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Tunable strongly coupled superconductivity 
in magic-angle twisted trilayer graphene

Jeong Min Park1,4, Yuan Cao1,4 ✉, Kenji Watanabe2, Takashi Taniguchi3 & 
Pablo Jarillo-Herrero1 ✉

Moiré superlattices1,2 have recently emerged as a platform upon which correlated 
physics and superconductivity can be studied with unprecedented tunability3–6. 
Although correlated effects have been observed in several other moiré systems7–17, 
magic-angle twisted bilayer graphene remains the only one in which robust 
superconductivity has been reproducibly measured4–6. Here we realize a moiré 
superconductor in magic-angle twisted trilayer graphene (MATTG)18, which has better 
tunability of its electronic structure and superconducting properties than 
magic-angle twisted bilayer graphene. Measurements of the Hall effect and quantum 
oscillations as a function of density and electric field enable us to determine the 
tunable phase boundaries of the system in the normal metallic state. 
Zero-magnetic-field resistivity measurements reveal that the existence of 
superconductivity is intimately connected to the broken-symmetry phase that 
emerges from two carriers per moiré unit cell. We find that the superconducting phase 
is suppressed and bounded at the Van Hove singularities that partially surround the 
broken-symmetry phase, which is difficult to reconcile with weak-coupling Bardeen–
Cooper–Schrieffer theory. Moreover, the extensive in situ tunability of our system 
allows us to reach the ultrastrong-coupling regime, characterized by a Ginzburg–
Landau coherence length that reaches the average inter-particle distance, and very 
large TBKT/TF values, in excess of 0.1 (where TBKT and TF are the Berezinskii–Kosterlitz–
Thouless transition and Fermi temperatures, respectively). These observations 
suggest that MATTG can be electrically tuned close to the crossover to a 
two-dimensional Bose–Einstein condensate. Our results establish a family of tunable 
moiré superconductors that have the potential to revolutionize our fundamental 
understanding of and the applications for strongly coupled superconductivity.

When two or more layers of two-dimensional (2D) materials are stacked 
together, a moiré superlattice with reduced electronic bandwidth can 
arise from a small twist angle or lattice mismatch between the layers. 
In such flat-band systems, electronic interactions have a dominant 
role, which has led to the observation of various correlated and topo-
logical phases3–17,19–23. The case of magic-angle twisted bilayer graphene 
(MATBG) has attracted particular attention because of the intriguing 
superconducting phase it hosts4–6. Although signatures of supercon-
ductivity have also been reported in other systems8,9,11,13,17,22,23, definitive 
evidence of superconductivity—encompassing the observation of zero 
resistance, sharply switching voltage–current (V–I) characteristics, and 
Josephson phase coherence—has only been reproducibly demonstrated 
in MATBG so far.

In this Article, we report the realization of ultrastrong-coupling 
superconductivity in a magic-angle system that consists of three adja-
cent graphene layers sequentially twisted by θ and −θ (Fig. 1a)18. Here 
we consider ultrastrong coupling to exist where Tc/TF ≳ 0.1, where Tc is 

the critical temperature and TF = πħn*/(m*kB) is the Fermi temperature 
(kB, Boltzmann constant; ħ, reduced Planck constant; m*, measured 
effective mass). This moiré superconductor—magic-angle twisted 
trilayer graphene (MATTG)—exhibits a rich phase diagram and greater 
electric field tunability than MATBG. The latter enables us to explore 
the interplay between correlated states and superconductivity beyond 
MATBG. Figure 1b, c shows the calculated bandstructures of MATTG 
without and with an electric displacement field, D (Methods and 
Extended Data Fig. 1). At zero D, MATTG has a set of flat bands, as well 
as gapless Dirac bands18,24–26. The flat bands in MATTG can be mathe-
matically reduced to MATBG-like bands with an effective twist angle 
of θ θ/ 2 ≈ /1.4, and hybridization with the Dirac bands is prohibited 
by the mirror symmetry18,25,26. This reduction leads to a larger magic 
angle in MATTG, θMATTG ≈ 1.6°. When the mirror symmetry is broken by 
the application of D, the flat bands can hybridize with the Dirac bands 
(Fig. 1c), enabling us to control the bandwidth and interaction strength 
in the flat bands.
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Robust superconductivity in MATTG
We have fabricated three MATTG devices, all of which exhibit robust 
superconductivity (Methods and Extended Data Fig. 2, 3). Here we focus 

on the device with a twist angle θ = 1.57 ± 0.02°—that is, particularly 
close to θMATTG. The coexistence of Dirac bands and flat bands in MATTG 
can be directly observed in the transport data under a perpendicular 
magnetic field B (Fig. 1d, e). Resistive states at integer fillings of the 
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Fig. 1 | Electronic structure and robust superconductivity in mirror- 
symmetric MATTG. a, MATTG consists of three graphene monolayers stacked in 
a symmetric arrangement (by rotating with angles θ and −θ sequentially between 
the layers). b, c, Calculated bandstructure of MATTG at zero (b) and finite (c) 
perpendicular electric displacement field D/ε0 = 0.2 V nm−1 for valley K (bands for 
valley K′ can be obtained by time-reversal symmetry), showing flat bands and 
Dirac bands near the charge-neutrality point. The colour represents the 
mirror-symmetry character of the eigenstates, which varies from purple 
(symmetric) to orange (antisymmetric; see Methods). Finite D lifts the mirror 
symmetry and hybridizes the flat bands and Dirac bands. d, e, Magnetotransport 
data (derivative of the Hall resistance Rxy with respect to B) of MATTG at 
D/ε0 = 0 V nm−1 and D/ε0 = 0.54 V nm−1, respectively. At D = 0, we observe extra 
Landau levels, demonstrating the presence of coexisting Dirac bands, which are 
lifted by the displacement field. f, Longitudinal resistance Rxx and Hall 
conductivity σxy as a function of inverse magnetic field 1/B, at moiré filling factor 

