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Plasmon-polariton modes in two-dimensional electron gases have a dual field-matter nature that endows them
with unusual properties when electrical conductivity exceeds a certain threshold set by the speed of light. In this
regime plasmons display an interesting relation with tachyons, the hypothetical faster-than-light particles. While
not directly observable, tachyons directly impact properties of plasmon modes. Namely, in the “tachyon” regime,
plasmon resonances remain sharp even when the carrier collision rate y exceeds plasmon resonance frequency.
Resonances feature a recurrent behavior as y increases, first broadening and then narrowing and acquiring
asymmetric non-Lorentzian line shapes with power-law tails extending into the tachyon continuum w > ck.
This unusual behavior can be linked to the properties of tachyon poles located beneath w > ck branch cuts in the
complex w plane: as y grows, tachyon poles approach the light cone and hybridize with plasmons. Narrow
resonances persisting for y > w, along with the unusual density and temperature dependence of resonance
frequencies, provide clear signatures of the tachyon regime.
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I. INTRODUCTION

Surface plasmon-polaritons in atomically thin electron sys-
tems feature a number of interesting and potentially useful
properties, such as strong light-matter interaction and field
confinement, as well as gate tunability [ 1-6]. Plasmon modes,
owing to their hybrid charge-field character, enable a pow-
erful near-field diagnostic for electronic properties of two-
dimensional (2D) materials [7,8]. The synchronized move-
ment of charges in different spatial regions, which consti-
tutes plasma oscillations, is sustained by long-range electron-
electron interactions. In that, the effects of EM retardation
due to the finite speed of light are typically small, since
electron velocities in solids are nonrelativistic [9]. Nonethe-
less, since models based on nonretarded Coulomb interactions
predict w ~ vk dispersion with group velocity diverging at
small k, the relativistic retardation effects inevitably become
prominent in the long-wavelength limit. Strong retardation en-
dows the plasmon-polariton modes with interesting dynamical
memory effects inherent to the 3D/2D field-matter binding in
the long-wavelength regime [10-12].

Can retardation-dominated modes be accessed without
changing the plasmon wavelength? This question was first
posed by Falko and Khmelnitskii [13], who predicted en-
hancement of retardation effects upon increasing the con-
ductivity of the electron gas. Reference [13] also uncov-
ered a truly puzzling behavior—collective modes resembling
tachyons, the hypothetical superluminal particles. The regime
of interest is reached when the dc ohmic conductivity exceeds
the threshold set by the speed of light:

o > /ec/2mw  (in Slunits: o0 > 2/eeo/ o), (1)
where the factor /¢ accounts for the dielectric environment

(below we use /¢ = 1 unless stated otherwise). In cgs units,
used in Eq. (1), ohmic conductivity has dimension of ve-
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locity, wherein 27 /c & 188 Q per square [14]. Such values
are routinely reachable in state-of-the-art 2D electron systems
[10-12]. Reference [13], by analyzing the dynamics of 2D
currents coupled to 3D electromagnetic fields, obtained modes
which, if taken for granted, would describe excitations travel-
ing at superluminal speeds. This would of course violate the
known laws of physics, leading to a conclusion that these are
some kind of ghost modes that cannot be observed directly.
Despite several attempts to clarify the meaning of these
findings [11,12,15], their relation to observable quantities has
remained uncertain.

II. PLASMON RESONANCES AT HIGH COLLISION
RATES y > o

With this motivation in mind, here we analyze plasmon res-
onances and their relation to tachyon modes. We focus on the
charge-potential linear response function of a 2D conducting
sheet, pyr = —D(w, k)¢, . The dynamical compressibility
D(w, k) is found to be expressed through the dispersive sheet
conductivity o (w) as

ko (w)
2rg(w)o (@) — iw’

D(w, k) =

The conductivity, in general, depends also on the wave num-
ber k and the ee scattering rates. However, these effects are
important only at relatively large values k ~ w/vr, whereas
the values relevant in our case are much smaller: k ~ w/c.
The dielectric constant of the surrounding medium, ignored
here for simplicity, will be accounted for below; see Eq. (18).

