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Topological metamaterials have robust properties engineered from their macroscopic arrange-
ment, rather than their microscopic constituency. They are promising candidates for creating next-
generation technologies due to their protected dissipationless boundary modes. They can be designed
by starting from Dirac metamaterials with either symmetry-enforced or accidental degeneracy. The
latter case provides greater flexibility in the design of topological switches, waveguides, and cloak-
ing devices, because a large number of tuning parameters can be used to break the degeneracy and
induce a topological phase. However, the design of a topological logic element—a switch that can be
controlled by the output of a separate switch—remains elusive. Here we numerically demonstrate a
topological logic gate for ultrasound by exploiting the large phase space of accidental degeneracies
in a honeycomb lattice. We find that a degeneracy can be broken by six physical parameters, and
we show how to tune these parameters to create a phononic switch between a topological waveguide
and a trivial insulator that can be triggered by ultrasonic heating. Our design scheme is directly
applicable to photonic crystals and may guide the design of future electronic topological transistors.

1 Topological insulators were first conceived as quan-
tum electronic materials with insulating bulk and sur-
face Dirac states allowing for dissipationless charge and
spin transport along their boundaries. Their central
principle—the inversion of energy bands—is also present
in many classical lattice systems, inspiring the design of
photonic [1-3], phononic [4], and mechanical metamate-
rials [5-7] with topologically protected transport. These
classical systems provide a platform to test ideas in topo-
logical band theory, because they are more tangibly un-
derstood than their quantum counterparts, and their gov-
erning wave equations can be solved exactly. Their ro-
bust properties have been used in many promising appli-
cations including zero- and negative-refractive-index ma-
terials [8-12], cloaking [13, 14], and dissipationless waveg-
uides for sound and light that outperform non-topological
alternatives [15-20]. Here we demonstrate three tiers
of topological phononic metamaterials, building from a
static-geometry waveguide, to an externally switchable
device, and ultimately to logic circuits.

2 A general design approach to achieve the band inver-
sion that defines a topological metamaterial is to start
from a bulk Dirac state, then intentionally break the
Dirac-point degeneracy to open a negative gap. This
approach can be broadly divided into two methods.
The first method starts from a symmetry-enforced Dirac
state, such as the K-point Dirac cone in graphene-like
honeycomb or triangular metamaterials, then opens a
gap by breaking a symmetry of the system. In systems
with broken time-reversal (7)) symmetry [21-25], the re-
sultant topological phase is analogous to the quantum
Hall effect, while those with broken translational sym-
metry [18, 20, 26-29] can realize an analog of the quan-
tum spin Hall effect. However, there is limited flexibility
in the design of these topological phases, as they can be

tuned only by a symmetry-breaking operation. On the
other hand, the second method searches for the acciden-
tal degeneracy of three [8, 14, 30] or four [9, 31, 32] bands,
producing a Dirac-like cone or double Dirac cones, re-
spectively. This method gives access to a far larger set of
topological phases because the accidental degeneracy can
be broken by many more accessible tuning parameters
while retaining translational and 7 symmetry. Despite
the utility and flexibility of this method, the complete
space of all topological phases has yet to be mapped for
any accidental degeneracy.