ν ≲ 4 as marked by the purple arrow above d. The quantization of σxy at 2, 6, 
10, …, e2/h (h, Planck constant) indicates the presence of the massless Dirac bands. 
g, Estimated chemical potential as a function of ν, extracted from the evolution of 
Dirac band Landau levels (see Methods), showing a pinning behaviour at all 
integer fillings. h, i, Rxx versus T and ν showing the superconducting regions near 
ν = −2 and ν = +2, at D/ε0 = −0.44 V nm−1 and D/ε0 = 0.74 V nm−1, respectively. j, Vxx–I 
curves as a function of temperature at optimal doping in the ν = −2 − δ dome. The 
top-left inset shows a fit of Rxx–T data with the Halperin–Nelson formula30  
R ∝ exp[−b/(T – TBKT)1/2], where b and TBKT are fitting parameters, which gives 
TBKT ≈ 2.25 K. The bottom-right inset shows the Vxx–I curves on a log–log scale and 
sampled at finer temperature increments, again between 0 and 3.6 K, and the 
dashed line denotes where its slope is approximately 3 (Vxx ∝ I3), indicating 
TBKT ≈ 2.1 K. k, l, Critical current versus magnetic field at ν = −2.4 (k) and ν = +2.22 (l),  
both at D/ε0 = −0.44 V nm−1. In k, the critical current shows a long tail up to 400 mT, 
whereas l shows a clear Josephson interference pattern.
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superlattice, ν = 4n/ns = +1, ±2, +3, ±4 appear as vertical features, regard-
less of D, where n is the carrier density and n θ a= 8 /( 3 )s

2 2  is the super-
lattice density (a = 0.246 nm is the graphene lattice constant). At zero 
D, we find an extra set of quantum oscillations that emanates from the 
charge-neutrality point (Fig. 1d), which vanishes when a moderate D is 
applied (Fig. 1e). These observations are consistent with a coexisting 
dispersive band tunable by D, as predicted by calculations (Fig. 1b, c). 
We further confirm the Dirac character of the dispersive band by meas-
uring its quantum Hall sequence (Fig. 1f). By tracking the Dirac Landau 
levels, we estimate the chemical potential μ in the flat bands as a function 
of ν (Methods). We find ‘pinning’ of the chemical potential near each 
integer ν (Fig. 1g), indicating a cascade of phase transitions similar to 
that observed in MATBG27–29. We estimate the many-body bandwidth of 
the flat bands to be around 100 meV (40 meV on the hole side and 60 meV 
on the electron side), relatively large compared to the approximately 
40–60 meV many-body bandwidth in MATBG27,29.

When MATTG is doped near ν = ±2, we find robust superconducting 
phases. Figure 1h, i shows the superconducting domes in the hole-doped 
(near ν = −2) and electron-doped (near ν = +2) sides at optimal displace-
ment fields. We find strong superconductivity with a T c

50% (see Methods 
section ‘Tc and coherence-length analysis’) of approximately 2.9 K and 
approximately 1.4 K for the regions ν = −2 − δ and ν = +2 + δ, respectively 
(0 < δ < 1), and weaker superconductivity with T < 1 Kc

50%  for the ν = −2 + δ 
and ν = +2 − δ regions. Figure 1j shows the longitudinal voltage–current 
(Vxx–I) characteristics in the ν = −2 − δ dome as a function of T, exhibit-
ing clear BKT-transition behaviour, from which we extracted TBKT ≈ 2.1 K. 
Alternatively, the Halperin–Nelson fit30 of the longitudinal resistance 
Rxx versus T (Fig. 1j, top-left inset) gives a consistent value of TBKT ≈ 2.25 K. 
The Vxx–I curve at the lowest temperature shows a zero resistance pla-
teau up to a critical current Ic ≈ 600 nA, above which the system switches 
sharply to a resistive state. The sharp transitions and associated  
hysteresis (Extended Data Fig.  4) are characteristic of robust 
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Fig. 2 | MATTG phase diagrams. a, b, R xx at B = 0 T (a) and normalized Hall 
density νH = 4nH/ns at B = ±1.5 T (b), versus ν and D. Data are taken at T = 70 mK. 
Superconductivity is represented by bright blue regions in a. c, Schematic 
sketches of the three types of feature found in the Hall density in b, and denoted 
by ‘gap/Dirac’ (red), ‘reset’ (yellow), and ‘VHS’ (dark blue). The blue regions in c 
denote the superconducting phase as determined in a. The branches near 
ν = −2 + δ at large D and the regions at small D, all denoted by light blue, 
correspond to very weak superconductivity. The behaviour of νH versus ν for 
each of these features is shown in d–f. d, At a ‘gap/Dirac’ feature, νH changes 
linearly with ν while crossing zero. e, At a ‘reset’ feature, νH rapidly drops to zero 

but without changing sign (here shown for ν > 0). f, At a ‘VHS’ feature, νH 
diverges and changes sign at a Van Hove singularity. In d–f, the colour shading 
represents the expected colour in b across each type of feature. g, h, Plots of R xx 
(purple) and the BKT transition temperature TBKT (brown; g), and effective mass 
m* as function of ν (h), taken at the displacement field indicated by the yellow 
dashed line in a, b: D/ε0 = 0.64 V nm−1. TBKT approaches zero and m* shows a peak 
around the VHS, which is represented by the pink region. me is the electron 
mass. In h, the dashed guidelines correspond to a logarithmic divergence in the 
DOS at the VHS, and the error bars correspond to a confidence interval of 0.9.
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superconducting behaviour, which cannot be accounted for by alter-
native mechanisms, such as Joule heating31. To further confirm the 
superconductivity, we measure the critical current in the ν = +2 + δ 
dome, near its boundary with the resistive feature, as a function of 
perpendicular magnetic field B. We find a clear Fraunhofer-like oscil-
lation pattern (Fig. 1l), which can be explained by the interference 
between superconducting percolation paths separated by normal 
regions due to charge inhomogeneity, and constitutes a direct dem-
onstration of Josephson phase coherence in MATTG. On the other hand, 
the B-dependence of Ic at optimal doping, near ν = −2 − δ, does not show 
a visible oscillatory behaviour, probably owing to the lack of normal 
islands in this strong superconducting regime (Fig. 1k). Instead, we 
find a long superconducting ‘tail’ that remains up to 400 mT, suggest-
ing a high critical magnetic field Bc2 at this density.

