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We propose a new current-driven mechanism for achieving significant plasmon dispersion non-
reciprocity in systems with narrow, strongly hybridized electron bands. The magnitude of the effect is
controlled by the strength of electron-electron interactions α, which leads to its particular prominence in
moiré materials, characterized by α ≫ 1. Moreover, this phenomenon is most evident in the regime where
Landau damping is quenched and plasmon lifetime is increased. The synergy of these two effects holds
great promise for novel optoelectronic applications of moiré materials.
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Introduction.—Time-reversal symmetry breaking leads
to the emergence of unidirectional modes in platforms such
as quantum Hall systems [1–3], quantum anomalous Hall
materials [4–8], or topological photonic crystals [9–13].
However, such modes, while holding exceptional promise
for the development of new devices, often require very
specific experimental conditions, such as strong magnetic
fields, significant magnetic impurity doping or a large,
macroscopic size of a device. Frequently, such systems
cannot be easily coupled to electromagnetic radiation,
limiting their experimental utility. Moreover, they are not
easily susceptible to the miniaturization necessary for
technological applications, which usually benefit from
nanoscale on-chip integration.
One of the alternative platforms in which nonreciprocity

is highly sought after are 2D surface plasmons [14–26],
collective charge density modes of fundamental importance
in controlling light-matter interactions [27–29]. These
quasiparticles can be excited using electromagnetic radia-
tion and are an essential ingredient in developing opto-
electronic devices. While nonreciprocity in the plasmon
dispersion, ωpðqÞ ≠ ωpð−qÞ, can be induced using mag-
netic field [30–33], 2D plasmons also allow for an
appealing alternative based on driving electric current
through the devices—the so-called plasmonic Doppler
effect [22–26,34]. The essence of this phenomenon boils
down to a simple Galilean transformation that distinguishes
plasmons moving along and against the electric current.
Electron flow modifies the plasmon dispersion with a

correction, ΔωðcÞ
p ∼ u · q, proportional to the drift velocity

u and plasmon momentum q. This current-induced non-
reciprocity is the conventional plasmonic Doppler effect.
Unfortunately, even in pristine graphene samples, the

drift velocity is a small fraction of Fermi velocity vF
[35,36]. Therefore, the relative magnitude of the Doppler
effect [22],

ΔωðcÞ
p ðqÞ

ω0
pðqÞ

∼
1

α

u
vF

ω0
pðqÞ
jμj ; ω0

pðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4αjμjvFq

p
; ð1Þ

is a small correction on the order of ∼3% to the graphene
plasmon dispersion in the absence of electron drift, ω0

pðqÞ
[37–41], as shown in Figs. 1(a), 1(b). Here jμj is the Fermi
energy and α ¼ e2=ℏκvF characterizes the strength of the
electronic interactions in a dielectric medium with a relative
permittivity κ. Since in the most common scenarios α ∼ 1

(e.g., monolayer graphene), its presence in the drift-free
part of the plasmon dispersion means that ω0

pðqÞ < jμj,
which is an additional limitation in the attempts to observe
the conventional Doppler effect.
Here we show that strongly hybridized, narrow band

materials characterized by α ≫ 1, can host a new, funda-
mentally quantum in nature, source of plasmonic non-
reciprocity. In such a case, the asymmetry of the plasmon
dispersion [as demonstrated in Figs. 1(c), 1(d)] is strongly
enhanced by an additional factor of α:

ΔωðqÞ
p ðqÞ∼α

Δ2
hvFq
jμj3 u ·q;

ΔωðqÞ
p ðqÞ
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pðqÞ
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hω

0
pðqÞ

jμj3
q
kF

;

ð2Þ

where Δh is the strength of hybridization between the two
bands that opens up a gap between them [see Fig. 2(a)].
Here, the relative frequency shift is amplified by the
effective fine structure factor α unlike in the conventional

Doppler effect ΔωðcÞ
p ðqÞ. The origin of this new effect can

be traced back to the hybridization effects in electronic
band structure. When plasmon frequencies exceed the
chemical potential, a regime guaranteed by the strong
interactions α ≫ 1 [42], the new mechanism dominates
over the conventional one, leading to a strong enhancement
of plasmonic nonreciprocity.
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While this new source of band structure-driven non-
reciprocity is a general consequence of band hybridization,
the necessary ingredient ensuring a drastic increase in the
effect’s magnitude is the presence of strong electron-
electron interactions. A natural platform with these attrib-
utes are the moiré materials, such as the twisted bilayer
graphene (TBG) [43–45] or the ABC stacked trilayer
graphene (TLG) [46]. This enhancement of electron-elec-
tron interactions is due to the emergence of a superlattice
with a period much larger than the atomic spacing of the
original crystal. Such a large lattice constant results in a
small Brillouin zone, giving rise to a set of extremely
narrow minibands with bandwidths on the order of tens
of meV [47,48]. Therefore, moiré materials are in
many ways an ideal realization of a strongly correlated
system: the same sample can display a record-low density
superconductivity [44,45,49], a correlated insulating
state [43,46,50], or an interaction-driven ferromagnetism
[51,52]. These narrow bands also offer a key advantage to
plasmonics: narrow-band plasmons can rise above the
particle-hole continuum, thus quenching Landau damping
[42,53]. These characteristics make moiré materials a
perfect platform to realize nonreciprocal plasmons with
long lifetimes.
In this work we focus specifically on TLG as it features a

