3D plasma
frequency is similar to the 3D LO−TO splitting. In 2D, the plasma
frequency at zero wave vector is zero, but the electromagnetic physics
is determined by the dispersion of 2D plasmons, which replace the
plasmon polariton of bulk and thin films.
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confined electromagnetic modes with a large local density of
states.
In Figure 2a, we present the conductivity of 2D hBN of eq

10 using parameters from ref 29 calculated from density
functional theory within the local density approximation. In
this plot, ϵ = 1env , ωTO = 1387 cm−1, and = × −v c1.2 10g

4 ,
with c being the speed of light in vacuum.
From the conductivity, the dispersion relation of phonon

polaritons on an infinite sheet is given by ω σ ω= ϵ ϵq 2i / ( )0 env .
The dispersion, assuming τ = ∞ and ϵ = 1env , is shown in
Figure 2(c) (black line). A key figure of merit for applications
involving the propagation of phonon polaritons, is the
propagation quality factor, defined by Re q/Im q = Im σ(ω)/
Re σ(ω), which is shown in Figure 2(b).
For monolayer hBN, the wave-vector grows very rapidly

with frequency, due to the extremely low group velocity of 2D
LO phonons, which is a remarkable 4 orders of magnitude
slower than the speed of light. In particular, at frequencies of
1450 cm−1, the phonon polariton has a wavelength of about 15
nm, significantly shorter than any phonon polariton measured
so far and similarly shorter than any plasmonic wavelength,
even in graphene. In fact, this short a wavelength well below
that of any polariton in current scattering near-field
microscopy (SNOM) measurements. The 2D phonon polar-
iton could in principle be measured by SNOM closer to the
TO frequency, where confinement is smaller; unfortunately, as
shown in Figure 2b, near the TO frequency, dissipation is far
higher (and corresponding propagation quality factors Re q/
Im q are far lower) due to large Re σ (or, equivalently, large

ϵIm RPA).
These considerations imply that access to the lower-loss and

higher-confined portions of the dispersion relation of phonon
polaritons, in the absence of a sharper tip, requires a near-field
probe such as a free electron probe, as used in electron energy
loss spectroscopy (EELS), where slow electrons can be used to
probe plasmon wavelengths of just a few nanometers in
monolayer metals, as well as the nonlocal bulk plasmon

dispersion in metals.35−37 EELS has been recently employed to
measure phonon polaritons in ultrathin films of hBN.38

Another interesting class of near-field probes, with relevance
to fundamental physics and quantum optics applications, is a
quantum emitter such as an atom, molecule, or artificial atom
such as a quantum dot, quantum well, or vacancy center.
Recently, it was demonstrated using nanostructures of bulk
hBN that the interaction of vibrational emitters with phonon
polaritons is on the border of the strong coupling regime.18

In the rest of this section, we discuss the relation between
the dispersion of an hBN monolayer versus the atomically
thick limit of a thin film of a material with hBN’s bulk dielectric
function. To aid this discussion, in Figure 2c, we show the
dispersion relation of thin films of bulk hBN with film
thicknesses of 1, 2, 4, and 8 times the interlayer spacing of bulk
hBN, which is roughly 0.33 nm. For these plots, we take hBN
to be cleaved such that the optical axis is perpendicular to the
plane of the film. The components of the bulk permittivity
perpendicular and parallel to the c-axis (ϵ⊥ and ϵ , respectively;
those indexed by α ∈ {⊥ }, below) are then given by:

i

k
jjjjjj

y

{
zzzzzzω

ω ω
ω ω

ϵ = ϵ +
−

−α α
α α

α
∞( ) 1,

LO,
2

TO,
2

TO,
2 2

(13)

with ϵ =∞ 2.95, , ω =TO, 760 cm−1, and ω =LO, 830 cm−1; and
ϵ =∞ ⊥, 4.87, ω =⊥TO, 1360 cm−1, and ω =⊥LO, 1614 cm−1.3,4

Losses are ignored in this discussion altogether. In the range
between ω αTO, and ω αLO, , the corresponding component of
the permittivity is negative, while the other component is
positive. This hyperbolicity leads to a dispersion for hBN thin
films that have multiple branches at a given frequency, as can
be seen in Figure 2c. This trend persists even when the
thickness of the bulk is taken down to a single layer, albeit
pushed to high wave vectors. This is in contrast with the true
monolayer, where there is only one LO phonon mode. Given
that the phonon polariton of 2D is the LO phonon, there can
be only one branch of the dispersion. The bulk dielectric

Figure 2. Properties of phonon polaritons in a monolayer of hBN compared to bulk. (a) Real and imaginary parts of the conductivity of 2D hBN
for different values of the loss rate. (b) Propagation quality factor, which measures the number of wavelengths of propagation of the 2D phonon
polariton. (c) Dispersion relation of phonon polaritons in the monolayer (black) and thin films whose thicknesses are taken to be 1, 2, 4, and 8
interlayer spacings in hBN. For the thin film, the fundamental mode (dashed line) and the first higher-order mode (dash−dotted line) are plotted.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.9b00518
Nano Lett. 2019, 19, 2653−2660