Tunable phase boundaries
MATTG exhibits a rich phase diagram as a function of ν, D, T and B. In 
particular, the prominent D dependence enables us to correlate the 
evolution of the superconducting phase boundaries with normal-state 
magnetotransport features, which can provide important insight into 
the nature of the superconductivity. Figure 2a shows Rxx as a function 
of ν and D. Various resistive features can be seen, especially at ν = +1, 
±2, +3, ±4, some of which have substantial D dependence (Extended 
Data Fig. 5). In addition, there are zero resistance regions, shown in 
bright blue, denoting superconductivity. These superconducting 

regions are most prominent between |ν| = 2 and |ν| = 3, though they 
can also extend into neighbouring regions. The extended regions at 
small D could be due to the interplay with the Dirac bands. Figure 2b 
shows the normalized Hall density νH = 4nH/ns, where nH = −[e(dRxy/dB)]−1  
(e, electron charge) and Rxy is the Hall resistance (Extended Data Fig. 6). 
In MATTG, the Hall density exhibits three main types of behaviour, 
characterized by a different dependence on ν: ‘gap/Dirac’, ‘reset’ and 
‘VHS’ (Van Hove singularity), as illustrated in Fig. 2d–f. The trajecto-
ries of these features are summarized in Fig. 2c, along with the phase 
boundaries of superconductivity. The first type, ‘gap/Dirac’, denotes 
a continuous zero crossing of νH as ν is increased (Fig. 2d). This behav-
iour indicates that the Fermi level crosses a gap or Dirac-like point. 
The second type is a ‘reset’ to zero, that is, νH drops/rises suddenly 
close to zero but it does not change sign, and it starts rising/dropping 
again in the same direction as it was before the ‘reset’ (see Fig. 2e for 
electron side). It is typically observed across certain integer filling 
factors in MATBG3,4, associated with the Coulomb-induced phase 
transitions27–29, and also occurs in MATTG near zero and small dis-
placement fields. Both types of features occur only close to integer 
fillings ν = 0, ±1, ±2, … By contrast, the third type of feature exhibits 
a divergent νH with a zero crossing (Fig. 2f), which is associated with 
saddle-points on the Fermi surface known as Van Hove singularities. 
At a VHS, νH ceases to represent the number of carriers in the system, 
as the electrons no longer follow a closed semi-classical orbit. In two 
dimensions, the density of states (DOS) at a VHS diverges and, in 
general, there is no restriction on the density at which a VHS occurs.  
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Fig. 3 | Ultrastrong-coupling superconductivity and proximity to the BCS–
BEC crossover. a, Three-dimensional map of the BKT transition temperature 
TBKT versus ν and D. The optimal (νopt, Dopt/ε0) point corresponding to the 
maximum TBKT is (−2.4, −0.44 V nm−1). b, c, Line cuts of TBKT and the extracted 
Ginzburg–Landau coherence length ξGL versus ν (b), and D (c), while the other 
variable is kept at the optimal value (white dashed lines in a). The data points for 
ξGL were extracted using T c

40%, and the error bars show the values extracted with 
T c

30% (top) and T c
50% (bottom), respectively (see Methods for details). The red 

dashed lines show the expected interparticle distance dparticle = |n*|−1/2 for the 
carrier density n*, which starts counting from ν = −2, n n* = ( |ν| − 2 ) /4s .  

The Ginzburg–Landau coherence length approaches the interparticle distance 
around the optimal point in the phase diagram where TBKT is the highest. The 
background colour plot shows R xx versus T and ν. d, e, Effective mass m* in units 
of me (upper panel) and the ratio TBKT/TF (lower panel) as a function of ν (d) and  
D (e; same line cuts as in b, c). The Fermi temperature is calculated from  
TF = πħ2n*/(m*kB). Around optimal doping and displacement field, TBKT/TF 
approaches the blue dashed line, which represents the upper bound of TBKT/TF 
in the BCS–BEC crossover in two dimensions, the value of which is 0.125. The 
error bars in d, e correspond to a confidence interval of 0.9.
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We find experimentally that they evolve and can merge with the other 
two types of features as D is varied.

We find that superconductivity emanating from ν = ±2 is consist-
ently suppressed upon reaching VHS—that is, the superconductivity 
is ‘bounded’ by the VHS contours, as well as at the ‘resets’ near ν = ±3. 
Figure 2g shows Rxx versus ν at D/ε0 = 0.64 V nm−1 (ε0, vacuum permittiv-
ity; yellow dashed line in Fig. 2a), and on the same plot TBKT versus ν. TBKT 
falls to 0 K, and Rxx begins rising, as the VHS around ν = −2.9 (denoted 
by pink shading) is reached. To further confirm the occurrence of the 
VHS, we investigate the effective mass m* versus ν, measured through 
quantum oscillations, at the same D (Methods and Extended Data Fig. 7). 
It exhibits a divergent trend near the VHS, as expected in a 2D system. We 
note that the Hall density signature of the VHS bounding the ν = −2 + δ 
superconducting dome appearing at large D, which has a lower Tc than 
in the ν = −2 – δ dome, requires a smaller magnetic field of B ≈ 0.1–0.3 T 
to reveal it (Extended Data Fig. 6).

The observation that superconductivity vanishes right at the VHS 
is highly unusual. In Bardeen–Cooper–Schrieffer (BCS) superconduc-
tors, the order parameter and related quantities (Tc, Ic, and so on) are 
generally positively correlated with the DOS of the parent state at the 
Fermi level. This trend is directly seen in the weak-coupling BCS theory 
formula for Tc ∝ exp(−1/λN) (where N is the DOS at the Fermi level), 
regardless of whether the coupling λ originates from electron–pho-
non coupling, spin fluctuations, or other mechanisms. In particular, a 
divergent DOS at a VHS has been predicted to induce or enhance the 
superconducting order in various systems32–34. Our observation of 
the opposite trend therefore indicates that the superconductivity in 

MATTG is unlikely to be consistent with conventional weak-coupling 
BCS theory. We emphasize that this clear demonstration of a separation 
between the strength of the superconductivity and the Fermi surface 
topology is accessible only in MATTG at large D, where a VHS can be 
tuned near the vicinity of the superconducting region. This does not 
occur at small D in MATTG, and this tunability is absent in MATBG.