3 We start from a particular accidental bulk Dirac-
point degeneracy that gives rise to a topological state
analogous to a quantum spin Hall system. In a quantum
spin Hall system, the protection of the Dirac point is a
consequence of the spin-1/2 nature of electrons. Specifi-
cally, because T2 = —1 for spin-1/2 states, Kramers the-
orem requires a degeneracy at all T-invariant points of
the Brillouin zone. However, spin-0 phononic and spin-1
photonic systems both have 72 = 41 so Kramers the-
orem does not apply. Instead, designs typically rely on
mode hybridization to form a pseudospin-1/2 subsystem,
for example with the transverse electric and magnetic po-
larizations of light [2]. But transverse shear modes are
not available in airborne acoustics, so finding an anal-
ogy of Kramers theorem is challenging. In 2012, Sakoda
[31] addressed this issue and constructed a pseudospin-1/2
system using the discrete symmetries of a triangular lat-
tice, which was adapted to longitudinal acoustic modes
shortly thereafter [9, 32, 33] and subsequently demon-
strated experimentally [16]. In this scheme, a lattice with
Csy symmetry generates an accidental degeneracy at the
I" point between doubly degenerate E; and E5 modes
that transform as (z,y) and (zy,z? — y?). These modes
are denoted (p,,py) and (dgy, dy2_,2), due to their sim-
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FIG. 1. An externally controlled topological switch
for sound. (a) The phononic band structure for a honey-
comb lattice of steel pillars in water passes through an acci-
dental degeneracy as the radius of the pillars is varied. This
degeneracy is between pi bands (red) and d+ bands (blue),
and occurs at the critical filling ratio of #* = R/a = 0.371
(middle panel). As the filling ratio is tuned away from this
value a positive (right) or negative (left) band gap is opened,
leading to a topological phase transition. (b) The topological
phase transition can be clearly seen by tracking the I'-point
eigenvalues as 7 is tuned. (c¢) A topological waveguide is made
from placing two lattices with 77, < 7* and rr > 7 next to
each other (left panel). When the pillars are compressed ver-
tically, their radius expands due to the positive Poisson’s ratio
of steel, such that both sides of the waveguide become trivial
insulators (right panel). This device constitutes a topological
switch for sound that turns ‘off” when compressed.

ilarity with electronic states. These doubly degenerate
modes allow the formation of a pseudo-spin-1/2 basis,
with corresponding eigenstates p+ = (p, & ip,)//2 and
dy = (dy2_,2 £idy,) /2. The accidental degeneracy be-
tween the p+ and d+ subsystems can be lifted without
breaking Cg, symmetry, allowing the system to realize a
topological phase with helical edge modes protected by a
pseudo-7 symmetry, analogous to the quantum spin Hall
state.

4 Here we numerically investigate the topological phase
space for a I'-point accidental degeneracy in a phononic
honeycomb lattice using commercial finite-element mod-
elling software COMSOL MULTIPHYSICS. We find a mani-
fold of system configurations that host a bulk accidental
double-Dirac cone, and we demonstrate that a topologi-

cal phase can be induced by gapping the Dirac node with
six independent physical parameters, which collapse into
a three-dimensional (3D) phase space. By tuning within
this phase diagram, we design a topological phononic
switch—a dissipationless waveguide for ultrasound that
is turned ‘on’ when heated. Finally, we show schemat-
ically how to link several switches together to form a
topological NAND gate—the building block of a topolog-
ical logic circuit.

Results

Externally controlled topological switches

5 In phononic crystals, topologically protected bound-
ary modes exist at the interface between a lattice with
normally ordered bands and one with inverted bands.
Such boundary modes were previously realized between
two hexagonal lattices of steel pillars in a fluid medium
with different filling ratios, 7 = R/a [16, 32], where R and
a are the radius and spacing of the pillars, respectively
(see inset to Fig. 1(b)). When the filling ratio is large,
the band structure around the I' point contains doubly
degenerate p+ modes separated from d4+ modes by a pos-
itive energy gap, A > 0, as shown in Fig. 1(a). At the
critical filling ratio of 7* = 0.371 the four modes become
accidentally degenerate and the bulk metamaterial hosts
double Dirac cones. Below critical filling, the p4 have
higher energy than the di modes: the band structure
contains a negative energy gap, A < 0, giving rise to
topologically protected edge modes. These edge modes
are confined to the interface between a positive- and
negative-gapped material, allowing the design of topo-
logical waveguides that are pseudospin polarized and im-
mune to defects including cavities, bends and lattice dis-
order [16].

