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We investigate the origin of imperfections in the fidelity of a two-photon controlled-phase gate
based on two-level-emitter non-linearities. We focus on a passive system that operates without
external modulations to enhance its performance. We demonstrate that the fidelity of the gate
is limited by opposing requirements on the input pulse width for one- and two-photon scattering
events. For one-photon scattering, the spectral pulse width must be narrow compared to the emitter
linewidth, while two-photon scattering processes require the pulse width and emitter linewidth to be
comparable. We find that these opposing requirements limit the maximum fidelity of the two-photon
controlled-phase gate for Gaussian photon pulses to 84%.

I. INTRODUCTION

A central requirement for quantum computing is a
method to coherently interact at least two information
carriers. For quantum computing platforms based
on photonic qubits, these interactions can be pro-
duced by ‘off-line non-linearities’ consisting of mea-
surements and feed-forward [IH7], or ‘in-line’ non-
linearities based on a non-linear material through
which two or more photons interact [8] [9].

Recent experiments have demonstrated major steps
towards in-line deterministic controlled phase gates
and photonic switches mediated by coupling the po-
larisation of a single photon to the spin state of an
emitter. This has been achieved for Rubidium atoms
strongly coupled to optical cavities [I0HI2], a quan-
tum dot inside a photonic crystal cavity [13], and ni-
trogen vacancy centers in diamond [14]. Moreover, by
applying single-qubit rotations to the atom with /2-
pulses from external lasers, the atom—cavity systems
may function as conditional gates for qubit states en-
coded in the polarisation of two temporally separated
photons [14,[15]. Deterministic switching between two
photonic qubits may also be realized by encoding in-
formation in other degrees of freedom. Frequency en-
coding can be used in systems where an emitter is
strongly coupled to an optical cavity, where the atom
dresses the energy levels of the cavity, resulting in en-
ergy levels of the dressed cavity which are not equally
spaced [16]. The frequencies of the control and signal
photons may be chosen such that the signal only cou-
ples to the cavity if the control photon is present [I7}
19]. The time degree of freedom is used in a scheme
proposed by Johne et al. [20] and relies on capturing
the first of two temporally separated photons. The
non-linear interaction in the scheme occurs because of
the energy difference of the exciton—bi-exciton tran-
sition in a quantum dot placed in an optical cavity,
and relies on the ability to detune the dot frequency
externally to capture a photon in the quantum dot.

Here we investigate a scheme for a passive
controlled-phase gate for two uncorrelated, indistin-
guishable photons in a dual-rail encoding. The scheme
employs two two-level emitters, which mediate photon
non-linearities due to their saturability. In contrast to
the gates discussed above, the scheme does not rely on
any external modulations such as lasers to prepare or
alter the emitter states, and it does not require any
dynamical trapping processes. Although it has been
shown that such a gate can never perform with perfect
fidelity [21], the purpose of this work is to understand
the limits and origins of its imperfects with a view
towards improved future implementations. The con-
sidered gate relies on the non-linearity-induced cor-
relations obtained when two photons simultaneously
scatter on a non-linear scatterer such as a two-level
system [21H24]. We also note, however, that recent
developments now allow for the fabrication of very
high Q-cavities [25, [26], and if their intrinsic non-
linearity dominates the losses, a splitting of the en-
ergy spectrum arises through the non-linear Kerr ef-
fect [27]. This anharmonic splitting is similar to that
in an emitter—cavity system [28], for which the pres-
ence of one photon prevents a second photon of the
same frequency from coupling to the emitter—cavity
system. As such, though we will focus here on us-
ing two-level systems such as semiconductor quantum
dots, these highly non-linear resonators are also viable
candidates as non-linear systems.

This paper is organized as follows. In Section [
the basic gate structure and components are intro-
duced, and the gate operation in an idealised case is
discussed. In Sections [Tl and [[¥] a more realistic sce-
nario is analysed and the linear and non-linear gate
operations are described. A general fidelity measure
is considered in Section [V]to quantify the gate perfor-
mance, and we conclude our findings in Section [V
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FIG. 1. (a) Schematic of the controlled-phase gate, which
uses chiral waveguides, directional couplers, phase shifters,
and two identical quantum emitters. The central idea of
the gate is that the directional couplers act as 50/50 beam
splitters, and as such the input state |1.)|1s) gives rise to
a Hong—Ou—Mandel bunching effect which can access the
inherent non-linearities of the emitters. Only the |1.)|1s)
input state bunches in this way, while all others transform
linearly, thus providing a fundamental non-linear interac-
tion which can realize a two-photon gate. We focus on the
chiral setup illustrated in (a), though an equivalent scheme
can be realized with convention bi-directional couplers as
shown in (b). Note that the ’1’ arm for the control and
signal is interchanged at the output ports in both cases.