2657

http://dx.doi.org/10.1021/acs.nanolett.9b00518


function of eq 13 fails to capture this removal of higher-order
modes (i.e., hyperbolicity). For a bilayer, however, there is a
higher-order LO mode, associated with out-of-phase oscillation
between the two layers. Heuristically, as can be anticipated
from the blue higher-order mode in Figure 2c, this mode
would be challenging to observe given its extremely high
confinement and small spectral separation from the TO mode
(a few per centimeter, comparable to the damping line width).
While we have focused on anomalies between the atomically

thin limit of bulk and a true monolayer, a comparison of the
monolayer with the fundamental phonon polariton mode of
the one-atom-thick thin film suggests that we have a reasonable
qualitative understanding of the monolayer dispersion from the
one-atom-thick thin film. This qualitative similarity is to be
somewhat expected because a 2D layer can be considered as a
very thin film of bulk material, provided that the microscopic
properties of the bulk and monolayer do not deviate
substantially. The differences between the = =t t 0.33 nm2D
bulk thin-film and monolayer that nevertheless do exist, reflect
such microscopic deviations. Occasionally, e.g., for compati-
bility with standard numerical tools, it is useful to introduce a
fictitious, effective bulk material whose fundamental thin-film
mode exactly matches the monolayer’s. The dielectric function
of such a “bulkified” monolayer is thickness-dependent and
anisotropic: for a film in the xy plane, it is ϵQ2D = (x ̂x̂ + ŷy ̂)-
ϵQ2D,∥ + zẑQ̂2D,⊥ with ϵ =⊥ 1Q2D, and:

ω σ
ε ω

ω

ω ω ωτ
ϵ = + = +

ϵ

− − −t t

v
( ) 1

i
1

1 4

iQ2D,
0

env TO g

TO
2 2 1

(14)

3. Strong Light−Matter Interactions Enabled by 2D
Optical Phonons. The extreme confinement of electro-
magnetic fields offered by the 2D phonon polariton presents an
opportunity for quantum optical applications in which one
seeks to couple an external emitter such as an atom, molecule,
defect, or artificial atomic system to electromagnetic fields.
Applications of these couplings are ultra-bright single- or two-
photon sources, realizing the strong-coupling regime and the
associated phenomenology of Rabi oscillations and polaritons
or resolving spectroscopically “forbidden” transi-
tions18,21,22,39,40 to achieve near-field spectroscopies with
momentum and angular momentum resolution not accessible
in far-field spectroscopies.
In Figure 3, we consider the coupling of a dipole emitter to

localized phonon polaritons of nanostructured monolayer hBN
(we also compare extended monolayer and thin-film hBN in
the Supporting Information). For simplicity, we consider hBN
nanostructured as a disk, which leads to the formation of sharp
resonances quantized along the azimuthal and radial directions.
The disk is taken to have a radius varying from 10 to 40 nm
and a loss rate τ =− 0.5 meV1 , which is of the order of the loss
rate in bulk hBN.3,4 We also show (dashed line) the results for
a disk of infinite radius, i.e., a flat sheet of monolayer hBN. We
parametrize the coupling between the dipole and phonon
polaritons through the rate of spontaneous emission Γ of
phonon polaritons by the dipole, normalized to the rate of
spontaneous emission in free space Γ0. It is related to the
dyadic Green function G of the Maxwell equations for the
nanostructure via the expression:41

π
ω

ωΓ
Γ

= ̂· · ̂c
n G r r n

6
Im ( , , )

0 (15)

where n̂ is the orientation of the dipole, r its position, and ω is
its frequency.
The dyadic Green function is computed using a quasistatic

boundary element method (as in ref 42). In Figure 3, we plot
the enhancement of the spontaneous emission rate Γ Γ/ 0 for an
external emitter polarized perpendicularly to the plane of the
disk and placed 5 nm away from the center of the disk. Due to
the orientation and position of the dipole, which maintains the
axial symmetry of the disk, the emitter only couples to axially
symmetric ( = 0) modes with zero orbital angular momen-
tum. We find that the rate of spontaneous emission of 2D
optical phonons is approximately 8 orders of magnitude larger
than the rate of spontaneous emission of photons in the far
field at frequencies corresponding to resonant modes of the
hBN disk. Such enhancement is much larger than the
enhancement presented by an unstructured, infinite sheet at
the same frequency due to the concentration of electro-
magnetic local density of states around the resonances.
Nevertheless, the average spontaneous emission enhancement,
defined by the integral of the enhancement over frequencies, is
comparable to that of the flat sheet, in keeping with sum rules
for spontaneous emission enhancement.43 We note that in this
approach, the coupling of the dipole to phonon polaritons is

Figure 3. Extreme spontaneous emission enhancement due to 2D
phonon polaritons in nanostructured geometries. Plotted is the
enhancement of the spontaneous emission rate for an emitter