6 Our first advance is the demonstration of an exter-
nally switchable topological waveguide for sound, which
hosts dissipationless transport when ‘on’, but is a trivial
insulator when ‘off’. In general, a topological switch re-
quires a tuning mechanism capable of changing the sign
of the band gap on the topological side, while leaving that
on the trivial side unchanged. For example, an external
vertical compression will normally increase the radius of
a pillar, as most materials have a positive Poisson’s ra-
tio (see inset to Fig. 1(b)). This expansion can alter the
topological phase of a honeycomb metamaterial and may
be used to construct a topological switch. Specifically,
a topological waveguide is switched ‘off’ when the fill-
ing ratio of its topological side increases beyond 7, as
shown in Fig. 1(c¢). Advancing beyond static-geometry
topological waveguides [15-20], this type of switch could
be used to control passive acoustic isolation systems, but
the output of one switch cannot sustain the macroscopic
stretch required to activate a second, similar switch.

Phononically controlled topological switches

7 Our second, more significant advance is to design a
phononically controlled acoustic switch—i.e. a topologi-
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Topological phase space in a honeycomb phononic lattice. An accidental degeneracy between the p+ and

d+ modes in the steel/water lattice demarcated by a green star can be broken by tuning the ratio of (a) speed of sound while
holding radius and density fixed; or (b) density while holding speed of sound and radius fixed. (c) Each accidental degeneracy
is a point in (7, p, ¥) space, colored according to its crossing frequency. Together, this set of points separates phase space into
a topological and a trivial region. A topological waveguide exists at the interface between two metamaterials from different
sides of this surface (see solid line path labelled ON), provided their bulk spectral gaps overlap. Transmission through such a
waveguide can be switched ‘off’ by tuning the system along the dashed lines to two sets of parameters that occur on the same

side of the surface (see solid line path labelled OFF).

cal logic element. Like electronic field-effect transistors,
these switches may be connected together to form cir-
cuits. Here we rely explicitly on the flexibility granted
by the large phase space of accidental degeneracies in a
honeycomb metamaterial. In general, an accidental band
degeneracy can be lifted by tuning any lattice parame-
ter, as it is not protected by symmetry. The relevant pa-
rameters in a phononic lattice define the acoustic wave
equation,
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where p is the pressure, w is the eigenfrequency, and
pr(r) = p(r)/pm and v,(r) = v(r)/vy, are the relative
density and speed of sound, respectively. In total, there
are six physical parameters that can tune the resulting
eigenspectrum: R, a, pp, pPm, Vp, and vy, where the sub-
script refers to pillars or medium. First note that uni-
formly scaling p, and py, produces no change, while uni-
formly scaling v, and vy, scales all eigenfrequencies of
Eq. 1, but does not shift eigenfrequencies relative to one
another, and therefore cannot induce a topological phase
change. This scaling is taken into account by adopting di-
mensionless units for frequency, @ = wag/27vy,. In fact,
the frequency-normalized band structure depends only
on three dimensionless ratios: # = R/a, ¥ = v, /vy, and
p = Pp/pPm. In the example system of steel pillars in wa-
ter, we find that varying either ¥ or p lifts the accidental
degeneracy and can open a negative gap (Fig. 2(a-b)).

More generally, varying any combination of lattice pa-
rameters along a path in (9, p, 7) space that connects the
topological phase to the trivial phase must pass through
an accidental degeneracy. Consequently, there exists a
surface in (7, p,7) space that separates the topological
phase from the trivial phase, on which there is accidental
degeneracy between py and d4+ modes and a bulk double
Dirac cone. We numerically calculated the shape of this
surface, shown in Fig. 2(c), by recording the accidental
crossing point in an 7 sweep for a discrete set of (7, )
points, at fixed (v, pm)-