single separated flatband that can be tuned using an
external electric field [46,49]. We employ a continuum
model [46,54,55] to perform a material-realistic calculation

of the plasmon dispersion. These simulations show a
significant plasmonic nonreciprocity, exceeding that pre-
dicted due to the conventional plasmon Doppler effect, and
thus demonstrating moiré materials as a promising opto-
electronics platform.
Minimal band structure model.—To elucidate the micro-

scopic origins of the new nonreciprocity mechanism,
we develop a minimal model capturing the essential
features of the complicated moiré band structures relevant
to the plasmonic Doppler effect. We use a toy-model
Hamiltonian H ¼ H0 þHd þHh, where

H0 ¼
k2

2m
σz; Hd ¼ Δdσz; Hh ¼ Δhσx: ð3Þ

H0 consists of two parabolic bands that can be thought of as
coming from a tight-binding model. Here m is the effective
mass large enough such that the plasmons extend above the
intraband particle-hole continuum of each band, and σx;y;z
are the Pauli matrices. To describe the energy gap sepa-
rating the flatband from the rest of the moiré minibands, we
use two mechanisms: Hd, a trivial displacement-field-like
gap, and Hh, a band hybridization term. We label the
electron energies and their Bloch eigenstates as Es;k and
ψ s;k, respectively, with a schematic band structure shown in
Fig. 2(a). We place the Fermi energy μ inside the valence
band so that it qualitatively corresponds to the flatband
of TLG.

(a) (c)

(e)

(b) (d)

FIG. 1. (a)–(d) Electron loss functions of the narrow band tight-binding models. (a), (b) Unhybridized band model (a) without and
(b) with electric current at T ¼ 0. The conventional Doppler effect imposes only a small change on the plasmon dispersion. (c), (d)
Hybridized band model (c) without and (d) with electric current at T ¼ 0. Quantum Doppler effect results in a strong plasmon dispersion
asymmetry. (e) A comparison of relative dispersion asymmetry at several drift velocity values. In a hybridized system (solid) strong
asymmetry develops, which is purely a consequence of a nonvanishing interband wave function overlap, in contrast to an unhybridized
system showing only a conventional Doppler effect (dashed). Here qM is the length of the Γ −M vector of the moiré Brillouin zone.
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Plasmons in narrow-band materials.—Collective charge
modes correspond to the nodes of the dynamical dielectric
function εðω;qÞ ¼ 1 − VqΠðω;qÞ, where Vq ¼ 2πe2=κq
is the Coulomb potential. We calculate the electron polari-
zation function Πðω;qÞ within the random phase approxi-
mation [56]

Πðω;qÞ ¼ 4
X

k;s;s0

ðfs;kþq − fs0;kÞFss0
kþq;k

Es;kþq − Es0;k − ω − i0
; ð4Þ

where
P

k denotes integration over the Brillouin zone and
the indices s, s0 run over electron bands. The factor of 4
accounts for the fourfold spin and valley degeneracy
mimicking the degeneracy of the TLG superlattice. Here
fs;k is the Fermi-Dirac distribution, and Fss0

kþq;k ¼
jhψ s;kþqjψ s0;kij2 describes the overlap between the Bloch
eigenstates.
Origins of plasmonic nonreciprocity.—We now focus on

explaining the behavior of the plasmon modes in this toy
model with an electron carrier drift present in the system.
As the interband terms in the polarization function will be
suppressed by the large denominator on the order of the
band gap energy scale, it is therefore sufficient to focus
only on the intraband contribution. To that end we expand
the intraband term in powers of 1=ω to obtain

Πðω;qÞ ≈ A1ðqÞ
ω

þ A2ðqÞ
ω2

þ A3ðqÞ
ω3

þ � � � : ð5Þ

The coefficients in the above expansion are

AnðqÞ ¼ 4
X

k

f̃kðF−−
k;kþqΔEn−1

kþq;k − F−−
k;k−qΔEn−1

k;k−qÞ; ð6Þ

with ΔEn
k;k0 ≡ ðE−;k − E−;k0 Þn corresponding to the nth

power of the energy difference of the intraband transitions,

and f̃k ≡ f−;k−mu denoting the drift-modified distribution
function as described in the Supplemental Material [57].
These expressions rely on the Fermi energy μ placement in
the valence band s ¼ − and hence the conduction band
being completely unoccupied at low temperatures.
Now we analyze the most insightful regime of

jμj ≫ Δd;Δh. We expand the band overlap factors and
the energy differences in the small-q limit and then focus
only on the leading k behavior of AnðqÞ. We begin with the
A1ðqÞ coefficient, obtaining