Ultrastrong-coupling superconductivity
The wide tunability of the MATTG system enables us to investigate in 
detail the coupling strength of the superconducting state by measur-
ing the Ginzburg–Landau coherence length ξGL as a function of various 
parameters. We first obtain a map of TBKT in the entire phase space of ν 
and D to understand the evolution of the superconductivity (Fig. 3a). 
The zero-temperature superconducting coherence length ξGL(0) can 
be determined by measuring the critical temperatures Tc at different 
perpendicular magnetic fields B (Methods and Extended Data Fig. 8). 
We perform this analysis as a function of either ν or D, while the other 
parameter is kept fixed at the optimal point, and the extracted ξGL val-
ues are overlaid on the corresponding TBKT plots in Fig. 3b, c. We find 
that MATTG has an extremely short coherence length, reaching down 
to ξGL(0) ≈ 12 nm near the optimal point, which is comparable to the 
interparticle distance. For comparison, in Fig. 3b, c we show the 
expected mean interparticle distance dparticle  =  |n*|−1/2, where 
n n* = ( |ν| − 2 ) /4s  is the carrier density counting from ν = −2 (as sug-
gested by both quantum oscillations and Hall density measurements, 
see Fig. 4 and Extended Data Fig. 6). In the ‘underdoped’ region of the 
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Fig. 4 | Connection between superconductivity and carriers emerging from 
the |ν| = 2 phase. a, b, Landau fan diagrams (R xx versus ν and B, upper panel) and 
their Landau level designations (lower panel) in the hole-doped side (ν < 0) for 
large D (D/ε0 = −0.64 V nm−1), and small D (D/ε0 = 0 V nm−1), respectively (see 
Extended Data Fig. 9 for intermediate D). c–e, Schematic summaries of the 
carrier types and numbers corresponding to large, intermediate and small D, 
respectively, with superconducting regions denoted by purple shades.  
f, g, Landau fan diagrams and designations in the electron-doped side (ν > 0) at  
D/ε0 = −0.77 V nm−1 (f) and D/ε0 = 0 V nm−1 (g; see Extended Data Fig. 9 for an 
intermediate D). The inset in f shows the derivative dR xx/dB of the region 
denoted by the pink dashed rectangle in the upper panel. These Landau fans 
indicate that at small D, the carriers are always hole-like (electron-like) on the 
−4 < ν < 0 (0 < ν < 4) side, and ‘resets’ occur at ν = +1, ±2, ±3, similar to previous 

studies in MATBG. On the other hand, at large D, carriers with opposite polarity 
(that is, electron-like at −4 < ν < 0 or hole-like at 0 < ν < 4) dominate near ν ≳ −4,  
−2 (ν ≲ +2, +4). The VHSs are responsible for the transitions between carriers 
with different polarities. The ‘resets’ near |ν| = 3 are no longer present, and the 
outward-facing Landau fans from |ν| = 2 directly meet the inward-facing fans 
from |ν| = 4 at VHSs. We find that superconductivity is only found in the regions 
where the carriers originate from the ν = ±2 states, that is, when the Landau fan 
at that density converges towards ν = ±2. The large-ν regions in c and f are 
limited by the maximum gate value we can apply before leakage, but the trend 
of the carrier dynamics can be deduced from the Hall density map in Fig. 2b. 
(We note that at small D there are slight shifts in ν, which may be attributed to 
interplay with the Dirac bands.).
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superconducting dome (−2.4 < ν < −2.15), we find that the coherence 
length is bounded by the interparticle distance.

These observations constitute a first indication that MATTG is 
a superconductor that can be tuned close to the BCS–BEC (Bose– 
Einstein condensate) crossover. The saturation of ξGL at the interparticle 
distance suggests that a large fraction of the available carriers are con-
densed into Cooper pairs, that is, nsf/n* ≱ 1, where nsf is the superfluid 
density, in contrast to conventional superconductors where only a tiny 
fraction of electrons are condensed. This difference can be captured in 
the framework of the BCS–BEC crossover, as the system is tuned from 
the weak coupling regime (Tc/TF ≪ 0.1) to the ultrastrong-coupling 
regime (Tc/TF ≳ 0.1). To estimate how close MATTG near its optimal 
doping is to the BCS–BEC crossover, we measure the ratio TBKT/TF as a 
function of ν and D (Fig. 3d, e). As true long-range order does not exist 
in two dimensions, in both the BCS and BEC limits the superfluid under-
goes a BKT transition at35 TBKT ∝ nsf/m*. We can therefore use the ratio 
TBKT/TF to quantify the superfluid fraction nsf/n* in both regimes. In the 
BCS–BEC crossover in two dimensions, TBKT/TF has an upper bound of36 
0.125. Our experimentally extracted TBKT/TF reaches values in excess of 
0.1, with maximum values close to 0.125. This indicates that the super-
conductivity in MATTG is probably of strong-coupling nature, and 
possibly close to the BCS–BEC crossover. For comparison with other 
strong 2D superconductors, TBKT/TF ≈ 0.05 (Tc/TF ≈ 0.08) in MATBG4, 
and Tc/TF ≈ 0.04 in LixHfNCl37. Another strong 2D superconductor is 
monolayer FeSe grown on STO, for which very high Tc/TF values, of the 
order of approximately 0.1, have been reported38, though transport 
data show substantially broad R–T transitions, which may indicate a 
lower TBKT/TF value38.

Superconductivity emerges from the |ν| = 2 phase
To gain further insight into the MATTG superconducting phase dia-
gram, we analyse the type of carriers involved in the superconductivity. 
Figure 4a, b shows quantum oscillations measurements in the −4 < ν < 0 
range, at large and small displacement field, respectively. The corre-
sponding data for electrons—that is, in the 0 < ν < +4 range—are shown 
in Fig. 4f, g. At small D (including zero) there is a ‘reset’ at |ν| = 2, which 
manifests as an outward-facing (away from ν = 0) Landau fan originating 
from |ν| = 2 (Fig. 4b, g). These fans end near |ν| = 3, where new outward 
fans start, consistent with the ‘resets’ occurring there (Fig. 2b, c), which 
indicates phase transitions to a different broken-symmetry-phase 
ground state27–29. At these small D values, the superconductivity is 
restricted to the regions between |ν| = 2 and |ν| = 3 (Fig. 2a–c), a behav-
iour summarized in Fig. 4e.

At large D, the phase diagram changes substantially (Fig. 2), where 
superconductivity is now bounded by VHSs in some regions, and extra 
superconducting branches appear, particularly strong for ν = +2 − δ 
(Fig. 3a). These features are correlated with inward-facing (towards 
charge neutrality) fans that start to develop at |ν| = 2 (Fig. 4a, f), which 
meet the fans from ν = 0 (hole side) or ν = +1 (electron side) at a VHS. This 
indicates that the states that result from the removal of electrons (holes) 
from ν = +2 (ν = −2) remain adiabatically connected to the ground state 
at |ν| = 2, until the VHS is reached. This is different from the small-D case, 
where the system immediately goes through a phase transition across 
the ‘resets’. The data at intermediate D are shown in Extended Data 
Fig. 9. The evolution between the ‘reset’-type features and ‘VHS’-type 
features might be related to a change in the bandwidth and band topol-
ogy as the Dirac bands start to hybridize with the flat bands (Fig. 1b, 
c). As one possibility, it has been suggested that the positions of the 
VHSs in the single-particle flat bands help determine the occurrence 
of a flavour-symmetry-breaking phase transition, as well as the filling 
factor at which they occur39. When symmetry breaking occurs right at 
integer fillings, it appears as a ‘reset’; when it occurs slightly before the 
integer fillings, it appears as a ‘VHS’ feature in the Hall density at the 
phase transition, followed by a ‘gap/Dirac’ feature at the integer filling39.

