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Despite progress towards integrated diamond photonics1–4,
studies of optical nonlinearities in diamond have been limited
to Raman scattering in bulk samples5. Diamond nonlinear
photonics, however, could enable efficient, in situ frequency
conversion of single photons emitted by diamond’s colour
centres6,7, as well as stable and high-power frequency micro-
combs8 operating at new wavelengths. Both of these appli-
cations depend crucially on efficient four-wave mixing
processes enabled by diamond’s third-order nonlinearity.
Here, we have realized a diamond nonlinear photonics platform
by demonstrating optical parametric oscillation via four-wave
mixing using single-crystal ultrahigh-quality-factor (1 3 106)
diamond ring resonators operating at telecom wavelengths.
Threshold powers as low as 20 mW are measured, and up to
20 new wavelengths are generated from a single-frequency
pump laser. We also report the first measurement of the
nonlinear refractive index due to the third-order nonlinearity
in diamond at telecom wavelengths.

Diamond, as an attractive platform for on-chip photonics1,9,
combines the advantages of a high refractive index (n¼ 2.4) and
low absorption losses within its large transmission window (from
the ultraviolet to far-infrared). Diamond also offers excellent
thermal properties (high thermal conductivity and low thermo-
optic coefficient), enabling high power handling capabilities10.
In addition, a relatively high nonlinear refractive index11,12

(n2¼ 1.3 × 10219 m2 W21 for visible wavelengths) and the lack of
two-photon absorption (owing to its large bandgap of 5.5 eV)
make diamond a promising candidate for integrated nonlinear
optics over a wide wavelength range, spanning the visible and infra-
red. To date, on-chip nonlinear nanophotonic systems have been
realized in various material platforms, including silica13, silicon14,
Si3N4 (ref. 15) and III–V materials16,17. Some of these materials
have even been used to implement microresonator-based high-rep-
etition-rate frequency combs (up to terahertz)8,15,18–20. The diamond
nonlinear photonics platform that we demonstrate here could
potentially extend the operating range of microcombs to new wave-
lengths, resulting in temperature-stabilized frequency combs over a
wide wavelength range. Moreover, diamond offers the unique
opportunity to combine nonlinear photonics with quantum
optics: for instance, diamond nonlinearities could allow for fre-
quency translation (to the telecom wavelength range for example7)
and pulse shaping21,22 of single photons generated by its numerous
colour centres, which often emit in the visible. These processes
promise the coalescence of quantum information science with clas-
sical optical information-processing systems on the same chip.

As a consequence of an inversion symmetry in its crystal lattice,
diamond’s lowest-order non-zero nonlinear susceptibility12 is x (3).
A third-order nonlinear parametric process where two pump
photons at frequency vP are converted to two different photons at
vþ and v2 (denoted signal and idler, respectively), such that
energy conservation is satisfied by 2vp¼ vþþ v2 , is called four-

wave mixing (FWM). The FWM gain scales with the pump inten-
sity, and the pump power requirement can be reduced by confining
the light to nanowaveguides23. In addition to energy conservation,
FWM in a waveguide also entails momentum conservation or
phase-matching, which implies Dk¼ 2gPp 2 DkL ≈ 0 (refs 23,24).
Here, the second term DkL¼ 2kp 2 kþ2 k2 is the phase mismatch
due to the linear dispersion (kp, kþ and k2 are the pump, signal and
idler wavenumbers, respectively), g¼ 2pvpn2/cAeff is the effective
nonlinearity and Aeff the effective optical mode area. The term
2gPp arises from the nonlinear response to the strong pump,
which imposes self-phase modulation (SPM) on itself and cross-
phase modulation (XPM) on the generated modes that is twice as
large as the SPM18,25. This nonlinear phase shift needs to be com-
pensated for by the linear dispersion, that is, DkL . 0.
Consequently, the group velocity dispersion (GVD) of the optical
mode needs to be anomalous around the pump wavelength23,24;
that is, GVD¼2(l/c).d2neff/dl

2 . 0, where neff is the effective
index of the waveguide mode, l is the wavelength and c is the
speed of light in vacuum.