The spectral function Im D(w, k) describes plasmon res-
onances in several different regimes. At ¢ > c¢/2m, the res-
onances acquire an interesting recurrent character, which is
illustrated in Fig. 1. As the collision rate y grows, with
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FIG. 1. (a) Recurrent behavior of plasmon resonances in the “tachyon” regime o > c¢/2m. Plotted is the dynamic compressibility
Im D(w, k), Eq. (2), at a fixed o. Resonances evolve nonmonotonically as the collision rate y grows, first broadening, then sharpening
and developing non-Lorentzian line shapes, while the resonance frequency becomes pinned at w ~ ck value. (b) Nonrecurrent behavior at
o < ¢/2m: resonances broaden and become overdamped as y increases. (c) Pole trajectories, obtained from Eq. (4) at a fixed o. Arrows show
the direction of pole movement at increasing y; numbers indicate 2o /c values. For 270 > ¢, the poles move under the branch cuts of the
square roots in Eq. (2) (dashed lines). Positioned under branch cuts, the poles represent the Falko-Khmelnitskii tachyons, Eq. (7). The latter,

despite being undamped, Im @ = 0, do not generate propagating modes.

the conductivity o and wave number k values kept fixed,
resonances first broaden, but then, when y exceeds ck, they
begin to sharpen as y increases. Simultaneously, resonance
frequency becomes pinned at w = ck value and line shapes
change from Lorentzian to highly non-Lorentzian. Strikingly,
resonances remain sharp even when the collision rate y is
much greater than the resonance frequency w. In this regime,
line shapes become asymmetrical, cuspy, and develop tails
extending far into the w > ck continuum. At o < ¢/2m, on
the contrary, a conventional behavior takes place: resonances
broaden and weaken as y grows.

The physical reason for resonances sharpening can be
understood as a reduction in damping due to a change in
the mode makeup upon frequency approaching ck. Indeed,
at w < ck the field outside the conducting sheet represents
an evanescent wave decaying as a function of distance as
e ** with the decay parameter A = g(w). Since the latter
becomes small as @ approaches ck, the mode confinement in
the direction perpendicular to the plane becomes less tight,
leading to an enhancement in the field-matter volume ratio.
This makes the mode overlap with two-dimensional electrons
smaller and, therefore, reduces damping. Here and below we
assume that dissipation is dominated by ohmic losses of 2D
electrons; the situation in experimental systems can be more
complicated due to losses in the surrounding medium.

Plasmon resonances that sharpen when the collision rate
y exceeds resonance frequency also suggest an interpretation
in terms of motional narrowing. A resonant frequency that
has a smaller linewidth than may be expected is a common
behavior in systems where oscillations occur in the presence
of a rapidly changing environment. The motional narrowing
effect arises due to the changes quickly averaging out in
accordance with the central limit theorem, and therefore de-
coupling from the oscillating degrees of freedom. For plasmon
resonances, motional narrowing is often regarded as a signa-
ture of the hydrodynamic regime in which plasmon excitation
is shared among many particles that quickly exchange their
microscopic states through two-body scattering. In contrast,
the present problem presents an unusual situation when mo-
tional narrowing results from oscillations that are supported
by a large number of quickly relaxing degrees of freedom,

producing resonances that remain sharp even at high collision
rates y > w.

In experiment, the key system parameters—y and o—can
be varied independently by tuning temperature and carrier
density (7 and n). However, since in general the 7 and n
dependence of y and o may be fairly complicated, here it
will be convenient to view these quantities as proxies for the
experimental knobs, treating them as independently tunable
variables. This represents a meaningful choice also because
the quantity o is directly measurable, and thus the recurrent
evolution of resonances at a fixed ¢ and varying y, such as
that shown in Figs. 1 and 2, can be extracted directly from the
measurement results without knowing the exact dependence
of y and o on the experimental knobs such as T and n.