For both cases, we find the superconductivity to be still bounded 
within the regions where the carriers are connected to the |ν| = 2 ground 
state, as summarized in Fig. 4c, d. These observations indicate that the 
many-body ground state emerging from the broken-symmetry phase 
transition at |ν| = 2 has an essential role in forming robust supercon-
ductivity, since superconductivity appears as carriers are added to or 
subtracted from that state, and it vanishes when the normal state of 
the system changes to a different phase, either through a ‘reset’ to the 
|ν| = 3 broken-symmetry phase (at small D) or through a VHS to ν = 0, 
ν = +1, or |ν| = 4 phases at large D.

Our experiments point towards a strong coupling mechanism for 
superconductivity that is deeply tied to the ground state at ν = ±2, and 
where the maximum Tc is mostly determined by the carrier density 
instead of the precise structure of the DOS. At the same time, we also 
note that the presence of a VHS can affect the phase transitions that 
underlie the broken-symmetry phases. These observations should be 
taken into consideration in the development of theoretical models for 
moiré superconductors with ultrastrong coupling strength. It is note-
worthy to determine what it is that makes MATBG and MATTG robust 
superconductors. One possibility is that they both have certain sym-
metry properties, in particular approximate C2 symmetry40. Interest-
ingly, this symmetry is absent in other graphene-based moiré systems. 
We hope future investigations on other C2-symmetric moiré systems 
will determine if this symmetry is indispensable for the formation of 
strong-coupling superconductivity in moiré flat bands.
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Methods

Sample fabrication
Our samples consist of three sheets of monolayer graphene, with twist 
angles θ and −θ for the top/middle and middle/bottom interfaces, 
respectively, which are then sandwiched between two hexagonal boron 
nitride (hBN) flakes approximately 30–80 nm thick. We first exfoliate 
the hBN and graphene flakes on SiO2/Si substrates, and analyse these 
flakes with optical microscopy. The multilayer stack is fabricated using 
a dry pick-up technique, where a layer of poly(bisphenol A carbonate)/
polydimethylsiloxane (PC/PDMS) on a glass slide is used to pick up the 
flakes sequentially using a micro-positioning stage. To ensure the angle 
alignment between the graphene layers and to reduce strain, they are 
cut in situ from a single monolayer graphene flake using a focused laser 
beam27. The hBN flakes are picked up while heating the stage to 90 °C, 
while the graphene layers are picked up at room temperature. The 
resulting structure is released on the prepared hBN on Pd/Au stack at 
175 °C. We define the Hall bar geometry with electron-beam lithogra-
phy and reactive ion etching. The top gate and electrical contacts are 
thermally evaporated using Cr/Au. Schematics and optical picture of 
the finished devices are shown in Extended Data Fig. 2.

Measurement setup
Transport data are measured in a dilution refrigerator with a base elec-
tronic temperature of ~70 mK. Current through the sample and the 
four-probe voltage are first amplified by 107 V A−1 and 1,000 V A−1, respec-
tively, using current and voltage pre-amplifiers, and then measured 
with lock-in amplifiers (SR-830), synchronized at the same frequency 
between approximately 1 and 20 Hz. Current excitation of 1 nA or volt-
age excitation of 50 μV to 100 μV is used for resistance measurements. 
For d.c. bias measurements, we use a home-built digital–analogue 
converter (BabyDAC) passing through a 10-MΩ resistor to provide the 
d.c. bias current, and measure the d.c. voltage using a digital multimeter 
(Keysight 34461A) connected to the voltage pre-amplifier.

Bandstructure calculation
The bandstructures shown in Fig. 1b, c are calculated using the contin-
uum model for twisted bilayer graphene2,41, extended with a third layer 
on the top that has the same twist angle as the bottommost layer18,25,26,42. 
For simplicity, we neglect the direct coupling from topmost and bot-
tommost layers, and we use off-diagonal and diagonal interlayer hop-
ping parameters w = 0.1 eV and w′ = 0.08 eV, respectively, the latter value 
empirically accounting for a small relaxation of the lattice. We note that 
the Fermi velocity of the gapless Dirac bands using these parameters 
is the same as the value for monolayer graphene.

The colour of the curves in Fig. 1b, c represents the mirror symme-
try character of the eigenstates, which we evaluate by projecting the 
wavefunction of the eigenstate in the topmost layer onto the bottom-
most layer and calculating its inner product with the wavefunction 
in the bottommost layer. This evaluates to 1 for a mirror symmetric 
eigenstate (coloured as orange) and −1 for a mirror antisymmetric 
eigenstate (coloured as purple), and between −1 and 1 for a nonsym-
metric state. We find that at zero displacement field, the flat bands 
have symmetry character of 1 and the Dirac bands have −1. In other 
words, the flat bands in MATTG arise from mirror symmetric hopping 
from the outer layers onto the centre layer. Without a displacement 
field, the Dirac bands cannot couple to the flat bands, owing to this 
symmetry protection, though the electrons in the Dirac bands may 
still participate in the correlation-driven phenomena in the flat bands 
via Coulomb interactions.

The effect of displacement field is taken into account by imposing an 
interlayer potential difference ΔV = dD/ε0, where d ≈ 0.3 nm is the inter-
layer distance. Owing to the screening by the outer layers, the actual 
electric field between the layers will be less than the externally applied 
field. Although we can qualitatively capture the effect of the external 

displacement field in this calculation, a self-consistent treatment is 
required to accurately solve such a problem, which is beyond the scope 
of this mostly experimental paper. We note that these calculations do 
not take into account high-order and non-local interlayer coupling 
terms, which create a more pronounced particle–hole asymmetry 
than shown here25,26,39,42,43.