The FWM efficiency can be drastically increased by using high-Q
resonators14,26, where photons make multiple round-trips on reson-
ance, resulting in the optical intensity being enhanced by a factor of
the finesse. Optical parametric oscillation (OPO) is achieved when
the round-trip FWM gain exceeds the loss in the resonator, a
process analogous to a laser above threshold, and bright coherent
light is generated at the signal and idler wavelengths. In our
diamond ring resonators (Fig. 1), momentum is intrinsically con-
served because the optical modes are angular momentum eigen-
states27. In this case, anomalous dispersion is required to achieve
energy conservation between the cavity modes m (with different
angular momentum) that participate in the FWM process18. This
implies that the frequency separation between adjacent modes of
the ring resonator, |vm 2 vm21| (or the free-spectral range, FSR),
increases as a function of the mode number m. The resonator dis-
persion D2, given by the change in the FSR (vmþ1þ vm21 2 2vm),
thus needs to be positive for modes around the pump wave-
length18,28. The unequal frequency spacing of the resonator modes
due to anomalous dispersion is compensated by nonlinear optical
mode pulling, that is, a shift in the resonance frequencies caused
by SPM and XPM due to the pump18,25.

The intrinsic material dispersion of diamond is normal at
telecom wavelengths. The net waveguide dispersion can be engin-
eered to be anomalous through geometrical dispersion by appropri-
ately designing the cross-sectional dimensions15,20,23,28. However,
our fabrication technique (see Methods) relies on thin single-
crystal diamond (SCD) films, which are typically wedged, resulting
in a thickness variation of at least 300 nm across a millimeter-sized
sample9. This effect occurs as a result of the mechanical polishing
process for thin diamond plates (�20 mm thick) that are used to
realize our diamond-on-insulator platform4. Accordingly, the ring
resonator design has to be robust and the dispersion insensitive to
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variations in the diamond film thickness. The inset of Fig. 1b pre-
sents the mode profile for our geometry, a diamond ring resonator
on top of a SiO2/Si substrate and capped with a deposited SiO2 layer.
Figure 1b shows that, for a ring width of 875 nm, the resonator
dispersion can be made anomalous in the wavelength range of inter-
est for a range of film thicknesses (ring heights, H). Furthermore,
for a ring resonator of radius 20 mm, anomalous dispersion
for the transverse-electric (TE) mode can be achieved in the
1,300–1,800 nm wavelength range for widths of 800–900 nm and
heights of 500–1,000 nm. This is well within our fabrication
tolerances; Fig. 1a shows waveguide-coupled SCD ring resonators
with radii of 20 and 30 mm, fabricated according to a method we
have recently presented9 (see Methods).

To characterize the diamond resonators we used a fibre-coupled
transmission set-up that has been described elsewhere9,29. First,
transmission measurements were performed by sweeping a continu-
ous-wave laser (Santec TSL-510) across the telecom wavelength
range to measure the resonator quality factors Q and the coupling
of the bus-waveguide to the rings (Fig. 1c). Most devices were
found to be slightly under-coupled. Loaded Q-factors, QL, as high
as 1 × 106 were measured for the TE mode, with most devices
having QL . 2 × 105. To ensure an accurate resonance linewidth
measurement, a radiofrequency phase modulation was imparted
on the input light, which generated side bands around the main
resonance (Fig. 1d). Comparing the linewidth of the resonance
with the separation between the side bands (1–3 GHz) allowed for

a precise calibration of the wavelength/frequency axis30. Using this
method, we measured a record-high QL ≈ 1.14 × 106 and inferred
an intrinsic Q-factor of Qint ≈ 1.35 × 106 and a waveguide propa-
gation loss of 0.34 dB cm21.