II. THE CONTROLLED-PHASE GATE

The structure implementing the gate, shown in
Fig. [1, consists of two phase shifters, two directional
couplers, and two two-level emitters, which is similar
to the systems in Refs. [I} 29, 30]. In Fig. [[[a) we
envisage chiral waveguides, for which propagation is
permitted only in one direction. We note, however,
that an equivalent scheme can be realized by using
standard bi-directional waveguides with emitters or
perfectly reflecting mirrors placed at their ends, as il-
lustrated in Fig. [I{b). For concreteness we shall focus
on the chiral setup of Fig. a), though all of our sub-
sequent analysis equally applies to the two-way setup
in Fig. b). The central idea behind the scheme is
that the components and waveguides are arranged in
such a way that only the combined control and signal
input state |1.)|1s) accesses the non-linearity of the

two-level systems.

To gain some intuition, we first consider quasi-
monochromatic input pulses, having a bandwidth
much narrower than that of the emitters. Since
the state of one photon can affect the state of the
other, we must in general consider how pairs of pho-
tons are transformed by the gate components. Con-
sider first the evolution of two photons in the state
[0.)|0s). From Fig. [I| we see that these photons each
pick up a phase of ¢, producing the transformation
|0.)[0s) — €%¥]0.)]05). For input states |1.)|0s) or
|0c)|1s), the photon in the |0) state again picks up a
phase of ¢, while the other passes through the direc-
tional couplers and a two-level emitter. The direc-
tional couplers act as 50/50 beam splitters, affecting
the mode transformation

t .
[aﬂ L {1. 1] [ail : (1)
a1 \/i -1 a1s
where al |¢) = |1.) and al |¢) = |1,) with |¢) de-
noting the vacuum. In this simplistic monochro-
matic scenario, let us assume a single photon inci-
dent on the emitter acquires a phase of 6. Then
the combined effects of the two directional couplers
and the emitter cause the transformation |1s) —
—ie?|1,) and |1.) — —ie'?|1,). Therefore the pho-
tonic states transform as |1.)|0,) — —ie'?el?|1,)|0,)
and [0.)]15) — —ie¥e?|0.)|1.). Considering now the
input state |1.)|1s), we find that the action of the
first directional coupler is to give rise to the Hong—
Ou-Mandel interference effect; immediately after the
first directional coupler we have a state proportional
to ((al,)? + (al,)?)|#), in which two photons are inci-
dent on each emitter in superposition. We denote the
phase acquired by a two-photon state passing through
an emitter as x, and therefore find that following the
second directional coupler we have the transformation
[1e)[1s) — (—1)%eX[1)[1s).
Collecting these results and relabelling —i|l15) —
[1.) and —i|l.) — |1,) we find

1s) — e%e?]0.)|15)
Os> — ei¢ei0|1c>|os>
1s) — eX[1.)|1). (2)

If the emitters acted as linear optical elements, we
would have y = 26. Absorbing the phases ¢ and
6 into the definitions of |0) and |1) respectively, the
transformation is locally equivalent to the identity and
therefore does not mediate any two-photon interac-
tion. However, if the emitter—photon interaction can
be tailored such that 8 = ¢ and x = 2¢+, the trans-
formation in Eq. becomes proportional to the de-
sired control phase gate unitary diag(1,1,1,—1). As
such, if the conditions # = ¢ and x = 2¢ + 7m can
be met a controlled-phase gate is realized. Though
we do not expect this to be possible with perfect ac-
curacy [21], in what follows we shall explore the dif-



fering requirements on the pulse shape relative to the
emitter linewidth which these conditions impose.

In addition to the two-level-emitters, the other es-
sential components of the gate are the directional
couplers needed to produce the transformation in
Eq. and induce the Hong—Ou—Mandel effect for
the input state |1.)|1s). These components may be
realized in various waveguide technologies, such as
silica-on-silicon ridge waveguides [31], GaAs photonic
ridge waveguide circuits [32], photonic crystals waveg-
uides [33], or silicon on insulator platforms [34], where
in all cases the length of the coupling region must be
engineered such the symmetrical beam splitter rela-
tion in Eq. is achieved. We also note, that due to
the choice of directional coupler, the output port of
the ‘1’ control and signal states are swapped, as indi-
cated in Fig. (a). This amounts to nothing more than
notation, and could easily be rectified by introducing
a crossover between the two ‘1’ outputs.