=z 5 nm above the disk’s center and oriented normal to its plane
( ̂ = ̂n z). For a disk with a diameter of 20 nm, and assuming a
relaxation rate τ =− 0.5 meV1 , the rate of emission enhancement can
be enhanced 100 million-fold. For an emitter with a free-space decay
rate of 106 s−1 at 7 μm, the emitter would experience a decay rate
comparable to the frequency of the disk mode, leading to ultrastrong
coupling of an external emitter with 2D phonon polaritons. For
reference, we compare the spontaneous emission enhancement in a
nanodisk geometry to that of a disk of infinite radius (i.e., a flat sheet),
showing clear enhancement relative to the flat sheet due to
concentration of local density of states around phonon polariton
resonances. Note that τ =− 0.5 meV1 is of the order of the loss rate in
bulk hBN. Also shown in the figure are maps of the electric potential
on the surface of the disk for modes corresponding to selected
phonon polariton resonances in the plot.
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manifested through the phonon contribution to the con-
ductivity of the disk. This should be equivalent to an approach
that considers the coupling of a bound electron in an emitter to
LO phonons in the disk through a 2D Fröhlich coupling, i.e., a
coupling of the atomic electron to the electric potential
resulting from the polarization associated with an LO phonon
mode.34

In Figure 3, we show that for an infrared emitter at a
transition wavelength of 7 μm with a free-space radiative
lifetime of 1 μs, 5 nm away from an hBN disk, the coupling
rate to 2D optical phonons (about 65 meV) would be on the
same scale as the optical phonon frequency itself (about
180 meV). This rate thus implies coupling between an emitter
and the field in the regime of ultrastrong coupling. Moreover,
the coupling rate for the 20 nm disk (purple), for an emitter
with a far field decay rate of ≳ × −3 10 s6 1 would have a
sufficient coupling strength to the distinct, radially quantized
resonances in purple for its line width to span multiple
resonances and thus be in a multimode ultrastrong coupling
regime. Thus, the extreme confinement of electromagnetic
energy associated with LO phonons in two dimensions enables
the possibility of realizing ultrastrong coupling of an atom or
molecule with optical phonons in a polar material, allowing the
potential realization of new coupled states of quantum emitters
and phonons such as atom−phonon polariton bound states.
The ability to probe low-loss and highly confined electro-

magnetic modes associated with optical phonons in 2D polar
materials provides a new platform for nanophotonics in the
mid- and far-infrared spectral range. The identification of the
phonon polariton of bulk and thin-film geometries with the 2D
LO phonon made in this manuscript would extend the rich
phenomenology of optical phonons to nanophotonic applica-
tions. This work also points the way to useful new approaches
to study LO phonons, arising from the fact that 2D LO
phonons, unlike their 3D counterparts, have their electro-
magnetic energy extend a considerable distance from the
material boundary. Due to the strong electromagnetic
interactions between emitters and 2D phonon polaritons
shown here, it is now possible to design interesting new hybrid
states of matter and phonons based on quantum electro-
dynamical strong coupling. The highly confined phonon
polaritons in polar monolayers may also provide interesting
new opportunities in near-field radiative heat transfer, in which
it has been long known that thin-film surface phonon
polaritons play a critical role. Additional opportunities come
from considering the near- and far-field optical properties of
periodically structured layers involving hBN and other
materials such as graphene.44 An important avenue of future
study would be the ab initio calculation of lifetimes of 2D LO
phonons associated with three-phonon processes10,32 and
electron−phonon interactions.34,45,46 In further work, it
would be of great interest to study the effects of isotopic
purification and cryogenic temperatures on reducing the decay
rate of these 2D LO phonons.15
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M.; Soljacǐc,́ M.; Joannopoulos, J. D.; Kaminer, I. Nat. Photonics 2018,
12, 423.
(23) Flick, J.; Rivera, N.; Narang, P. Nanophotonics 2018, 7, 1479−
1501.
(24) Dubrovkin, A. M.; Qiang, B.; Krishnamoorthy, H. N.;
Zheludev, N. I.; Wang, Q. J. Nat. Commun. 2018, 9, 1762.
(25) Thygesen, K. S. 2D Mater. 2017, 4, 022004.
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Buljan, H.; Engheta, N.; Soljacǐc,́ M. ACS Photonics 2018, 5, 384−389.
(45) Sundararaman, R.; Narang, P.; Jermyn, A. S.; Goddard, W. A.,
III; Atwater, H. A. Nat. Commun. 2014, 5, 5788.
(46) Ciccarino, C. J.; Christensen, T.; Sundararaman, R.; Narang, P.
Nano Lett. 2018, 18, 5709.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.9b00518
Nano Lett. 2019, 19, 2653−2660

2660

https://arxiv.org/abs/1809.00058
https://arxiv.org/abs/1809.00058
http://dx.doi.org/10.1021/acs.nanolett.9b00518