The high pump powers required for OPO were obtained by
sending the input laser through an erbium-doped fibre amplifier
(Manlight). The pump was initially slightly blue-detuned and
then slowly moved into resonance. The power absorbed by the
ring caused a thermal redshift of the resonance, potentially arising
due to heating of the silica cladding or surface effects at the
diamond–silica interface. While tuning the laser deeper into reson-
ance, the output light was monitored on an optical spectrum analy-
ser (HP 70952B, Hewlett Packard). As the offset of the pump to the
resonance minimum decreased, more power was transferred to the
ring resonator, eventually resulting in the generation of pairs of new
lines—at integer multiples of the resonator FSR—around the pump.
The first side bands were generated at mode numbers

m ≈
�����������������������������
k/D2 ·

( ������������
Pin/Pth − 1

√
+ 1

)√
away from the pump28, where k

represents the resonator linewidth (cavity decay rate), D2 is the reso-
nator dispersion already discussed, Pin is the input pump power and
Pth is the threshold pump power for parametric oscillation. Tuning
the pump deeper into resonance generated several new modes
further away from the pump, finally resulting in a spectrum of mul-
tiple lines with a frequency spacing given by the FSR (Fig. 2). The
pump power coupled into the resonator is intrinsically stabilized
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Figure 1 | Integrated ultrahigh-Q SCD ring resonators. a, Scanning electron microscope (SEM) image of an array of waveguide-coupled SCD ring resonators

on a SiO2/Si substrate. Before testing, chips were covered with 3 mm of PECVD-deposited silica. Inset: magnified view of the ring waveguide-coupling section

with a �475 nm gap size for the measured device. The rings are �850 nm high, �875 nm wide and have radii of 20–30 mm. b, Robust dispersion

engineering allows for a range of ring heights to yield anomalous dispersion in the wavelength range of interest for a ring width of 875 nm. Inset: ring

resonator optical mode profile in the diamond waveguide surrounded by silica. c, Normalized transmission spectrum of a ring resonator reveals high Q-factor

modes. The radius of the ring is 20mm, corresponding to an FSR of �7.5 nm (�925 GHz). Inset: a loaded Q-factor of QL ≈ 1 × 106 is inferred from a

Lorentzian fit for the mode at 1,545.1 nm. d, Light from our tunable laser is phase-modulated at 2 GHz to produce side bands that are then used as a ruler to

calibrate the wavelength axis in our transmission measurements. Using this approach, loaded Q-factors as high as QL ≈ 1.14 × 106 are estimated.
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during this entire process, achieving a thermal ‘soft-lock’31, and
stable oscillation was observed for up to �20 min (limited by the
fibre-stage drifts).

The performance of our diamond OPO device was studied as a
function of pump wavelength. The same ring was pumped at two
different resonances, first at �1,552 nm (C-band) and then at
�1,598 nm (L-band), and their output spectra were compared
(Fig. 3). For the same pump power of �80 mW in the waveguide,
the former generates ten new lines spanning a range of 75 nm
while the latter generates 20 lines, spanning a range of 165 nm.
This effect can be explained by an increased power drop into the
ring for the larger ring-bus waveguide-coupling efficiency that
exists at longer wavelengths in our case (because the rings are
under-coupled). Additionally, this effect might be associated with
the change in dispersion with wavelength.

To determine the threshold for parametric oscillation, the output
power in the first generated side band was measured as a function of
pump power. Figure 4a shows the data for a device pumped at a res-
onance near 1,575 nm with QL¼ 9.7 × 105, where we infer a Pth of

only �20 mW in the waveguide and a conversion slope efficiency of
�2%. For pump powers above threshold, oscillation occurs into
multiple new modes, limiting the power converted to the first side
band. When pumping near 1,600 nm we infer the total power in
20 generated modes combined to be 3.9 mW (as estimated in the
waveguide) for an input pump power of 78 mW (in the waveguide)
and hence an overall conversion efficiency of �5%.

The threshold power Pth for parametric oscillation arising from
the third-order nonlinearity (FWM) can also be estimated from
theory as25,32

Pth ≈ 1.54
p

2

( ) QC

2QL

· n2 V
n2lPQ2

L

(1)

where lP is the pump wavelength, V is the resonator mode volume
and n is the linear refractive index denoted earlier. QC and QL are the
coupling and loaded quality factors of the resonator, respectively. By
measuring Pth for various devices with different Q-factors, the non-
linear refractive index n2 can be inferred in the wavelength range
around the pump. The measured Pth (estimated in the waveguide)
for eight different devices on the same chip is depicted in Fig. 4b.
From these data, we extract the first measurement of the nonlinear
refractive index of diamond in the telecom range as n2¼ (8.2+
3.5) × 10220 m2 W21, which is a factor of 1.5 smaller than the n2
value reported for visible wavelengths11,12. This is in good agreement
with the theoretical prediction of the dispersion of the nonlinear
susceptibility (longer wavelengths being more off-resonant from
the bandgap)11. Figure 4b also shows that most of the devices
measured are on the under-coupled side, consistent with the expec-
tations from transmission measurements.