For proper functionality of the gate, the input states
[0c)]0s), |1c)]0s), and [0c)|1s), which only experience
linear scattering effects, and the input state |1.)|1s),
which undergoes a non-linear transformation, must all
provide the desired output states in Eq. when 6 =
o and x = 2¢ + 7. These scattering-induced changes
are investigated below, treating the linear and non-
linear case separately.

III. LINEAR GATE INTERACTIONS

Let us now consider the gate components in
more detail and analyse the conditions under which
the scheme can be realized for more realistic non-
monochromatic pulsed photon inputs. We describe
a single photon pulse in the |0.) state as

o) = [ avemalmle, @

—00

where £(k) is the spectral profile of the pulse, and

agc(k) is the creation operator of photons in the con-

trol ‘0’ waveguide with momentum k. Note that we
consider a rotating frame such that %k is measured
relative to the carrier momentum, kg = wp/c. The
simple transformations in Eq. are not generally
valid for photonic wavepackets comprised by many k-
modes because the phases ¢ and 6 depend on k. In
a large-scale system, the output from one gate must
function as the input to another gate and they should
therefore only differ by a time-translation, which in
momentum space corresponds to the transformation

£(k) — £(k)e*®) with
p(k) = po + kL, (4)

where L is an additional optical path length of the ‘0’
waveguides, either induced by a change in the refrac-
tive index of the material or by a longer arm length.
When (k) is of the form in Eq. , the input state
|0c}]0s) is described by a product of two single-photon
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FIG. 2. Phase 6(k) acquired by a single-photon
wavepacket component with moment k£ propagating in a
chiral waveguide scattering on a lossless resonant emitter
(black solid line), together with a linear approximation, see
Eq. (green dashed line). By comparison, the spectrum
of a resonant Gaussian wavepacket with spectral FWHM
of 0 =T"/(vg) is shown (orange dotted line) with a scaled
intensity to match the plotting window.

states of the form in Eq. , and we write the corre-
sponding output state as |0)|0s) — |0.)|0s) with

o) = [ ket mle. )

and a similar definition for |0,). Photon pulses with
states of this form will be considered our ‘ideal’ output
states, since they are identical to the input state up
to a linear frequency-dependent phase corresponding
to a fixed temporal delay. The choice of ¢y = 7 has
been chosen in anticipation of the transformation of
the |0.)|1s) state discussed below.

We now consider changes to the two input states
with a single photon in one of the ‘1’ arms, |0.)|1s)
and |1.)|0s). The photon in the ‘0’ arm is treated anal-
ogously to Eq. , while that in the ‘1’ arm instead
interacts with an emitter. Photons passing through
the ‘1’ arms must also give rise to states differing
from input states only by a time-translation. To see
the conditions under which this is the case, we con-
sider a single-photon pulse as described by Eq.
scattering on a two-level emitter in a chiral waveg-
uide. The photon will acquire a complex coefficient
t(k) for each momentum component k, resulting in a
pulse with spectral profile ¢(k)¢(k). The frequency-
dependent transmission coefficient is [35] [36],

k= AT =) /g
T k—A+iT +9) /v

where v, is the group velocity in the waveguide, A
the momentum detuning of the emitter from the pulse
carrier frequency, I' the emitter decay rate into waveg-
uide modes, and ~ the loss rate into modes outside
the waveguide [36]. Recalling the effect of the direc-
tional couplers, we find that the states transform as
[0:)|1s) = —]0.)|1c) and |1.)]0s) — —i|15)|0s), where

t(k) (6)

-/ Takemim) ad Blg). ()



with a similar definition for |15). As previously dis-
cussed, we can simply relabel what we refer to as the
control and signal photons in the outputs, and ab-
sorb factors of —i in these definitions. We then have
|0:)]1s) = |0:)]1s) and |1.)[0s) — |1.)[0s). What is
required, however, is that each photon has a spectral
profile 1dent1ca1 to an ‘ideal’ state, |1,.) or |1,), defined
as in Eq. () with aOC replaced Wlth aj,. Or a,,.