8 A key challenge in designing a topological switch is to
preserve overlapping bulk spectral gaps before and after
switching. For example, in the sweep shown in Fig. 2(a),
increasing v causes both pi and di modes to increase
in frequency, leading to a band inversion because the d
modes increase faster than the p4 modes. Yet, this tun-
ing parameter alone cannot be used to design a topolog-
ical waveguide because at any frequency there are bulk
modes in one of the two sides that mask the edge states,
unlike Fig. 1(b). The same accidental degeneracy can
be broken by varying p, which causes both pL and d+
modes to decrease in frequency (Fig. 2(b)), again preclud-
ing a usefully overlapping gap. However, an overlapping
bulk gap can be constructed by tuning v and p simulta-
neously. For example, a successful waveguide could be
constructed at the interface between two sets of pillars
with different materials, but the same radius. In general,
each accidental degeneracy on the surface in Fig. 2(c)
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FIG. 3. Designing a temperature-controlled topolog-
ical switch. We consider a honeycomb lattice of steel pillars
anchored to a high-thermal-expansion base plate, in an air
medium within a sealed box of fixed size. (a) Heating this
system has two main competing effects: eigenfrequencies are
increased by raising the speed of sound in air (dashed lines),
but decreased as the base plate thermally expands (dotted
lines). The latter effect also tunes 7 and induces a band in-
version. These two effects can be balanced by correctly choos-
ing the thermal expansion coefficient of the base plate (here
1.61 x 1073 Kﬁl), providing a temperature-tunable topolog-
ical phase transition with an overlapping spectral gap (solid
lines). (b) A topological switch combines two lattices of pil-
lars: one side that transitions from trivial to topological as
the switch is heated (R1), and another side that remains triv-
ial throughout the process (R2). (c) Unlike the switch design
in Fig. 1 (c), which is triggered by tuning R at fixed a, this
switch is turned ‘on’ by increasing a at fixed R, and can be
actuated by phonon-delivered heat.

can be used to construct a practical topological waveg-
uide for a parameter sweep through some solid angle in
(0, p,7) space. Such a waveguide combines two points
in parameter space connected by a path that punctures
the surface in Fig. 2(c). Correspondingly, a topological

switch combines four points in phase space, with three
above the surface (trivial) and one below (topological),
e.g. the square points in Fig. 2(c¢). Furthermore, a useful
switch requires the bulk to remain gapped and overlap-
ping on all four (7, p,7) trajectories that connect these
points, except when they pass through the surface.

9 To enable the output of one switch to control the
next, our design for a phononically-controlled topologi-
cal switch uses a temperature increase delivered by ul-
trasonic phonons as the tuning mechanism. Our device
consists of a honeycomb lattice of steel pillars attached to
a base plate made from a second material, in an air-tight
container, as shown in Fig. 3(c). The primary effect of
heating the device is to change the speed of sound in the
medium, which typically increases all eigenfrequencies of
the system (see dashed lines in Fig. 3(a)). Secondly, heat-
ing usually causes thermal expansion of the materials,
which increases both R and a, but not necessarily by the
same amount. If the base plate and pillar materials are
selected such that a increases faster than R, the net result
is to reduce all eigenfrequencies of the system and induce
a band inversion (dotted lines in Fig. 3(a)). Finally, heat-
ing alters the density of the air and the materials, which
has been taken into account, but is insignificant. The
first two effects can be balanced to maintain a bulk gap
throughout the switching process, by keeping the ratio
vm/a that appears in the eigenfrequency of Eq. 1 fixed.
Because the base plate expands linearly with tempera-
ture, we seek a medium where v, also increases linearly.
For an ideal gas at temperature T, vy, increases as /T,
but becomes close to linear near room temperature; as
such, air is a suitable medium. Consequently, to keep
Um/a fixed as the temperature increases from T; to T,
we seek a base material with a coefficient of thermal ex-
pansion given by o = 1/(T; + /T;T%).