Stacking alignment
Twisted trilayer graphene has an extra translation degree of freedom 
compared to twisted bilayer graphene. Although the topmost and 
bottommost layers are not twisted with respect to each other, their 
relative stacking order can have a notable effect on the single-particle 
bandstructure. Among the configurations, the ones with A-tw-A stack-
ing and A-tw-B stacking (‘tw’ denotes the middle twisted layer) have the 
highest symmetry, as shown in Extended Data Fig. 1a, b. In particular, 
only A-tw-A stacking possesses a mirror symmetry; it was shown to have 
the lowest configuration energy among all possible stacking orders 
for a given twist angle25. Extended Data Fig. 1c–f shows the calculated 
bandstructures of the A-tw-A and A-tw-B configurations at zero and 
finite displacement fields. Furthermore, Extended Data Fig. 1g–j shows 
the calculated Landau level spectrum of the corresponding cases near 
charge neutrality44. In these calculations, we also included a small 
C3-symmetry-breaking term45 to reproduce the fourfold Landau level 
degeneracy observed in experiments (β = −0.01, following the conven-
tion of a previous work)45. We find that in the case of A-tw-A stacking, 
the Landau level sequence near charge neutrality is ±2, ±6, ±10, …, 
regardless of whether a displacement field is applied, whereas in the 
case of A-tw-B stacking, the application of a displacement field leads to 
a complicated evolution of the Landau level that no longer follows the 
same sequence. The displacement field also induces a global bandgap 
in the A-tw-B configuration, while keeping A-tw-A gapless.

From our experimental observations, our MATTG samples are more 
likely to possess A-tw-A stacking than other configurations, for the fol-
lowing reasons. First, unlike in MATBG, we do not find an insulating state 
at ν = ±4 at any displacement field, suggesting that the system does not 
have a global energy gap. Second, as shown in Extended Data Fig. 1k, l, 
the strongest Landau level sequence near the charge neutrality point 
is always ±2, ±6, ±10, ±14, …, with or without displacement fields. Both 
of these findings are in agreement with the A-tw-A stacking case, as 
discussed above. We note that although it is difficult to achieve exactly 
identical top and bottom angles, from our experiments it seems that 
a minor difference might not qualitatively affect the role of mirror 
symmetry.

Chemical-potential estimate
The coexisting flat bands and Dirac bands share the same chemical 
potential, and so we can use the transport features of the Dirac bands 
as shown in Fig. 1d to determine the n–μ relationship in the flat bands. 
Specifically, at a finite magnetic field B and in the absence of D, we 
assume that the flat bands host a charge density nf and the Dirac bands 
host a charge density nd such that n = nf + nd.

Under finite B, the Dirac bands are quantized into fourfold degener-
ate Landau levels labelled by an index N = 0,  ±1, ±2, …. In the transport 
data, if we designate the centres of the Rxx peaks (see for example, Fig. 1f) 
as the centre of the Nth Landau level (not the Landau level gaps), nd 
and μd follow

n
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where ϕ0 = h/e is the flux quantum, the factor 4 accounts for spin and 
valley degeneracies, and sgn(N) is the sign of N. We use a Fermi veloc-
ity of vF = 106 m s−1 for this estimation. Since nd and μd are functions of 



NB only, they are known once we determine the Landau level index N, 
which is evident from the Hall conductivity in the gaps between them, 
σxy = 4(N ±1/2)e2/h (see Fig. 1f). Therefore, along the trajectory of the 
Nth Landau level in an n–B map, we can determine the nf–μf relation-
ship for the flat bands as
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We performed this extraction for |N| = 1, 2, 3, 4 and the results are con-
sistent, as shown in Fig. 1f. The estimated many-body bandwidth of 
the flat bands from this extraction is around 100 meV, whereas that 
of MATBG is approximately 40–60 meV (refs. 27,29,46). This many-body 
bandwidth includes the Coulomb interaction, which is, in principle, 
larger in MATTG than in MATBG, owing to the smaller unit cell.

Hall density analysis
The Hall density in Fig.  2b is calculated from Rxy measured and 
anti-symmetrized at B = 1.5 T. The reason for choosing this magnetic 
field is to fully suppress the superconductivity at ν = −2 − δ, which has a 
critical magnetic field approaching 1 T, because of the short Ginzburg–
Landau coherence length. Extended Data Fig. 6a–c shows representa-
tive linecuts in the maps of Rxx, Rxy and the Hall density νH, with the Hall 
features (‘gap/Dirac’, ‘reset’ or ‘VHS’) and superconducting regions 
annotated. All major superconducting domes are bounded by the Hall 
features, although we notice a few exceptions of weak superconduc-
tivity that are not bounded. For example, at zero displacement field 
(Extended Data Fig. 6c), there is a weak signature of superconductivity 
beyond the reset around ν = −3.2, which has a small but non-zero resist-
ance. We also note that in Fig. 2b, there are some small regions, right 
before ν = +1 and ν = +2 in some ranges of D, where there are signatures 
of a more complex behaviour in νH, with VHSs possibly very close to 
the ‘resets’. These regions need further investigation for a complete 
understanding.

The weak superconducting region at ν = −2 + δ at large D is also 
seemingly not bounded by a VHS in the main Hall density plot taken 
at B = ±1.5 T (see Fig. 2a, b). However, we find that signatures of a 
VHS boundary can be identified if we measure the Hall density using 
a smaller B, as shown in Extended Data Fig. 6d. By comparing to Rxx 
data shown in Extended Data Fig. 6e, we can see that although not per-
fectly matching, there is a clear correlation between the VHS and the 
superconductivity boundary. Furthermore, the Landau fans at finite D 
(Fig. 4a, Extended Data Fig. 9a) show signatures of an inward-facing fan 
at ν = −2 + δ, supporting the existence of carriers from ν = −2. However, 
the inward fan, as well as the superconductivity in this region, appears 
to be extremely fragile, which might be related to why the VHS bound-
ary is invisible when measured at higher B.

Tc and coherence-length analysis
The mean-field Tc is extracted by first fitting the high-temperature part 
of the data to a straight line r(T) = AT + B, and then finding the intersec-
tion of Rxx(T) with pr(T), where p is the percentage of normal resistance 
(we use 50% unless otherwise specified).

We extract the Ginzburg–Landau coherence length from the 
B-dependence of Tc, using the Ginzburg–Landau relation 
T T ξ Φ B/ = 1 − (2π / )c c0 GL

2
0 ⊥ , where Φ0 = h/(2e) is the superconducting 

flux quantum and Tc0 is the mean-field critical temperature at zero 
magnetic field (slightly higher than TBKT). As shown in Extended Data 
Fig. 8, the mean-field Tc at different B is extracted at different percent-
ages p = 30%, 40% and 50% of the normal resistance fit (shown as dashed 
lines). The insets show the extracted Tc using different thresholds. The 
Ginzburg–Landau coherence length ξGL is then obtained from a linear 
fit of Tc versus B, the x intercept of which is equal to Φ ξ/(2π )0 GL

2 .  