A1ðqÞ ≈ −
2

π

Δ2
huq

3 cosðθuÞ
jμj3 ; ð7Þ

where we approximated the Fermi energy as jμj ≈ k2F=2m
and θu is the angle between q and u. As expected, in the
absence of drift current, u ¼ 0, the time-reversal symmetry
is preserved and the odd 1=ω powers in expansion of
Πðω;qÞ vanish [58]. Furthermore, if there is no hybridi-
zation between the bands, Δh ¼ 0, the 1=ω contribution to
the polarization clearly vanishes.
Following the same approach, we now evaluate A2ðqÞ

and A3ðqÞ. To the leading order in q we can set the band
overlap factors in Eq. (6) as unity, finding

A2ðqÞ ≈
2

π
jμjq2; A3ðqÞ ≈ −

4

π
u cos θujμjq3: ð8Þ

The q dependence of the AnðqÞ coefficients is easily
understood. This is because the lowest possible contribu-
tion to the polarization function is always of the order ∼q2
[56] and thus the first term that can be an odd function of
the angle cosðθuÞ has to scale as q3.
We are now in a position to obtain the plasmon

dispersion ωpðqÞ using the cubic equation

0 ¼ ω3 −
2παvF

q
½A1ðqÞω2 þ A2ðqÞωþ A3ðqÞ�; ð9Þ

with vF ¼ kF=m. Solving this equation perturbatively in
the powers of the electron drift velocity u we find the
plasmon dispersion as

ωpðqÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4αjμjvFq

p
− 2α

Δ2
hvFq
jμj3 u · q − u · q; ð10Þ

which is the central result of our work. It is the last two
terms in the above expression that are behind the plasmonic
nonreciprocity in the presence of electron drift.
Quantum Doppler effect.—The second term in Eq. (10)

is the new source of plasmonic nonreciprocity, which
dominates in narrow-band materials. To see this we analyze
the system parameters’ dependence of the Doppler
corrections.

(a) (b)

FIG. 2. (a) The polarization function contribution of the
interband transitions (red), unlike that of the intraband transitions
(green), is suppressed for ω smaller than the band gap
Δ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

d þ Δ2
h

p
. (b) Shift of the plasmon dispersion obtained

from the tight-binding model due to the quantum (solid) and the
conventional (dashed) Doppler effect for different degrees of
band hybridization γ. Here Δh ¼ γΔ and Δd ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
Δ to

keep the gap Δ constant.
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The conventional Doppler shift (last term) depends only
on the drift velocity u and thus its magnitude is only weakly
tunable. For q ∼ kF it is a fraction of the chemical potential,

ΔωðcÞ
p ≈ ukF ≈

u
vF

jμj; jμj ≈ vFkF; ð11Þ

as the drift velocity u is always smaller than the Fermi
velocity vF. This contrasts the quantum contribution, the
second term in Eq. (10), where the effect’s magnitude can
be drastically increased by effective fine-structure constant
α. At momenta q ∼ kF it is

ΔωðqÞ
p ≈ 2α

u
vF

Δ2
hv

2
Fk

2
F

jμj3 ≈ 2α
u
vF

Δ2
h

jμj; ð12Þ

and thus a large α offers a parametric increase of the effect.
This is exactly the behavior we expect in narrow-electron
band systems where α ≫ 1.
To further demonstrate this point we perform numerical

calculations based on the narrow-band tight-binding model
described in the Supplemental Material [57]. The plas-
monic dispersion in the absence of the electric current is
shown in Figs. 1(a), 1(c) for two parameter regimes: one
with strongly hybridized bands due to the Δh term, and the
other with decoupled bands simply displaced by a finite
energy Δd. In both scenarios the parameters are chosen to
keep the same bandwidth and band gap of 10 meV. Both
cases exhibit qualitatively similar behavior—plasmons’
dispersions settle between the intra- and interband par-
ticle-hole continua as guaranteed by α ≫ 1 [42]. However,
when electric current is introduced, the striking difference
between them is immediately apparent. While in the
unhybridized case the observed nonreciprocity is minute,
Fig. 1(b), in the system with hybridized bands a strong
asymmetry in plasmon dispersion arises, see Fig. 1(d). The
nonreciprocity can be quantified by the dispersion asymme-
try between the q and−qmodes ½ωpðqÞ − ωpð−qÞ�=ω0