10 A specific design for a topological phononic switch
contains two lattices of steel pillars with radii Ry = 3.5
mm, Ry = 4.1 mm, and spacing a = 8.5 mm. The switch
operates between 20°C (off) and 90°C (on), and requires
the base plate to have a thermal expansion coefficient of
1.61 x 1073 K~!, which is within the range achievable
by origami metamaterials [34]. Alternatively, a shape-
memory alloy, such as nitinol, could be used to thermally
actuate the base plate over this temperature range. At
20°C, the switch is ‘off’ because both radii correspond
to trivial insulators (dashed lines in Fig. 3(b)). Heat-
ing it causes the accidental degeneracy at R’y to move
above R; inducing a negative gapped phase on that side
(solid lines in Fig. 3(b)). The advantage of a topological
phononic switch can be seen from the finite-sized calcu-
lations in Fig. 4. Unlike a trivial waveguide, which ex-
periences losses induced by disorder and bends (Fig. 4(a-
b)), the topological switch acts as a robust pseudospin-
dependent waveguide when ‘on’ due to a Dirac cone be-
tween the two sides (Fig. 4(c-d)). As it is cooled, the
pillars contract around the input terminal; both sides
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FIG. 4. Topological logic gates with ultrasound. (a) Transmission through a trivial waveguide, like this channel in an
insulating phononic crystal, is disrupted by disorder and bends. (b) The corresponding band structure close to the I' point
shows a bulk gap with trivial edge states. (c) In contrast, a topological waveguide allows robust transport regardless of channel
geometry: it can be used as the ‘on’ state for a topological switch. This waveguide occurs at the interface between two lattices of
steel rods with different radii in an air medium. (d) The band structure hosts Dirac-like states (blue) localized at the interface
due to a negative bulk gap on one side. (e-f) When the system is cooled, it contracts and both sides become trivial insulators.
In this configuration the topological switch is ‘off” and excitations decay exponentially into the bulk. (g) A topological AND
gate can be constructed by connecting two switches in series. A signal can propagate from input to output only when both the
control signals (A and B) are present. (h) This schematic for a NOT gate uses a base plate with a negative thermal expansion
coefficient to contract and turn ‘off” when heated (left), and expand to turn ‘on’ when cooled (right). Together, the devices in

(g) and (h) can be combined to construct an arbitrary logic gate for ultrasound.

become insulating and block transmission, turning the

switch ‘off” (Fig. 4(e-f)).

Discussion

11 To establish logic capability, it is necessary to
demonstrate only a NAND gate, from which any arbitrary
logic gate can be formed. First, we realize a topologi-
cal AND gate by connecting two phononically controlled
switches in series, as shown in Fig. 4(g). This device re-
quires both control signals (A and B) to be ‘on’, in order
to heat each of the two switches and allow information
to propagate. Second, to design a topological NOT gate,
we utilize a base plate material that has a negative coef-
ficient of thermal expansion; it shrinks when heated. At
room temperature (control is ‘off”) the NOT gate is a topo-
logical waveguide that transmits information. With the
control ‘on’, the device heats and shrinks, transitioning to
a trivial insulator. To maintain an overlapping bulk gap
throughout this transition we require a medium in which
the speed of sound decreases with increasing tempera-
ture, a behaviour commonly observed oils [35]. Specifi-
cally, a device using steel pillars in sunflower oil requires
a coefficient of thermal expansion of —2.0 x 1073 K~}

to keep the ratio vy, /a fixed and to maintain an overlap-
ping bulk gap. Such a thermal expansion coefficient was
recently demonstrated using origami metamaterials [34].

12 The design of topological metamaterials based on
accidental degeneracy is extremely versatile due to the
large number of tuning parameters available. For an ac-
cidental degeneracy in a phononic honeycomb lattice, we
showed that the topological phase can be tuned by six
independent parameters, which collapse onto a 3D phase
space. This space guided the design of a phononically
controlled topological switch that could form the basis
of an acoustic logic gate. Additionally, the topological
phases we have predict will allow the design of zero-
refractive-index metamaterials and acoustic cloaks, due
to the placement of the accidental degeneracy around the
I point [13, 14]. Finally, our conclusions directly apply
to optical systems under a simple mapping of variables
[30] and motivate further exploration of the topological
phases around accidental degeneracies in quantum mate-
rials, which may lead to the development of a field-effect
topological transistor.



Acknowledgements We thank Katia Bertoldi, Barbara
Dorritie, Jason Hoffman, David Lee, Ciaran O’Neill, Pai
Wang, and Jack Zhang for helpful conversations. This
work was supported by the Science and Technology Cen-
ter for Integrated Quantum Materials under the National
Science Foundation grant No. DMR-1231319.