In the loss less case, where v = 0 and |t(k)| = 1, we
can write t(k) = exp[i@(k)]. The phase 6(k) is shown
as a function of k in Fig. If the incoming single-
photon pulse has a carrier frequency corresponding to
the emitter transition frequency, A = 0, the phase can
be Taylor expanded around k/T" = 0, producing

o(k) :7r+2%+(9 (if)g (8)

where ' =T’ /vg. Keeping the condition ¢ = € in mind
and comparing Egs. @ and , we see that a good
gate performance requires |k| < T, which corresponds
to pulses with a spectrum that is much narrower than
the emitter linewidth. For spectrally broader pulses
for which £(k) extends beyond k ~ I, terms of higher
order in k will have an influence and introduce chirp-
ing effects |23 [24].

To illustrate this in more detail for a specific case,
let us consider a Gaussian single-photon wavepacket,
defined by the spectral profile

E(k) = (mo") " exp[ K/ (20")], (9)

where the spectral bandwidth (FWHM of the inten-
sity spectrum) is o = 24/In(2)c’. In Fig. |3| we plot
the magnitude of the overlap between the desired
(ideal) state and actual state for a Gaussian pulse
as described above. As expected, the overlap in-
creases when the spectral pulse width, o, is decreased.
The optimum additional path length, L, approaches
L =2v,/T" as o is decreased, which is expected from
the linear term in Eq. . For larger pulse widths,
the optimum L decreases because a straight line with
a slope smaller than 2v,/I' approximates the phase
0(k) better in this case, as seen in Fig.
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FIG. 3. Overlap between the ideal and scattered state
for logical inputs |1.)|0s) or |0.)|1s) as a function of the
additional optical length of the ‘0’ arms, L, and the input
pulse width o defined in Eq. @D

IV. NON-LINEAR GATE INTERACTIONS

The non-linear interaction occurs for the input state
[1c)|1s), where two photons may be present at the
scatterers simultaneously, introducing non-linear in-
teractions through a two-photon bound state [22].
The non-linear scattering is treated by the scattering
matrix formalism following Ref. [22], and we include
the directional coupler when calculating the scattered
state of the entire gate. The gate input consists of two
uncorrelated identical photons which we describe by

in) = / / dk A’ €(R)E(K )l (R)al,

— 00 —O0

(K)|¢). (10)

Following the action of the first directional cou-
pler, scattering on the two-level emitters, and pass-
ing through the second directional coupler, we find
[in) = |tscat) With the total scattered state given by

oo o0

scat) = / / Ak Ak’ Bucas (. k)aly (K)aly (K)[6),

where we have removed a factor of (—i)? to be consis-
tent with our definitions of the output states, and

1
Bscar (k, k') = Bacat™ (k, K+ 5b(k ), (12)

with the linear contribution given by Alinear(g k') =

t(k)t(k")E(k)E(K') and a non-linear scattering contri-
bution by

bk, k') = /_ dp (D)€ (kK —p) By piiosiry - (13)

The scatterer-dependent coefficient Byy/py is evalu-
ated in Ref. [36] for a two-level system,

V2o s(k)s(K')[s(p) +s(p)], (14)

Bikrpp =1
pp T

where

() = V2 (15)

k= A+i(T+7)/(vg)

The ideal output state in the non-linear case is

o0 o0
T Javawetsnag @,
—00 — 00
(16)
where the minus sign accounts for the required phase
flip that defines the controlled-phase gate.

To gain some insight into how well the actual state,
[tscat), approximates the ideal state in Eq. (16]), we
plot the magnitude of their overlap as a function of L
and o in Fig. ] again for Gaussian input pulses. In
contrast to the one-photon scattering case in Fig. 3] we



now see that the largest overlap is observed for pulse
widths 0 ~ 2.2I'/v,. This is because it is for these
widths that the non-linearities are strongest and the
required 7w-phase shift can be generated, consistent
with the results in Ref. [23][37]. Furthermore, the op-
timal value of L in this non-linear scattering case is
significantly lower than in the linear case. A compar-
ison of Figs. [3] and [4] demonstrates that limitations in
the gate performance are expected to occur because of
these different requirements on o and L to optimally
approximate the ideal output states in the linear and
non-linear cases, which we now explore in more detail
below.