Quantitative estimates suggest that the regime of interest
is readily accessible in atomically thin materials currently
under investigation in nanoscale plasmonics [1-8]. Namely,
in graphene, the carrier mean free path can be as large as
1020 pum, exceeding by a large margin the values ~1 um
set by the threshold in Eq. (1). These aspects are discussed in
greater detail in Secs. IV and V.

It is also interesting to mention that superluminal modes
somewhat reminiscent of our tachyons have appeared
previously in the literature on the surface Zenneck wave
problem. The Zenneck wave propagates at the surface of a
lossy medium in a three-dimensional space (see Refs. [16—18]
and references therein); Maxwell equations describing these
waves admit solutions with superluminal dispersion w = c'k,
¢’ > c¢. However, the puzzling superluminal aspects aside,
our ghost modes are distinct from those in the Zenneck
problem. One difference is dimensionality (2D vs 3D);
another is the character of the EM field—residing within
the lossy medium vs the free space outside the conducting
sheet, respectively. Even more important is the different
character of the observable. The Zenneck wave can manifest
itself through resonances with radiation incident from
3D at a certain angle [16,19]. In contrast, our tachyon
modes manifest themselves through resonances in the
dynamical response functions. The relation between our
problem and the Zenneck wave problem will be discussed in
more detail elsewhere.
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FIG. 2. Frame-by-frame evolution of the resonances in Fig. 1. (a) At a constant o > ¢/27m, resonances are dispersing as the collision rate
grows from y < ck to y ~ ck; the dispersion is quenched for y > ck. In the latter case the nondispersing resonance frequency becomes pinned
at the edge of the continuum w > ck, taking values w = ck. The dependence of the resonance width vs y is nonmonotonic, broadening while
y < ck and narrowing once y exceeds ck. (b) Conventional behavior at ¢ < ¢/27: resonances broaden as y grows and are washed out once y
exceeds the resonance frequency. Insets in (a) and (b) show the trajectories of D(w, k) poles in the complex w plane, obtained by varying y .

III. RESONANCE SHARPENING DUE TO TACHYON
POLES NEAR THE LIGHT CONE

A unique insight into the properties of the resonances, in
particular, their relation with the tachyon modes of Ref. [13],
can be gained by investigating complex-w poles of D(w, k).
Here we focus on the dispersive Drude model:

I’l€2

iw =2nq(w)o(w), 3

The dispersion relation (3), after simple algebra, yields a
characteristic equation

27 ne?

B = : “

m

2 . 2 2
Wotip? o
p2 o2

The complex roots of this quartic equation can be found
explicitly. Two of these roots are the poles of D(w, k) shown
in Fig. 1(c). Two spurious roots, added when the square root
in g(w) is rationalized, are discarded.

The behavior of poles in the complex @ plane, which
is illustrated in Fig. 1(c), mimics the recurrent behavior of
resonances in the “tachyon” regime ¢ > ¢/2m: as y increases
and o is kept fixed, the poles first move away from the
real w axis, then make a U-turn and move back towards
the real axis, landing on the lower side of the branch cuts
w < —ck and w > ck. Likewise, at ¢ < c¢/2m pole trajectories
show a nonrecurrent behavior: moving gradually away from
the real axis without turning back, and then colliding at the
imaginary axis to create a pair of overdamped modes with
pure imaginary .

Quantitatively, this behavior can be described most easily
by taking the limit 2w o > ¢ in Eq. (4). In this case, as Fig. 1
suggests, the real part of @ is much greater than the imaginary
part. Ignoring the latter at first, we take the w >> y limit. This
yields a dependence

FEREER ®)
which gives the dispersion w = (Bk)'/? at large k, and a light-
like dispersion w = ck at small k, as expected. The imaginary
part of w, which provides an estimate for resonance width, can
be found by replacing @ — w — iT", and expanding in small y

and I" to first order. This gives

(,()2)/

N=—.
2a)2+f—22

(6)

Substituting 8 = 2wroy and taking o to be constant, we see
that Eq. (6) predicts a nonmonotonic dependence for I vs y.
For the resonance width, estimated as I', this behavior is in
good agreement with the recurrent evolution of resonances
and poles at varying y and constant o, as shown in Fig. 1
and, in greater detail, in Fig. 2.