Author Contributions S.S. and J.W. performed cOMSOL
calculations. H.P. and J.H. conceived and supervised the
project. H.P. wrote the manuscript with substantive in-
put from all authors.
Author Information The authors declare that they have
no competing financial interests.

Correspondence and requests for materials should
be addressed to H.P. (hpirie@g.harvard.edu) and
J.E.H. (jhoffman@physics.harvard.edu).

[1] F. D. M. Haldane and S. Raghu, “Possible Realization
of Directional Optical Waveguides in Photonic Crystals
with Broken Time-Reversal Symmetry,” Physical Review
Letters 100, 013905 (2008).

[2] Alexander B. Khanikaev, S. Hossein Mousavi, Wang-
Kong Tse, Mehdi Kargarian, Allan H. MacDonald, and
Gennady Shvets, “Photonic topological insulators,” Na-
ture Materials 12, 233-239 (2013).

[3] Ling Lu, John D. Joannopoulos, and Marin Soljacié,
“Topological photonics,” Nature Photonics 8, 821-829
(2014).

[4] Hao Ge, Min Yang, Chu Ma, Ming-Hui Lu, Yan-Feng
Chen, Nicholas Fang, and Ping Sheng, “Breaking the
barriers: Advances in acoustic functional materials,” Na-
tional Science Review 5, 159-182 (2018).

[5] C. L. Kane and T. C. Lubensky, “Topological boundary
modes in isostatic lattices,” Nature Physics 10, 39-45
(2014).

[6] R. Susstrunk and S. D. Huber, “Observation of phononic
helical edge states in a mechanical topological insulator,”
Science 349, 47-50 (2015).

[7] Sebastian D. Huber, “Topological mechanics,
Physics 12, 621-623 (2016).

[8] Fengming Liu, Xueqin Huang, and C. T. Chan, “Dirac
cones at k—=0 in acoustic crystals and zero refractive
index acoustic materials,” Applied Physics Letters 100,
071911 (2012).

[9] Yan Li, Ying Wu, and Jun Mei, “Double Dirac cones in
phononic crystals,” Applied Physics Letters 105, 014107
(2014).

[10] Marc Dubois, Chengzhi Shi, Xuefeng Zhu, Yuan Wang,
and Xiang Zhang, “Observation of acoustic Dirac-like
cone and double zero refractive index,” Nature Commu-
nications 8, 14871 (2017).

[11] Inigo Liberal and Nader Engheta, “Near-zero refractive
index photonics,” Nature Photonics 11, 149-158 (2017).

[12] Hailong He, Chunyin Qiu, Liping Ye, Xiangxi Cai, Xiying
Fan, Manzhu Ke, Fan Zhang, and Zhengyou Liu, “Topo-
logical negative refraction of surface acoustic waves in a
Weyl phononic crystal,” Nature 560, 61-64 (2018).

[13] Jiaming Hao, Wei Yan, and Min Qiu, “Super-reflection
and cloaking based on zero index metamaterial,” Applied

” Nature

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

22]

23]

24]

(25]

[26]

27]

(28]

Physics Letters 96, 101109 (2010).

Xueqin Huang, Yun Lai, Zhi Hong Hang, Huihuo Zheng,
and C. T. Chan, “Dirac cones induced by accidental de-
generacy in photonic crystals and zero-refractive-index
materials,” Nature Materials 10, 582-586 (2011).

S. Hossein Mousavi, Alexander B. Khanikaev, and Zheng
Wang, “Topologically protected elastic waves in phononic
metamaterials,” Nature Communications 6, 8682 (2015).
Cheng He, Xu Ni, Hao Ge, Xiao-Chen Sun, Yan-Bin
Chen, Ming-Hui Lu, Xiao-Ping Liu, and Yan-Feng
Chen, “Acoustic topological insulator and robust one-
way sound transport,” Nature Physics 12, 1124-1129
(2016).

Qi Wei, Ye Tian, Shu-Yu Zuo, Ying Cheng, and
Xiao-Jun Liu, “Experimental demonstration of topolog-
ically protected efficient sound propagation in an acous-
tic waveguide network,” Physical Review B 95, 094305
(2017).