We explored the limits of diamond nonlinear photonics using
numerical modelling and found that our ring resonators exhibit
anomalous dispersion (GVD . 0) over a wide bandwidth, spanning
850–2,350 nm, as shown in Fig. 5a. Thus, we believe that OPO gen-
eration beyond the current bandwidth of 165 nm in our devices is
only limited by the optical pump power propagating inside the reso-
nator and the resonator’s optical losses. Larger pump powers,
enhanced by more efficient light in-coupling and larger Q-factors,
should enable the generation of octave-spanning, high-repetition-
rate, optical frequency combs that are of interest for numerous
applications8,18,20,28,33,34. Furthermore, diamond’s large refractive
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Figure 3 | OPO spectra for different pump wavelengths. The spectra, generated from the same ring resonator for two different pump wavelengths,

�1,553 nm and �1,599 nm are shown. The pump power is the same in each case (�80 mW in the waveguide). A total of 20 new lines are generated when
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bus-waveguide and the ring resonator as well as a more favourable dispersion for longer wavelengths.
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index allows for waveguides with anomalous dispersion even at
visible wavelengths. For instance, a diamond waveguide with a
400 nm × 400 nm cross-section has GVD . 0 for a wavelength
range of 620–1,020 nm, as shown in Fig. 5b. This feature has not
been reported for other integrated nonlinear photonic platforms
and, to the best of our knowledge, is a unique characteristic of the
diamond nanophotonic platform presented in this work.
Importantly, because of its wide bandgap, two-photon absorption
and free-carrier absorption loss mechanisms are absent in
diamond for wavelengths .440 nm. All of these characteristics of
diamond, combined with its extremely large thermal conductivity
and small thermo-optic coefficient, make diamond an excellent can-
didate for temperature-insensitive on-chip frequency combs, oper-
ating over the widest wavelength range, and capable of handling
large optical powers.

In summary, we have demonstrated the first implementation
of diamond nonlinear photonics on-chip, as exemplified in an
OPO operating at telecom wavelengths, based on a fully integrated,

monolithic, SCD microresonator. The OPO leverages the
x (3)-nonlinearity of diamond to realize a FWM gain for sidebands
around the pump frequency and is used to perform the first exper-
imental measurement of n2¼ (8.2+3.5) × 10220 m2 W21 for
diamond in the telecom wavelength range. Ring resonators with
ultrahigh Q-factors near 106 enable oscillation threshold powers
as low as 20 mW in the bus-waveguide, and 20 sidebands spanning
a wavelength range of 165 nm are generated with pump powers less
than 100 mW. The total power generated in all sidebands was up to
5% of the pump power. These threshold levels and conversion effi-
ciencies are comparable to those achieved in other more established
material systems15. Despite the non-standard fabrication approach
and wedging in our diamond films, we were able to achieve a
reasonably high device yield of �30%: out of 26 devices fabricated
in a diamond film with dimensions of 570 mm × 630 mm, eight
devices showed OPO action.

Another intriguing application of our nonlinear diamond photo-
nic platform is the realization of continuous-wave, low-threshold,
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on-chip Raman lasers emitting at exotic wavelengths5. This
approach leverages diamond’s giant Raman shift of 40 THz (due
to its large optical phonon energy of 165 meV) and a large
Raman gain of 15–75 cm GW21. Diamond is also host to a wide
variety of colour centres capable of single-photon emission and is
a promising material for quantum photonic networks3,4. Single-
photon frequency conversion and pulse shaping, using diamond’s
nonlinearity, could potentially enable integrated quantum repeaters
as well as long-distance quantum communication (when extended
to the telecom wavelength range)35. Indeed, preliminary theoretical
analysis of such quantum frequency conversion based on non-
degenerate FWM shows promising efficiencies. For instance, we
have estimated a single-photon conversion efficiency of 40% of
the zero phonon line (ZPL) photons at 637 nm emitted by a nitro-
gen vacancy (NV) centre to 1.55 mm with modest pump powers of
50 mW, when using a geometry and Q-factors similar to those
reported here (see Methods)6,7. Our work thus opens up an
avenue for research in diamond nonlinear photonics, where all-
optical information-processing on-chip may be realized at both
the classical and quantum levels.