At 2o 2 ¢ and high damping y, the poles of D(w, k) are
positioned directly beneath the branch cuts (see Fig. 3). In the
limit y > w, after approximating o (w) = o + ’?“’0, simple
algebra gives

. ca 2ro
wr=xvk—iy', v=-—rre—, a=——, ()
a?—1 ¢

which are the values identical to those found in Ref. [13],
with damping y’ = y‘(x‘;f_kl)z vanishing at high y. As noted
in Ref. [13], the peculiar dispersion relation with greater-
than-c group velocity does not imply superluminal signal
propagation. The reasons for that, which are somewhat subtle,
can be summarized as follows.

First, since at large y the frequencies w4 reside directly
at the branch cuts w > ck and w < —ck, the poles w = w4 do
not represent isolated singularities; rather the poles and branch
cuts must be handled jointly as compound, or unseparable,
singularities. Another point of note, which is more essential
than the “compound singularity” property, is that the poles
reside on the lower (unphysical) sides of the branch cuts,
which separate the poles from the upper imaginary half plane
Imw > 0. Since it is the w dependence in that half plane
that governs time evolution of a response, the poles separated
from the Imw > 0 domain by branch cuts cannot create,
on their own, any v > ¢ modes. More formally, below we
demonstrate that these poles give no singular contributions
to the spectral function because their residues vanish; see
Eq. (12) and accompanying discussion. Instead, the poles
under the branch cuts alter the shapes of the resonances
positioned at w < ck, which remain sharp even when y >
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FIG. 3. (a),(b) Evolution of resonances at a fixed y upon 27 o /c increasing from 1 to 5. Resonances sharpen as o increases; in (b) they
sharpen and narrow down despite the fact that the resonance frequency remains smaller than y . (c) Pole trajectories found from Eq. (4) plotted
at a fixed y for 2o /c varying from 0.01 to 20. The direction of pole movement is indicated by arrows. The light-cone branch cuts |@| > c|k|
are shown by dashed lines; y values are indicated next to arrows. Tachyon modes arise at large o as the poles move towards the branch cuts;
the resonances sharpen as the tachyon poles approach the light cone w = ck.

but acquire asymmetric line shapes with the tails extending
into the tachyon continuum w > ck.

IV. EXPERIMENTAL ACCESSIBILITY OF THE
“SUPERLUMINAL” REGIME ¢ > ¢/2n

Here we provide quantitative estimates which illustrate
that the regime o > ¢/2m is readily accessible in atomically
thin conductors such as graphene monolayer and bilayer. To
facilitate estimates, we write Drude conductivity as

2 2
o= 88,
m A h
where kr and £ are the electron Fermi momentum and mean
free path values and g; = g, = 2 describes the spin and valley
degeneracy. Using this result, the relation o > ¢/2mw can be
written as a condition for the mean free path:

hic 1

(=
7 2 2k

(®)
Evaluating kr for a typical carrier concentration n =
10'? em™* we obtain the value 5;- ~ 9 nm. Multiplying this

hic ~

result by 27 & 137 brings the condition in Eq. (8) to the form
£>1.2 pum.

However, the mean free path values in high-mobility graphene
monolayer and bilayer routinely reach 10-20 pm, which is
comfortably in the range set by the bound in Eq. (8). This
indicates that the condition o > ¢/2m can be easily met.

The condition o > ¢/2m can also be achieved in metallic
few-atom-thin films, a system where surface plasmons have
been investigated recently [20]. In thin films, the carrier mean
free path is limited by the film thickness, i.e., is relatively
short. However, the carrier density in films is much greater
than in graphene. For example, for a few-nanometer-thin film
the effective 2D carrier density is on the order n &~ 10'7 cm ™2,
whereas ¢ &~ 1 nm. Comparing to the above we see that the
shorter mean free path value is balanced by the larger kr value,
so that the condition o > ¢/27 remains reachable.