Bai-Zhan Xia, Ting-Ting Liu, Guo-Liang Huang, Hong-
Qing Dai, Jun-Rui Jiao, Xian-Guo Zang, De-Jie Yu,
Sheng-Jie Zheng, and Jian Liu, “Topological phononic
insulator with robust pseudospin-dependent transport,”
Physical Review B 96, 094106 (2017).

Zhiwang Zhang, Ye Tian, Ying Cheng, Xiaojun Liu,
and Johan Christensen, “Experimental verification of
acoustic pseudospin multipoles in a symmetry-broken
snowflakelike topological insulator,” Physical Review B
96, 241306 (2017).

Yuting Yang, Yun Fei Xu, Tao Xu, Hai-Xiao Wang, Jian-
Hua Jiang, Xiao Hu, and Zhi Hong Hang, “Visualiza-
tion of a Unidirectional Electromagnetic Waveguide Us-
ing Topological Photonic Crystals Made of Dielectric Ma-
terials,” Physical Review Letters 120, 217401 (2018).
Zheng Wang, Yidong Chong, J. D. Joannopou-
los, and Marin Soljaci¢, “Observation of unidirec-
tional backscattering-immune topological electromag-
netic states,” Nature 461, 772-775 (2009).

R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman,
and A. Alu, “Sound Isolation and Giant Linear Non-
reciprocity in a Compact Acoustic Circulator,” Science
343, 516-519 (2014).

Zhaoju Yang, Fei Gao, Xihang Shi, Xiao Lin, Zhen Gao,
Yidong Chong, and Baile Zhang, “Topological Acous-
tics,” Physical Review Letters 114, 114301 (2015).

Pai Wang, Ling Lu, and Katia Bertoldi, “Topological
Phononic Crystals with One-Way Elastic Edge Waves,”
Physical Review Letters 115, 104302 (2015).

Lisa M. Nash, Dustin Kleckner, Alismari Read, Vincenzo
Vitelli, Ari M. Turner, and William T. M. Irvine, “Topo-
logical mechanics of gyroscopic metamaterials,” Proceed-
ings of the National Academy of Sciences 112, 14495—
14500 (2015).

Long-Hua Wu and Xiao Hu, “Scheme for Achieving a
Topological Photonic Crystal by Using Dielectric Mate-
rial,” Physical Review Letters 114, 223901 (2015).
Zhiwang Zhang, Qi Wei, Ying Cheng, Ting Zhang,
Dajian Wu, and Xiaojun Liu, “Topological Cre-
ation of Acoustic Pseudospin Multipoles in a Flow-Free
Symmetry-Broken Metamaterial Lattice,” Physical Re-
view Letters 118, 084303 (2017).

Yuanchen Deng, Hao Ge, Yuan Tian, Minghui Lu, and
Yun Jing, “Observation of zone folding induced acous-
tic topological insulators and the role of spin-mixing de-
fects,” Physical Review B 96, 184305 (2017).