The different thresholds yield slightly different but consistent coher-
ence lengths, which we plot as the data points (40%) and error bars 
(50%, 30%) in Fig. 3b, c. Note that in the presence of charge and/or twist 
angle disorder, values for ξGL, Tc and TBKT should be interpreted as spa-
tial averages of the corresponding local quantities.

Effective mass analysis
The effective mass of MATTG is extracted from the T-dependent quan-
tum oscillations in a perpendicular magnetic field using the standard 
Lifshitz–Kosevich formula47. Extended Data Fig. 7a, b shows repre-
sentative quantum oscillations at ν = −2.86 and ν = −2.5, respectively, 
at D/ε0 = −0.44 V nm−1. Starting from raw resistance data Rxx, we first 
remove a smooth polynomial background in B−1 and obtain ΔR. We 
then select the most prominent peak/valley in ΔR, and evaluate its 
change from the valley to the peak as a function of temperature, δR(T). 
We notice that in some curves, such as those shown in Extended Data 
Fig. 7a, b, the high-field part of the oscillation is either split (Extended 
Data Fig. 7a) or has a higher periodicity (Extended Data Fig. 7b) than 
the fundamental frequency that corresponds to the carrier density, 
which we attribute to broken-symmetry states. We avoid using those 
peaks for extracting effective mass, as they tend to overestimate the 
effective mass m* and underestimate TF. δR(T) is subsequently fitted 
with the Lifshitz–Kosevich formula

R T b
aT

aT
δ ( ) =

sinh( )
, (3)

where a and b are fitting parameters. The effective mass m* is then 
extracted from

m
ħeB

k
a=

2π
, (4)2

B

∗

where B  is the average of the peak and valley positions. The fit is  
shown in the insets of Extended Data Fig. 7a, b, from which we obtain  
m*/me = 1.25 ± 0.13 and m*/me = 0.95 ± 0.03, respectively. TBKT at these 
two points is 1.11 K and 2.09 K, respectively, and so the ratio TBKT/TF is 
0.041 ± 0.004 and 0.100 ± 0.003, respectively.

For the effective-mass data in Fig. 2h and Fig. 3d, e, we performed 
the extraction with fewer points in temperature, as exemplified in 
Extended Data Fig. 7c–e. We manually select the peak/valley position 
(shown as triangles) for each density/displacement field, and the mass 
is obtained from the same fit as above, as shown in Extended Data 
Fig. 7f. We have checked that this extraction is consistent with the 
extraction using more data points in T for the representative curves 
shown (Extended Data Fig. 7a, b), which justifies the analysis with 
coarser data in T.

Data availability
The data that support the current study are available from the corre-
sponding authors upon reasonable and well motivated request.
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Extended Data Fig. 1 | Stacking order in MATTG. a, b, Illustrations of A-tw-A 
stacking (a) and A-tw-B stacking (b), where ‘tw’ denotes the middle twisted 
layer (L2, orange) and A/B represents the relative stacking order between the 
topmost (L3, green) and bottommost (L1, blue) layers. c–f, Continuum-model 
bandstructures of A-tw-A stacked (c, d) and A-tw-B stacked (e, f) MATTG at zero 
(c, e) and finite (d, f) displacement fields. The twist angle is θ = 1.57° for all plots. 
g–j, Calculated Landau level sequence corresponding to the bands in c–f. The 
size of the dots represents the size of the Landau level gaps in the Hofstadter 
spectrum. For A-tw-A stacking, the major sequence of filling factors near the 

charge neutrality is ±2, ±6, ±10, …, regardless of the displacement field, 
whereas for A-tw-B stacking the Landau levels evolve into a symmetry-broken 
sequence that has 0, ±8 as the dominant filling factors with largest gaps in a 
finite displacement field. An anisotropy term of β = −0.01 is included in all of the 
above calculations (see Methods). k, l, Experimentally measured Landau levels 
in MATTG near the charge neutrality. We find the strongest sequence of ±2, ±6, 
±10, … at both D = 0 and D/ε0 = 0.77 V nm−1, consistent with the A-tw-A stacking 
scenario.
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Extended Data Fig. 2 | Device schematics and device optical picture. a, Our 
device consists of hBN-encapsulated MATTG etched into a Hall bar, Cr/Au 
contacts on the edge, and top/bottom metallic gates. For transport 
measurements, we measure current I, longitudinal voltage Vxx, and transverse 

voltage Vxy, while tuning the density ν and displacement field D by applying top 
gate voltage Vtg and bottom gate voltage Vbg. b, Optical picture of devices A and 
B. Device C is lithographically similar.



Extended Data Fig. 3 | Robust superconductivity in other MATTG devices 
(devices B and C). a, R xx–T curve. b, Vxx–I and dVxx/dI–I curves. c, I–B map in 
device B with a smaller-than-magic-angle θ ≈ 1.44°. In this device, maximum 
TBKT ≈ 0.73 K. The choice of ν is to display the Fraunhofer-like Josephson 

interference, which demonstrates the superconducting phase coherence.  
d–f, As in a–c, for device C, with a twist angle θ ≈ 1.4°. Device C has a maximum 
TBKT of ~0.68 K. f shows a regular B-suppression of Ic with B. Both devices show 
sharp peaks in dVxx/dI at their critical currents.
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Extended Data Fig. 4 | Vxx–I curves and critical current Ic in MATTG.  
a, Forward (red) and backward (blue) sweeps of Vxx–I curves for the optimal 
point ν = −2.4 and D/ε0 = −0.44 V nm−1. Inset, A clear hysteresis loop exists in  
the curve at I ≈ 550–600 nA. b, Map of Ic versus ν and D in the major 
superconducting regions. c, Evolution of Ic over D at ν = −2.4, showing that Ic 
initially increases as finite D is applied, and quickly decreases beyond local 
maxima near |D|/ε0 ≈ 0.48 V nm−1. d, Ic versus D at ν = +2.26 shows that the 

maximum Ic occurs near |D|/ε0 ≈ 0.71 V nm−1, after which Ic quickly decreases. 
The modulation of superconducting strength in D may be due to change in the 
band flatness, as well as the interactions with the electrons in the Dirac bands. 
e–g, Vxx–I and dVxx/dI–I curves for certain points in superconducting domes 
near ν = −2 + δ (e), ν = +2 – δ (f), and ν = +2 + δ (g), all showing sharp peaks in  
dVxx/dI at the critical current.