V. THE “SUPERLUMINAL” PLASMONIC RESPONSE

To validate the picture discussed in Secs. I and II, we
consider the charge-potential response in the time domain:

o0
mm=—/ dr'Dy(t — (e, ©)
—0Q
corresponding to p, x = —D(w, k)¢, « at a fixed wave num-

ber k. The memory function Dy (¢t — t') equals

Di(1) = / d—“’e—"wa(w, k). (10)
o 2T
Here the integral runs over a straight path —oo < @ < oo just
above the real axis. The causality condition Dy(t < 0) =0 is
ensured, as always, by analyticity of D(w, k) in the upper half
plane Imw > 0.

To see why the expression in Eq. (2), when plugged into
Eq. (10), does not generate propagating modes with v > ¢, we
start with a simple technical observation regarding analytic
properties of g(w). The quantity g(w) is real in the domain
—ck < w < ck and purely imaginary at ® > ck and v < —ck
with a sign that must be determined by analytic continuation.
The recipe for continuation follows from analyticity of g(w)
in the half plane Im w > 0, prescribed by causality. Therefore,

g(w) should be treated as / k2 — (wf—z’o)z with an infinitesimal

positive shift in w, giving

,/kz—“’,—f, —ck < w < ck,
— (11)
—isgnw,/% —k*, o < —ck, o > ck,

where the sign factor —sgn w for the cases w > ck and w <
—ck arises due to analytic continuation through the upper
half plane. A simple consequence of this result is that the
dispersion equation obtained in Ref. [13] does not have so-
lutions at the real axis on the upper side of branch cuts. The
solutions given in (7) are located under the cuts @ > ck and
o < —ck. Therefore, from the point of view of analytical
properties, they represent fictitious poles or, more precisely,
the poles located on a nonphysical sheet of the Riemann

q(w) =
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surface of complex frequency w. As such, they do not generate
propagating modes.

This point can be illustrated by transforming the expression
in Eq. (2) in the y > o limit to the form

ack?* (e c2k? — ? + iw)

Do, k) = a?c2k? — (a2 — Dw?

12)

where we replaced o (w) in Eq. (2) by 0 = ca /27, and ratio-
nalized the denominator by multiplying it by a+/c2k? — w? +
iw. This expression has poles on the real axis at the tachyon
frequencies w = vk with v > ¢, Eq. (7), so long as o > 1.
However, these poles give a vanishing contribution to the
spectral function evaluated at Im w = +i0 because the numer-
ator, owing to the sign prescription found above, Eq. (11),
vanishes at the poles. As a result, the spectral function is
smooth at the tachyon frequencies |w| > ck. This is clearly
seen in the resonances shown in Figs. 1 and 2, which have
smooth tails extending into the tachyon continuum with cusps
at w = ck but no singularities at w > ck.

Next, we proceed to derive the response function given
in Eq. (2) and estimate the relevant experimental parameter
values. We start with EM equations in 3D space due to 2D
currents, for generality adding a dielectric constant of the
surrounding medium. Using Fourier harmonics, in Lorentz
gauge we have k - Ay, — 2e¢p., = 0, and

w? 4r w? 41
<k2 - 8>Ak,(u = Jk,w’ (k2 - 8)¢k,a) = Pk,w-
C C C 1

Taking z axis to be perpendicular to the 2D sheet, and working
in a mixed Fourier representation,

Go@ =) G prw@ =) proe™,
k. ke
where from now on k is two dimensional, we have
2
W 4
(22 -8+ %)o@ = - pr0d@.  (13)
c £

? 4
P =k + e )Aro(@) = ——jr,8). (14
z 2 c s
Solving Egs. (13) and (14) for the z dependence gives