mailto:hpirie@g.harvard.edu
mailto:jhoffman@physics.harvard.edu
http://dx.doi.org/ 10.1103/PhysRevLett.100.013904
http://dx.doi.org/ 10.1103/PhysRevLett.100.013904
http://dx.doi.org/10.1038/nmat3520
http://dx.doi.org/10.1038/nmat3520
http://dx.doi.org/10.1038/nphoton.2014.248
http://dx.doi.org/10.1038/nphoton.2014.248
http://dx.doi.org/10.1093/nsr/nwx154
http://dx.doi.org/10.1093/nsr/nwx154
http://dx.doi.org/10.1038/nphys2835
http://dx.doi.org/10.1038/nphys2835
http://dx.doi.org/10.1126/science.aab0239
http://dx.doi.org/10.1038/nphys3801
http://dx.doi.org/10.1038/nphys3801
http://dx.doi.org/10.1063/1.3686907
http://dx.doi.org/10.1063/1.3686907
http://dx.doi.org/10.1063/1.4890304
http://dx.doi.org/10.1063/1.4890304
http://dx.doi.org/10.1038/ncomms14871
http://dx.doi.org/10.1038/ncomms14871
http://dx.doi.org/10.1038/nphoton.2017.13
http://dx.doi.org/10.1038/s41586-018-0367-9
http://dx.doi.org/10.1063/1.3359428
http://dx.doi.org/10.1063/1.3359428
http://dx.doi.org/ 10.1038/nmat3030
http://dx.doi.org/10.1038/ncomms9682
http://dx.doi.org/10.1038/nphys3867
http://dx.doi.org/10.1038/nphys3867
http://dx.doi.org/10.1103/PhysRevB.95.094305
http://dx.doi.org/10.1103/PhysRevB.95.094305
http://dx.doi.org/ 10.1103/PhysRevB.96.094106
http://dx.doi.org/10.1103/PhysRevB.96.241306
http://dx.doi.org/10.1103/PhysRevB.96.241306
http://dx.doi.org/10.1103/PhysRevLett.120.217401
http://dx.doi.org/10.1038/nature08293
http://dx.doi.org/ 10.1126/science.1246957
http://dx.doi.org/ 10.1126/science.1246957
http://dx.doi.org/ 10.1103/PhysRevLett.114.114301
http://dx.doi.org/ 10.1103/PhysRevLett.115.104302
http://dx.doi.org/10.1073/pnas.1507413112
http://dx.doi.org/10.1073/pnas.1507413112
http://dx.doi.org/10.1073/pnas.1507413112
http://dx.doi.org/10.1103/PhysRevLett.114.223901
http://dx.doi.org/10.1103/PhysRevLett.118.084303
http://dx.doi.org/10.1103/PhysRevLett.118.084303
http://dx.doi.org/10.1103/PhysRevB.96.184305

[29] Zhiwang Zhang, Ye Tian, Ying Cheng, Qi Wei, Xiaojun
Liu, and Johan Christensen, “Topological Acoustic De-
lay Line,” Physical Review Applied 9, 034032 (2018).

[30] Jun Mei, Ying Wu, C. T. Chan, and Zhao-Qing Zhang,
“First-principles study of Dirac and Dirac-like cones in
phononic and photonic crystals,” Physical Review B 86,
035141 (2012).

[31] Kazuaki Sakoda, “Double Dirac cones in triangular-
lattice metamaterials,” Optics Express 20, 9925 (2012).

[32] Ze-Guo Chen, Xu Ni, Ying Wu, Cheng He, Xiao-Chen
Sun, Li-Yang Zheng, Ming-Hui Lu, and Yan-Feng
Chen, “Accidental degeneracy of double Dirac cones in a

(33]

34]

35]

phononic crystal,” Scientific Reports 4, 4613 (2015).
Jun Mei, Zeguo Chen, and Ying Wu, “Pseudo-time-
reversal symmetry and topological edge states in two-
dimensional acoustic crystals,” Scientific Reports 6,
32752 (2016).

Elisa Boatti, Nikolaos Vasios, and Katia Bertoldi,
“Origami Metamaterials for Tunable Thermal Expan-
sion,” Advanced Materials 29, 1700360 (2017).

P A Oliveira, R M B Silva, G C Morais, A V Alvarenga,
and R P B Costa Félix, “Speed of sound as a func-
tion of temperature for ultrasonic propagation in soybean
oil,” Journal of Physics: Conference Series 733, 012040
(2016).


http://dx.doi.org/10.1103/PhysRevApplied.9.034032
http://dx.doi.org/ 10.1103/PhysRevB.86.035141
http://dx.doi.org/ 10.1103/PhysRevB.86.035141
http://dx.doi.org/ 10.1364/OE.20.009925
http://dx.doi.org/10.1038/srep04613
http://dx.doi.org/10.1038/srep32752
http://dx.doi.org/10.1038/srep32752
http://dx.doi.org/ 10.1002/adma.201700360
http://dx.doi.org/ 10.1088/1742-6596/733/1/012040
http://dx.doi.org/ 10.1088/1742-6596/733/1/012040

	Topological Phononic Logic
	Abstract
	 References