pðqÞ,
displayed in Fig. 1(e) for both cases. While the conventional

effect is present in both cases, the calculation in a strongly
hybridized system reveals a remarkable, order of magnitude
enhancement over the unhybridized one in agreement with
the analytical calculation. This comparison between the
conventional and the quantum Doppler effect is further
exemplified by the crossover from the strongly to weakly
hybridized system shown in Fig. 2(b). We vary the degree of
band hybridization γ while keeping constant the bandwidths

and band gaps, and plot ΔωðcÞ
p ¼ A3=2A2 and ΔωðqÞ

p ¼
παvFA1=q, with the latter clearly dominatingwhen the bands
are strongly hybridized.
We highlight that the A1ðqÞ term responsible for the

quantum Doppler effect is not just a special feature of our
model, but rather is universal to any system with hybridized
bands. In fact, the 1=ω term appears also in the graphene
Doppler shift calculations [22,25], but because the relevant
plasmon frequencies are smaller or comparable to the
Fermi energy ωp ≲ jμj, the A1ðqÞ term is suppressed by
a small ratio of q2=k2F. More generally, the origins of the
A1ðqÞ coefficient stem from a finite difference of the band
overlap functions. This overlap measures the extent to
which wave functions’ spectral weight at different momenta
come from the same bands. It is strongly dependent on the
band hybridization and reaches unity far from the band
crossing points as jμj becomes larger. Indeed it is the
relation between the chemical potential and the plasmon
frequency which determines the crossover to the regime in
which quantum contribution dominates,

ΔωðqÞ
p ðqÞ ≳ ΔωðcÞ

p ðqÞ ⇒ ω0
pðqÞ≳ jμj; ð13Þ

as indicated in the Fig. 1(e).
Doppler effect in moiré materials.—We turn now to a

particular material realization of this phenomenon—ABC
stacked trilayer graphene. To obtain electron bands and
Bloch wave functions we perform a realistic material
calculation using the continuum model introduced in
Refs. [46,49,54,55,57]. With that model we numerically

(a) (b) (c)

FIG. 3. Electron loss function in TLG (a) without and (b) with an applied electric current. The plasmon dispersion exhibits strong
nonreciprocity under the Fermi surface shift δk ¼ 0.2qM. (c) Relative nonreciprocity for several values of δk ¼ cqM, with c ¼ 0.05, 0.1,
0.15, 0.2 and qM ¼ 0.24 nm−1.
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evaluate the dielectric function and determine the resulting
plasmon dispersion.
Figures 3(a), 3(b) demonstrate the plasmon dispersion in

TLG without and with electric current, respectively. As in
the tight binding model, an asymmetry ωpðqÞ ≠ ωpð−qÞ
develops due to the flowing electric current. In analyzing
this figure it is insightful to compare it with the Figs. 1(c),
1(d) which reproduce qualitative features of the TLG
calculation. Most crucially, we see a plasmon mode that
rises above the particle-hole continuum and once the mode
ωpðqÞ exceeds the Fermi energy jμj a strong nonreciprocity
in its dispersion develops. This behavior is to be expected
on the basis of the analysis leading to Eq. (13).
In Fig. 3(c) we see by evaluating the nonreciprocity

measure that even for a realistic band structure and drift
velocities the induced nonreciprocity is a significant
correction to the plasmon dispersion exceeding conven-
tional Doppler effect predictions. We underline again that
the enhancement of the Doppler effect from Eq. (2) is a
general feature of systems with narrow, strongly hybridized
bands and thus not limited to TLG—we expect it to be
present, and perhaps be even more pronounced, in other
materials with these characteristics.
Summary and outlook.—A key feature shared by many

moiré materials is their remarkable flat electron bands with
extremely low Fermi velocity and, therefore, exceptionally
large effective fine structure constant α values. In this work
we showed how such strong interactions can lead to a new,
significant source of plasmon nonreciprocity. Our results
have immediate consequences of both practical and fun-
damental importance. First of all, they open a pathway to
development of optoelectronic devices with suppressed
backscattering [9,59–62], for example, plasmonic isolators
based on Mach-Zehnder interferometers [63,64], making
them a valuable addition to the nanophotonics toolbox.
Moreover, the drift-based mechanism enables a highly
tunable electrical control of nonreciprocity on a nanoscale
by simply controlling the current flow in the device. This
on-chip compactness and tunability are in striking contrast
to the mechanisms that employ the magnetic-based
approaches. Finally, introducing a nonreciprocity to the
dispersion of plasmons with quenched Landau damping is
particularly appealing, as it paves a way towards a practical
realization of various theoretical predictions, such as the
Dyakonov-Shur instability [34], that were previously lim-
ited by the plasmonic lifespan. As the collective modes in
the moiré materials are actively searched for using near-
field optical microscopy techniques [65–68], this work can
open new prospects for both fundamental and practical
applications of moiré plasmons.
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