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Problem 1

In Lecture 7 we proved Gauss’s Law for a single point charge using a spherical
Gaussian surface. We now need to show that Gauss’s Law is true for any general
closed surface S. Let us first review the idea of a solid angle. Let § be an area
on a sphere of radius r centered on the origin. All the rays starting at the origin
and passing through S form a cone, which is the solid angle 2. We say that Q
is subtended by S. The units of solid angles are steradians, just as the units of
planar angles are radians. The figure below shows the solid angle d2 subtended -

by dS.




Just as the arc length ds on a circle is related to the angle df in radians that
it subtends by ds = r df where r is the radius of the circle, dS is related to the
solid angle dQ) (in steradians) that it subtends by dS = r? dQ2. For example, if r
= a = constant, then the total surface area of the sphere is § = 4ma? so that a
complete solid angle is 47, just as a complete angle for a circle is 2.

Now let us apply this to the problem at hand. Consider the figure below
for a single point charge centered by Gaussian spherical surface S and a general
Gaussian surface S’. All of the appropriate items are defined in the figure below

Fig. 1.16  Showing that the flux through
any closed surface around ¢ is the same as
the flux through the sphere.

By carefully applying what we have discussed so far to this figure we realize
that
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dS’ = R*dQ) (4)
Now let us determine the surface integral or flux of E’ through S’
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and since the solid angle €2 subtended by dS’ is the same as the solid angle
subtended by dS
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or where in the last surface integral we realize we are now integrating over S
so that 7/ now becomes 7 to obtain the desired result

%E"-dg’:?{ﬁ-dg (7)
S’ S



Problem 2

Two infinite parallel planes carry equal but opposite uniform charge densities
o and —o as shown in the figure below.

Find the electric field in each of the three regions: (i) to the left of both; (ii)
between them; and (iii) to the right of both.



Problem 3

Find the electric field E inside a sphere of radius R that carries a charge
density proportional to the distance from the origin for some constant r. As a

hint you must integrate to get the enclosed charge since the charge density is
not uniform.

p==kr

Problem 4

A thin spherical shell carries a volume charge density p given by the following
expression

in the figure below

where a < r < b is the figure below. Find the electric field E in each of the

following three regions: (i) r < a, (ii) a < r < b, (iii) » < b. Plot the magnitude
of the electric field as a function of » for the case of b = 2a.



Problem 5

Consider a long solid cylinder (which could be considered as infinite) which
has a radius a. Find the electric field E both inside and outside the cylinder.
Let the solid have a volume charge density py which is constant. Note that py

is the volume charge density and p is one of our usual coordinates in cylindrical
polar coordinates and these two things are not the same!

Problem 6

A very long or infinite cylinder carries a volume charge density py that is
proportional to the distance p from its axis for some constant k .

pv =kp

Note that py is the volume charge density and p is one of our usual coordinates
in cylindrical polar coordinates and these two things are not the same! Find
the electric field E both inside the cylinder. Note that when you perform your
integration in cylindrical polar coordinates, please place a prime on the variables
of integration to avoid any confusion. You can let the radius of the cylinder be
a, but it really not needed in this problem.

Problem 7

A long coaxial cable is shown in the figure below and it carries a uniform
volume charge density py on the inner cylinder of radius a and a uniform surface
charge density o on the outer cylindrical shell of radius b. This surface charge is
negative and is of just the right magnitude that the cable as a whole is electrically
neutral. Find the electric field E in each of the following three regions: (i) inside
the inner cylinder (p < a), (ii) between the cylinders (a < p < b), and (iii)

outside the cable (p > b). Plot the magnitude of the electric field as a function
of p.




Problem 8

An infinite plane slab of thickness 2d carries a uniform volume charge density
p. Find the electric field E as a function of y , where y = 0 at the center. Plot
the magnitude of the electric field E versus y calling E positive when it points
in the +y direction and E negative when it points in the —y direction.
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Problem 9

Two spheres, each of radius, R, and carrying uniform charge densities p and -
—p respectively, are placed so that they partially overlap as seen in the figure
below.




Call the vector from the positive center to the negative center d. Show that

the electric field E in the region of overlap is constant, and find its value. As a
hint use the results of the relevant example discussed in Lecture 7.