Extended Data Fig. 5 | Rxx versus ν at T = 70 mK, 5 K and 10 K. a–d, Measured at D/ε0 = 0.77 V nm−1 (a), D/ε0 = 0.52 V nm−1 (b), D/ε0 = 0.26 V nm−1 (c) and D/ε0 = 0 V nm−1 (d).
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Extended Data Fig. 6 | Hall density analysis. a–c, Linecuts of R xx, R xy and νH 
(right axis) versus ν at representative D from high to zero, showing the 
bounding of major superconducting phases within the Hall density features. 
Vertical red, yellow, and dark blue bars denote ‘gap/Dirac’, ‘reset’ and ‘VHS’ 
features, respectively, and the light-blue regions denote superconductivity. 
Purple dashed lines show the expected Hall density. We note that there are 
some small regions right before ν = +1 and ν = +2 where for certain D values there 
are signatures of a more complex behaviour in νH, with VHSs possibly very close 

to the ‘resets’, as shown in Fig. 2b. d, The Hall density νH extracted from smaller 
magnetic fields of B ≈ 0.1–0.3 T reveals a VHS boundary close to the weak 
superconducting phase boundary near ν = −2 + δ, which is absent in the Hall 
density shown in a–c and Fig. 2b extracted from a higher magnetic field of  
B ≈ −1.5 T to 1.5 T. e, R xx in the same region as shown in d, where the 
superconducting boundary is close to the VHSs. All measurements are 
performed at the base temperature T ≈ 70 mK. SC, superconducting.



Extended Data Fig. 7 | Quantum oscillations and effective-mass analysis. All 
data shown here are measured at D/ε0 = −0.44 V nm−1. a, b, Quantum oscillations 
at ν = −2.86 (a) and ν = −2.5 (b) at different T. Grey dashed lines show the peaks 
used for analysis. Inset, Fit to the Lifshitz–Kosevich formula for the extraction 
of the effective mass, yielding m*/me = 1.25 ± 0.13 (a) and m*/me = 0.95 ± 0.03 (b). 
c, d, Quantum oscillations sampled at coarser points in T for the same ν as in 

a, b. Extracted effective-mass values with these coarser data are  
m*/me = 1.2 ± 0.2 (c) and m*/me = 0.96 ± 0.09 (d), matching the values from a, b 
within the uncertainty. e, Quantum oscillations at ν = −2.4 (optimal doping).  
f, Lifshitz–Kosevich fits for the data shown in c–e, showing δR normalized with 
its value at the lowest temperature. The peaks chosen for extraction are 
marked with triangles in c–e. Amp., amplitude; a.u., arbitrary units.
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Extended Data Fig. 8 | Analysis of the Ginzburg-Landau coherence length. 
a, b, Superconducting transitions at perpendicular magnetic fields from  
B = 0 T to B = 0.2 T (40 mT between curves) for ν = −2 − δ (ν = −2.4; a) and  
ν = −2 + δ (ν = −1.84; b), from which the Ginzburg–Landau coherence length ξGL is 
extracted. D/ε0 = −0.44 V nm−1 for both plots. Inset shows T c

50%, T c
40% and T c

30% as a 

function of B, from which we extracted the coherence length ξGL as 9.4 nm, 
12.4 nm and 16.1 nm, respectively, for ν = −2 − δ. For ν = −2 + δ, we obtained 
38.0 nm, 39.1 nm and 37.1 nm, respectively. We note that for ν = −2 − δ, the R xx–T 
curves develop an extra transition (‘knee’) below Tc at finite B, which is possibly 
related to the melting transition between a vortex solid and a vortex liquid48.



Extended Data Fig. 9 | Landau fans for intermediate D. a, b, Landau fans on 
the hole-doped (a) and electron-doped sides (b). They show the evolution 
between small D and large D, which exhibits a hybridization of the features. In a, 
the Landau fan diagram at D/ε0 = −0.34 V nm−1 for the hole-doped side shows the 
fans emanating from all integer fillings. An inward-facing fan from ν = −4 starts 
developing, which meets the outward-facing fan from ν = −3. Note also the 
appearance of an inward-facing fan from ν = −2, which meets the outward- 
facing fan from ν = −1. These observations agree with the formation of VHSs 
around these two regions in the intermediate |D|, where the electron-like 

carriers become hole-like, as illustrated in Fig. 4d, and identified in Fig. 2b.  
A small region of superconductivity starts appearing at ν = −2 + δ while the 
carriers from ν = −2 are present, as shown in Fig. 2a. In b, the Landau fan diagram 
at D/ε0 = −0.52 V nm−1 on the electron-doped side shows similar VHSs between 
ν ≈ +1–2 and ν ≈ +3–4. Similar to the hole-doped side, an inward-facing fan from 
ν = +2 develops and meets with the outward-facing fan from ν = +1. The density 
range of the inward-facing fan encompasses the appearance of a 
superconducting region at ν = −2 + δ at this D.


	Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene

	Robust superconductivity in MATTG

	Tunable phase boundaries

	Ultrastrong-coupling superconductivity

	Superconductivity emerges from the |ν| = 2 phase

	Online content

	Fig. 1 Electronic structure and robust superconductivity in mirror-symmetric MATTG.
	Fig. 2 MATTG phase diagrams.
	Fig. 3 Ultrastrong-coupling superconductivity and proximity to the BCS–BEC crossover.
	Fig. 4 Connection between superconductivity and carriers emerging from the |ν| = 2 phase.
	Extended Data Fig. 1 Stacking order in MATTG.
	Extended Data Fig. 2 Device schematics and device optical picture.
	Extended Data Fig. 3 Robust superconductivity in other MATTG devices (devices B and C).
	Extended Data Fig. 4 Vxx–I curves and critical current Ic in MATTG.
	Extended Data Fig. 5 Rxx versus ν at T = 70 mK, 5 K and 10 K.
	Extended Data Fig. 6 Hall density analysis.
	Extended Data Fig. 7 Quantum oscillations and effective-mass analysis.
	Extended Data Fig. 8 Analysis of the Ginzburg-Landau coherence length.
	Extended Data Fig. 9 Landau fans for intermediate D.