2 w 2 j o _
Pro(@) = 220 a0l g (o) = IO gl
eq(w) cq(w)

with g(w) = /k? — ‘f—,z )

These relations must be combined with the conductivity
response j' = o (w)E. Here the prime indicates the induced
current, whereas the quantities in Eq. (15) should be taken as
sums of the external and induced contributions, p = 0’ + Pext
and j = j' + j.. Writing E = —V¢ — %B,A and using the
continuity relations for the 2D currents and charges, pr, =
ik - Jr.o» We eliminate variables p and ¢ to obtain

. L 2mo(w) (. c? .
Jew = lwm(lkw - @k(k '.Ik,w))s (16)

s)

with j = j' + j.,. This relation can be put in the form of a
2 x 2 matrix response function, j; , = M(jy , + Jji)- For

longitudinal waves jy ,, || k, J,";"; || kK we obtain

. _ 1 eext __ iws seXt (17)
To = T 3700 = e — 2nq(@)o (@) %

Dynamical compressibility can now be found by substituting

in place of ji*i the current induced by an external potential,

—io (w)kgyp, . Relating the net current j = j' + j, to the net
charge as p = ik - J gives
ko (w)e

iwe — 2 q(w)o (w)

Pk = e (18)
which is the result in Eq. (2) generalized to ¢ # 1. As a
sanity check, at @ = 0 we recover the standard result for an
ideal conductor p; = —%qﬁk, where the minus sign describes
perfect screening of an external potential by induced charges.

The result in Eq. (18) can be related to the ¢ = 1 result in
Eqg. (2) by absorbing ¢ into rescaled parameters,

o
c—>C0=—, 0—>6=—, (19)

Je &

upon which the dimensionless ratio « = 2o /c is reduced by
a factor /¢. Accounting for this change, the results above can

be applied directly, with the condition in Eq. (1) replaced by

o > % and so on. For a system of size L = 20 um, using
the value ¢ &~ 11 (sapphire), the resonance frequency is wy =
%L = 21w x 2.26 THz. This value can be reduced by using

proximal gates to screen the electron-electron interactions.

VI. DISCUSSION AND CONCLUSIONS

Plasmon resonance sharpening, occurring when the col-
lision rate exceeds the resonance frequency, y > w, is a
striking behavior that can be attributed to motional narrowing
due to many quickly relaxing microscopic degrees of freedom
that plasmon excitations are made of. Motional narrowing of
collective modes is of course familiar in the hydrodynamic
regime, taking place in plasmonics when plasmon frequency
is smaller than the electron-electron scattering rate, w <
Yee. Here we encounter a more exotic behavior: resonance
sharpening through motional narrowing arising due to rapid
momentum-relaxing collisions. It is usually taken for granted
that high collision rates y > w produce rapid damping that
broadens plasmon resonances. However, as the discussion
above demonstrates, this simple intuition fails for electron
systems with conductivity taking high “superluminal” val-
ues o > c/2m. In this case, perhaps somewhat counterin-
tuitively, rapid relaxation gives rise to abnormally narrow
resonances.

This surprising behavior can also be linked to the peculiar
evolution of poles of the response function in the complex fre-
quency plane. At small y the poles represent the conventional
collisionless plasmons. As y grows, the poles move under the
branch cuts, turning into tachyon modes with faster-than-c
group velocity, first predicted by Falko and Khmelnitskii.
Since the poles are positioned on the unphysical sheet of the
complex frequency Riemann surface, they do not result, by
themselves, in propagating modes. However, as these super-
luminal poles approach the light cone w = ck, they influence
the observable response by producing plasmon resonances
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with distinct non-Lorentzian line shapes and sharpening them
despite the collision rate being high. These features, along
with a characteristic nonmonotonic dependence on experi-
mental knobs, provide clear signatures of the tachyon regime.
The relation between tachyon poles and plasmonic resonances
that sharpen when conductivity increases above the threshold
value set by the speed of light can therefore be useful as a way
to probe the elusive tachyon modes.
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