V. FIDELITY OF THE GATE OPERATION

In order to find the optimal pulse width o and path
length difference L, we now consider the operation of
the gate as a whole. When incorporated into a larger
optical circuit, the logical input state of the gate will
necessarily be unknown, and the gate must therefore
be able to operate for any linear combination of the
four possible logical input states. As such, the gate
performance must be quantified by a fidelity based
on a worst case scenario, in which the output state
of the gate is compared to the ideal target output
state, minimised over all possible input states. A gate
fidelity meeting these requirements is defined as [38]

F(U,é>Ewg(m\m@mué(mm)), (17)

where U and & describe the transformations of the
ideal and actual gate, respectively, and F; is the state
fidelity defined by [38]

R0 = {\ptaopt}. (18)

for two density operators, p and &.
input state, |P), is given by

|0) = (|05) + B|1s)) @ (¢|0) + Y|Le))
zozC|00> +a19|01>+,8§|10) +619|11>, (19)
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FIG. 4. Overlap between the ideal and scattered state for
the |1.)|1s) input as a function of the additional optical
length of the ‘0’ arms, L, and the input pulse width, o.
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FIG. 5. Gate fidelity as a function of the additional optical
length of the ‘0’ arms, L, and the input pulse width, o.

where |04)|0.) = |00) etc. Using the definitions from
previous sections, the ideal gate transformation is

U¥) = ac|00) + ad|01) + B¢|10) — BUI1I).  (20)

If we neglect loss, the output states are pure and
the actual (possibly imperfect) transformation is de-

scribed by E(|W) (W) = T|U)(¥|Tt, with
> + 5C|I(~)> + ﬂﬁszcat% (21)
where [tgcat) is given by Eq. . For pure

states, Eq. simplifies to Fi(|a)(al, |b){(b]) = [(alb)],
and the state fidelity is therefore

T|®) = a¢]00) + |01

U7, T10)(W|TT) = |(2|0TT|¥)| =
_> (|O”9|2+|BC| ) |ﬁﬁ|2<ii|wscat> .

E(UY)

(w
[la¢* (111

(22)

To find the fidelity of the gate for a given pulse width
and path length difference, this state fidelity must be
minimised over all possible logical input states |¥)
parameterised by the coefficients «, 3, (,¥. Since the
state fidelity only depends on the magnitude of the co-
efficients and the signal and control input states both
must be normalized, the minimization in Eq. can
be carried out by varying only, e.g. |a| and |{|. By
performing this minimization for different values of o
and L, the trade-offs due to the effects of linear and
non-linear scattering can be quantified. The result is
shown in Fig. [5] where the gate fidelity is plotted as a
function of L and o, again for Gaussian pulses. The
optimum set of parameters is seen to be close to that
in Fig. [d] but shifted towards smaller pulse widths and
larger L, where the optimum was observed in Fig. [3|
This trend is expected, since Eq. effectively per-
forms a weighted average of the overlaps in Figs.
and[d] In order to confirm that the gate fidelity cor-
responds to a worse case scenario, Fig. [6] shows the
dependence of the state fidelity on the input states
for the optimum parameter set in Fig. It shows
that the state fidelity approaches unity for the state
|0c)|0s), and is above 84% for the entire state space,
as expected.

Finally, we note that our formalism easily allows
for pulse shapes other than Gaussians to be consid-
ered. Most notably, we find that Lorentzian spectral
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FIG. 6. State fidelity as a function of input states ex-
pressed by |a| and |¢| for L = 0.80v,/T" and o = 1.72I" /v,
corresponding to the maximum gate fidelity in Fig.

profiles result in a worse gate fidelity of F' = 62%. Al-
though a Lorentzian single-photon pulse is expected to
most efficiently populate a two-level-emitter, two such
coincident pulses give rise to a smaller induced non-
linearity [24], which is an essential requirement for the
gate to operate. We find that sech? pulses achieve a
fidelity marginally better than Gaussian pulses, rais-
ing the gate fidelity by only 0.5%. Ultimately active
modification of pulse shapes may be necessary if gates
based on two-level-emitter non-linearities are to attain
fidelities approaching unity [29].

VI. CONCLUSION

We have investigated in detail the feasibility of
using two-level-emitter non-linearities to construct a

passive two-photon controlled phase gate, elucidating
the scattering-induced changes to the phase of the
pulse and also non-linearity-induced changes in the
pulse spectrum. We find that these effects ultimately
limit the fidelity of a controlled phase gate based on
two-level-emitter non-linearities, giving F =~ 84% for
Gaussian input pulses. The fidelity observed here is,
however, comparable to fidelities reported for two-
photon gates which instead exploit a dynamical cap-
ture of the first photon in a strongly coupled emitter-
cavity system [I5, 20]. In addition, the dynamical
capture necessitates perfect timing of the cavity de-
tuning relative to the arrival time of the pulse, which
is avoided in the present case.
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