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Problem 1

Given a spherical volume charge distril&ltion with uniform charge density p
and radius a, find the electric field E at p= (0,0,2). A
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Clearly we will work in spherical polar coordinates here where the primed
variables refer to the source of charge and we will introduce the variable s to
simplify our calculation

E:/ dq' v :/ dq' 7 (1)
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Let us make things easy for ourselves and use symmetry here
E= / dE (2)

When we look at P clearly dE or dE can be broken down into its two
components

dE = dE, + dE, (3)

All of the dE, components add up to zero by symmetry once you integrate
over the entire sphere so only the dE, component remains where
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and

dE, = dE cos « (4)

Thus we need to find

E, = /dEz - /cosadE (5)



or
dq’ cos o
Ez:/dE o= (6)
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or
dV’' cos
Ez:/dEcosazp/—— (7)
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In spherical polar coordinates
dV’' = ()% dr’ sin0’' d0’ d¢’ (8)

and our desired electric field component E, becomes

(r")2dr’ sin@' d6’ d¢’ cos o
E.=p| 9)
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where we have set p = p’ . Note that this p is a volume charge density and
not a distance as used in cylindrical polar coordinates!

Now this integral depends on «, 6’,¢’, s, and ' . We shall write it in terms
of 6/, ¢', s, and r’ only. Note also that z is fixed in this problem. The Law of
Cosines can help us out here using the figure below

s2 =224 (r")?—-22z7" cos & (10)

or

2z71 cos@ = 22+ (') — §* (11)

or
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Next let us express @ = (s, r’) again using the Law of Cosines
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(r)?2 =s*+2>—2zscosa (13)
or
2 2 ()2
cosim = = i G (14)
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Now by placing Eq. (1-14) into Eq. (1-9) we have eliminated o to yield

E. — P (7“')2 dr’ sin 8’ d0’ d¢’ [zz 4 82 — (,r,/)z]
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Next it is easier to do the integral over the azimuthal angle ¢’ first

P (r')2dr’ sin@’ dO [2% + s* — (r)?]
// s2
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Now let us tackle the term sin 8’ df’. When we integrate over the polar angle
0’ we realize from our original figure that r’ is fixed but s is not, as it is a
variable. Note also that we treat z as a constant when we do the integral over
0’ since we are evaluating the electric field E (z) at a fixed value of z . Let us
apply these three facts to Eq. (1-10)

(2% + () — 57)
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Show that Eq. (1-16) becomes
(r")? dr’
T e z2 // s2 ! z af = (r/)z] ds (20)

or

E, =" // ' {1+Z—2;91)—2] ds dr’ (21)
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Now integrate the inner integral over s and use Eq. (1-12) to find the ap-
propriate limits of integration as the polar angle goes from 6 = 0 to 8’ =



You should get a result of 4(r’)? for this integral. Finally do the integral over
r’ from r’ = 0 to v’ = a. You should obtain the final answer

E’(z):/ 1 k:E*(r)=/' L (22)
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where ¢ is the total charge of the sphere. Note that your answer is identical
to the case where the total charge g is concentrated at the center of the sphere
which is neat! Considering how difficult this problem is to do you will appreciate
later in Lecture 7 how Gauss’s Law can be used to simplify your calculation.

Problem 2

In Lecture 6 we calculated the electric field E at a point P above the end
of a half-infinite line of linear charge density A . We discovered the remarkable
observation that E is always pointed up at an angle of 45° independent of the
value of z. Repeat this calculation and then look at the same problem for the
case of the other possible half-infinite line of linear charge density A . Use these
two separate results and the principle of superposition to get the expected result
for the infinite line of linear charge density A as discussed in Lecture 5.

Problem 3

In Lecture 6 we calculated the electric field E of a thin plastic rod bent into a
semicircle of radius @ with a linear charge density A = -2-. We found E at the
center of the circle. Repeat this calculation and then look at the same problem
for the case of another thin plastic rod bent into the other semicircle of radius
a with a linear charge density A = #. Use these two separate results and the
principle of superposition to get the expected result for the circular thin rod of
linear charge density A as discussed in Lecture 5.



Problem 4

Show that the electric field E a distance z above the center of a square loop
of side a carrying a uniform linear charge density A is
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Hint: Use the results of Problem 6 in Problem Set V and the following
concepts: the principle of superposition, vector analysis, and trigonometry. This
problem is simply one where geometry is what you have to pay attention to!

Problem 5

Show that the curl of the gradient of a scalar field vanishes.
Problem 6

Show that divergence of the curl of a vector field vanishes.
Problem 7

See if you can express the divergence of the gradient in a fairly simple form.



