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Problem 1

Show that the two vectors @ = (3, 4) and ¥ = (4, -3) are orthogonal. Draw
these two vectors in a cartesian coordinate system.

Problem 2

Prove that the line from the apex of an isosceles triangle that bisects its base
is perpendicular to the base.
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Problem 3

Do

Given the two vectors @ = i 4+ 2j and W = 27 + j, determine the angle ¢ in

the figure below.

Problem 4

Find the angles between the two vectors @ = i + 2j + 3k and
v=21-37-k.

Problem 5

Show that @ X ¥ is perpendicular to .

Problem 6

Evaluate @ X ¢ if @ = 3i- 7+ 2k and ¢ = 23 + 2j- k .
Problem 7

Prove the following property of a vector product

UXT=—-TXU

Problem 8

Prove the following property of a vector product

(cl) X T=1U X (c¥) = —ct X T

Problem 9

Prove the following property of a vector product

— — —

UX (V4 W) =UudXT+UX W



Problem 10

Prove the the triple scalar product shown below is true

U (TX W) = (T XT)-T

Problem 11

Prove that the triple vector product of the following three vectors satisfies
the famous rule below

i X (7 x W) = (@-0)7 — (@ -0)d

Problem 12

~

Show that the three vectors w =% + j-k , ¥ = 27 + I;:,and'li)’=2£—|—4j-lz;
are coplanar.

Problem 13

Prove that in plane polar coordinates

Il

i=cos¢pp—singo

j=singp+ cosp P

Problem 14

Show that the unit vectors for spherical polar coordinates are given by

B = sinecosq&'f'—{—cosecosd)é—sin¢$

j=sin@sin@# + cosOsin ¢ O + cos ¢ ¢

k=cos@+ —sin68



MathChapter D / SPHERICAL COORDINATES

This coordinate system is called a spherical coordinate system because the graph of
the equation r = ¢ = constant is a sphere of radius ¢ centered at the origin.

Occassionally we need to know r, #, and ¢ in terms of x, y, and z. These relations
are given by (Problem D-1)

(e 420

(x* + y* + )

cosf =

tang = e
b3

Any point on the surface of a sphere of unit radius can be specified by the values
of 6 and ¢. The angle 6 represents the declination from the north pole, and hence
0 <6 < 7. The angle ¢ represents the angle about the equator, and so 0 < ¢ <2m.
Although there is a natural zero value for 6 (along the north pole), there is none for ¢.
Conventionally, the angle ¢ is measured from the x-axis as illustrated in Figure D.1.
Note that r, being the distance from the origin, is intrinsically a positive quantity. In
mathematical terms, 0 < r < o0.

In Chapter 6, we will encounter integrals involving spherical coordinates. The
differential volume element in Cartesian coordinates is dxdydz, but it is not quite so

FIGURE D.2 A
A geometrical construction of the differential volume element in spherical coordinates.
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