Methods
Device fabrication. The fabrication process was based on the recently described
approach for integrated SCD devices9. A 20- to 30-mm-thick type-Ib high-pressure
high-temperature (HPHT) SCD slab (Element Six) was cleaned in boiling acids
(nitric, sulphuric and perchloric, in equal ratios), then thinned to the desired device
layer thickness by cycling through Ar/Cl2, oxygen etch and Ar cooling steps in an
inductively coupled plasma reactive ion etch chamber36–38. The diamond film was
cleaned and etched on both sides to remove the layers affected by stress/strain from
the polishing process. After a final acid clean, the sample was transferred to a SiO2/Si
substrate (2-mm-thick thermal SiO2 layer). An etch mask was formed by electron-
beam lithography (EBL, Elionix ELS-F125) using XR-1541-6 and Fox 16 electron-
beam resist (spin-on-glass, Dow Corning). Previously, our EBL writing introduced
periodic scattering centres along the circumference of the devices that led to split
resonances of degenerate clockwise- and anticlockwise-propagating whispering
gallery modes9. Here, we improved the EBL writing by careful design of the layout
file in terms of continuous writing of the pattern, eliminating discontinuous jumps
of the electron beam and division of the pattern into small segments, which
potentially leads to the absence of split resonances and the observed ultrahigh Q-
factors. The pattern was then transferred to the diamond film in a second oxygen
plasma etch step. Polymer in- and out-coupling pads consisting of SU-8 resist with a
3 mm × 3 mm cross-section were then aligned with respect to the adiabatically
tapered diamond waveguides in a second EBL step to extend the diamond
waveguides to the ends of the substrate29. Finally, 3 mm of silica was deposited using
plasma-enhanced chemical vapour deposition (PECVD), to cap the devices and to
allow for controlled cleaving and polishing of the end facets.

Modelling. A finite-element mode solver (COMSOL) was used to simulate the
diamond ring resonator dispersion. The material dispersion of both the thermally
grown SiO2 under the diamond devices and the capping SiO2 deposited via PECVD
was evaluated using ellipsometry measurements, and these data were included in
mode calculations. To optimize coupling into the ring resonator modes, the gap
between the coupling waveguide and the ring resonator was designed by three-
dimensional finite-difference time-domain simulations (Lumerical). For the above-
mentioned cross-sectional dimensions, gaps of 400–500 nm yielded coupling
Q-factors QC . 5 × 105.

Single-photon conversion estimation. We estimated a conversion efficiency of 40%
from the NV ZPL at 637 nm to the telecom wavelength (1,550 nm) with 50 mW
pump power. In this estimation we used similar resonator parameters as reported
above, that is, a ring radius of 20 mm, a cross-sectional mode area of 0.5 mm2 and
intrinsic and coupling Q-factors, Qint¼ 1 × 106 and QC¼ 1 × 105, respectively
(over-coupled resonators), which correspond to a cavity–NV cooperativity of
C ≈ 12. These calculations were performed for a noiseless quantum frequency
conversion scheme based on non-degenerate FWM, where two waves act as strong
pumps and convert a signal photon into an idler photon, assuming that all four
waves are on resonance with different modes of the cavity. The analysis is similar to
that recently presented by Huang and colleagues7. Our estimate also assumes that the
NV centre is near the centre of the waveguide forming the ring resonator, that is,
close to the field maximum and ideally aligned in polarization. Given the fairly large
size of our ring resonator and the density of NV centres that can be formed by
nitrogen ion implantation, we expect to achieve NV centres positioned in the field
maximum with fairly high probability. The conversion efficiency can be further
improved by using smaller ring resonators or even photonic-crystal
nanobeam resonators.
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