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Problem 0
Please note the typographical error in Problem 14 of Problem Set I. The

correct expression is listed below. The solution provided is correct despite the
typographical error where the problem is initially stated.
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Problem 1

Find the expression for the gradient of a scalar function f(x,y,z) in cylindri-

cal polar coordinates. You should start with the gradient operator in Cartesian
coordinates
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and operate on the scalar function f(z,y,z) to obtain the following partial

derivatives
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You will need to recall the following useful information
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and you will need to remember from elementary calculus how to do implicit
differentiation of partial derivatives and the chain rule, of course. For example,
consider the function
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Here is your final desired result



Problem 2

Find the expression for the gradient of a scalar function f(z,y, z) in spherical
polar coordinates. Here is your desired result
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You should start with the gradient operator in Cartesian coordinates and
proceed in the same fashion as in Problem 1. Of course, you will have to do
more work! Here are some useful helpful hints
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Problem 3

The ideas of the directional derivative and the gradient of a function can
be easily understood using simple pictures. First, please start using Wolfram
Alpha which has a free version that can be accessed using Google. Start playing
around with the plot command to visualize the surface of a function of two
variables z = f(x,y) for the following functions

f(x,y) =sinzcosy

flz,y) = 22y%, 2z = —1..1,y = 0..3

f(x,y) = 10(2zy — 3z? — 4y® — 18z + 28y + 12)

If you choose any point (x, y) for any one of these smooth, well-behaved
functions you get a point z which is unique. The question is what does it mean
to ask what the slope is at that particular point z? Let us consider the surface
S in the figure below




In this figure S is some arbitrary surface defined by the function z = f(z,y).
If you pick a point P on the surface S and construct a plane through the point
P on S and parallel to the xz-plane, that plane intersects the surface S in a
curve C. By looking at the figure below it is clear that we can define a vector
# which is tangent to the curve C at our point P. This is just the slope of the
curve C at the point P which is our normal definition of the derivative of a
function of a single variable.

£ v

The problem is that this process is not unique as there are many other possible
planes you could construct and thus find a different derivative. In fact there are
an infinite number of them! For example, see the figure below for another choice
of the plane through the point P to obtain a different curve C’ and thus a
different vector ¥

The derivative at a point P on a surface S depends our which direction you
want to pick. Thus this is why it is called a directional derivative. Now pictures
are nice but we wish to know how to actually calculate a directional derivative
for a particular surface § defined by the function z = F (& 9)-



So now let us formalize this a bit. Note that this discussion is slightly different
from what we did in Lecture 4. If we are given a function f(z,y,z) we can
compute the total change in df by using partial derivatives
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As discussed in Lecture 4, this is simply the dot product of two vectors

df = Vf-di

where V is the gradient operator
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and d7 is the displacement vector. Since di = 7 dr we can write

df
e NP P
dr J-e

and this is our formal definition of the directional derivative of f(x,y, z). For
example, if we choose the direction
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which makes perfect sense. Note that our directional derivative can be defined
for any direction not just the direction of a unit vector. That is what makes it
so powerful a concept! Now let us tackle the physical meaning of the gradient
term in the equation
df
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The directional derivative at any given point on the surface defined by f(z,y, z)
has many values (actually an infinite number) depending on the angle 8. When
you evaluate the dot product on the right hand side of the equation you obtain

4 _

=Vf-#=| Vf| cos8
dr



It is easy to see that the directional derivative that has the greatest or max-
imum increase occurs when 6 is 0 or when Vf and 7 both point in the same
direction. Thus the gradient of a function V f(z,y,z) is a vector that points
in the direction of the maximum increase of that function. It is a very special
directional derivative. The norm of the gradient of a function V f(z,y, 2) is the
rate of increase or slope along this maximal direction.

There is more useful information that we can obtain from the gradient of
a function V f(z,y,z). If Vf(z,y,2z) were to vanish at a point (x,y, z), then
df = 0 for small displacements about the point (z,y,2z). This is therefore a
stationary point of the function f(zx, vy, z) and it could be a summit (maximum),
a valley (a minimum), or a pass (saddle point). This is similar to the case of
a function of a single variable, where a vanishing derivative implies either a
maximum, minimum, or an inflection.

Now let us tackle an actual application! While the definition of the gradient
can be applied to a function of three variables, it is much easier to visualize
what is going on for functions of two variables. Recall our pictures previously
discussed in this problem.

The height of a certain hill (in feet) is given by the function

h(z,y) = 10(2zy — 3x® — 4y® — 18z + 28y + 12)

where y is the distance (in miles) north and x is the distance (in miles) east
of the Washington Monument.

(a) Where is the top of the hill located?
(b) How high is the hill?

(c) How steep is the slope (in feet per mile) at a point one mile north and
one mile east of the Washington Monument?

(d) In what direction is the slope steepest, at that point?

Problem 4
Find the gradient of the following scalar field

v(z,y,2) = e * sin2x coshy

Problem 5
Find the gradient of the following scalar field

u(p,0,z) = p®z cos2¢



Problem 6
Find the gradient of the following scalar field

w(r,8,¢) = 107 sin? 6 cos ¢

Problem 7

Vector functions or vector fields are going to be very important in this course.

In fact the electric field is an example of a vector function. A vector field I can
be composed into its components

-

F=F,(x,y,2)i+ Fy(z,y,2)] + F,(z,y, z) k

so that one can define the divergence of a vector field F as
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Before we go through some problems let us spend a minute to discuss what
the divergence of a vector field actually means physically. Suppose we have the
vector field F
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as illustrated below where we only show a few points for the vector field

N
\
=




For this vector field F
V.- F=2

which is positive. This positive result means that if we select a point in
the vector field there is a net “outflow” in the neighborhood of the field. The
divergence tells us how much the vector field spreads out from a given point.
The vector field acts as a “source” or “faucet”.

Please sketch the following vector field G

G=—-zi—yj)

For this vector field G .
V-G=-2

which is negative. This negative result means that if we select a point in
the vector field there is a net ”inflow” in the neighborhood of the field. The
divergence tells us how much the vector field spreads into a given point. The
vector field acts as a “sink” or “drain”.

Suppose we have the vector field H
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where some of the vectors of the field are illustrated below
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Find the divergence of H. Explain your answer.

Finally consider the vector field J

J=k

as illustrated below where we only show a few points for the vector field

Find the divergence of V - J. Explain your answer.

Problem 8

Find the divergence of the following vector field

P=iz’yz+kzz

Problem 9

Find the divergence of the following vector field which is the position vector

F =iz + jy+ kz

Problem 10

Find the gradient of the norm of the position vector given in Problem 9.



