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Abstract: We demonstrate single- and double-gated (SG &
DQ) field effect transistors (FETs) with a record source-drain
length (Lsp) of 15 nm built on monolayer (¢,,~0.7 nm) and
4-layer (t,~3 nm) MoS, channels using monolayer graphene
as the Source/Drain contacts. The best devices, corresponding
to DG 4-layer MoS,-FETs with Lgp=15 nm, had an [/l in
excess of 10° and a minimum subthreshold swing (SSin.) of 90
mV/dec. at Vps=0.5 V. At Lgp=1 pum and Vps=0.5 V, SS,,;,=66
mV/dec., which is the best SS reported in MoS, FETs,
indicating the high quality of the interface and the enhanced
channel electrostatics.

Introduction: Atomically  thin-films  of  layered
semiconductors such as MoS, have great potential in device
applications because of their ultra-thin body nature, large
bandgap, thermal stability and compatibility with CMOS
processes [1, 2]. MoS, FETs have an extremely low Iy,
making them promising for low power applications [2]. Also,
FETs built on a few layers of MoS, are effectively ultra-thin
body FETs (UTB-FETs), which are immune to short channel
effects (SCE) [3]. Also, the smaller dielectric constant (&) of
MoS, compared with Si (6.8~7.1 vs 11.9) can further suppress
the SCE [4]. The minimum channel length required to maintain
long channel behavior is on the order of 4 times the
characteristic length (L,;,=4/), where /1=\/(1/N).\/(es.ts.t0x/eox)
for a planar FET, e&/t, and ¢,/t, are the dielectric
constant/thickness of the channel and oxide, respectively and
N=1 for SG and N=2 for DG FETs. However, this formula
assumes that the S/D electric field lines are mostly confined in
the channel to minimize the impact from the surrounding
environment. For this, the S/D electrodes that are in immediate
contact with the channel need to be as thin as the channel. To
meet this requirement, monolayer graphene (¢~0.4 nm), was
used as the S/D in this work.

Device Fabrication: The key steps for fabricating SG & DG
MoS, FETs with graphene S/D contacts, as well as a schematic
of the devices are shown in Fig. 1. Either CVD grown
monolayer or a mechanically exfoliated 4-layer MoS, was
transferred onto a [p" Si/native SiO,] substrate coated with 10
nm of HfO, (EOT=3.3 nm) as the back gate (BG).
Subsequently, monolayer graphene was transferred onto the
MoS, layer. High resolution PMMA trenches ranging from 60
to 15 nm were patterned on the MoS,/graphene stack by the
cold development (=15 °C) of 25 nm thick PMMA films
followed by selective etching of the graphene with a mild
indirect pulsed O, plasma, opening narrow slits down to 15 nm
in the conductive graphene layer, defining the S/D channel.
This process, which is suitable for UTB-FETSs, is comparable
to the metal dry-etching process used to fabricate S/D and gate
electrodes in advanced CMOS fabrication [5]. Details on the
pulsed plasma etch process are reported in [6]. After dry
removal of the PMMA by a forming gas anneal, 1 nm
air-oxidized AlL,O; was deposited as a seed layer for
subsequent ALD deposition of 10 nm HfO, and 50 nm of Ni
gate electrode onto the channel to build the top gate (TG). Fig.
2 shows an AFM image of the graphene slits ranging from 10
to 20 nm before TG deposition.
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Results and discussion: The sheet resistance characteristics of
monolayer graphene after different numbers of O, plasma
pulses are depicted in Fig. 3(a). After a sufficient number of
pulses, graphene is eventually etched away, leaving a
well-defined graphene slit, which defines the atomically-thin
S/D contact. The etching of the graphene was well controlled
with minimum impact on the underlying MoS, layer, as
confirmed by Raman spectroscopy (Fig. 3(b)). The
capacitance-voltage (C-V) characteristics depicted in Fig. 4
show that MoS; is a natural n-type semiconductor. Therefore,
MoS,-FETs operate in the accumulation-mode. Fig. 5
compares the transfer characteristics of long channel (Lgp=1
um) monolayer and 4-layer MoS, FETs. The monolayer FET
had an /I, in excess of 107 and SS,;, =75 mV/dec, while the
SG 4-layer FET had a smaller /,,//,¢ and a larger SS,;, (105
mV/dec) (Fig. 5(b)). This difference is attributed to the better
channel electrostatic control in monolayer vs multilayer FETs.
However, the performance can be significantly enhanced by
adding a TG electrode, which improved the SS.; to 66
mV/dec and I,,/Iy¢ to ~107 (Fig. 5(b)). Long and short channel
DG monolayer MoS, FETs were not fabricated in this study as
seeding ALD high-k dielectrics on monolayer MoS, drastically
shifts the Vg, and therefore /. while multilayer FETs are
significantly less sensitive to the high-k deposition process.
The transfer characteristics of 15, 30 and 60 nm SG monolayer
MoS; FETs are compared in Fig. 6(a). The occurrence of SCE
in the 15 and 30 nm FETs caused their /s to drastically
increase, which is in agreement with drain-induced barrier
lowering (DIBL) (Fig. 6(b)) showing an upturn at Lgp=30 nm.
However, as expected, the SCE was stronger in the SG 4-layer
FET, resulting in larger SS and /. (see Figs 7). Nevertheless,
the subthreshold characteristics of 4-layer MoS, could be
significantly enhanced by integrating a TG, taking into account
that favorably 4-layer MoS, has better potential for digital
application due to its higher mobility resulting from its higher
density of states and lower interface effects compared to
monolayer MoS, [7]. Figs 8 & 9 show the device
characteristics of a 4-layer MoS,-FET in the DG configuration.
The MoS, FET had I,,/Io;=~10°, I,,=~50 pA/pum and SS, =90
mV/dec. at Vps=0.5 V. For this device, Ly, (=44) in its SG
configuration was ~17 nm (>Lgp=15 nm), while in DG
Lyin=~11 nm, which is in agreement with the downshift of the
upturn point in DIBL (Fig. 10) to Lgp=15 nm with a relatively
low maximum. The DIBL values indicate that the SCE was
suppressed.

Conclusions: We have demonstrated MoS, UTB-FETs
scaled-down to Lgp=15 nm with monolayer graphene contacts.
The best Lgp=15 nm performance was achieved in a DG
4-layer MoS,-FET with 7,,/,=10° and SS.,;n=90 mV/dec. at
Vps=0.5 V. This transistor has the shortest operating channel
length of any MoS, transistor to date. The device performance
indicates further scaling to sub Lgp=10 nm is possible.
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Fig. 2. AFM images showing 10, 15
and 20 nm graphene slits, after the
PMMA was removed in an Ar/H,
atmosphere at 360 °C.

12f g
C, 78,8, /3.3 nm

10}
£
B
w 08
E
=
§ 06| ‘
8 04} S8 74 s00kHz
g [Prg
3 u
202} ]
(3] 2

00f ‘

40 05 00 05 10 15 20 25
v, V]
Fig. 4. Accumulation C-V for MoS,
MOS capacitor with EOT=3.3 nm.
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Fig. 1. Fabrication process flow and device schematic cross-section of the short channel SG &
DG-MoS, FETs with graphene S/D contacts. Step (b) includes ALD-HfO, at 200 °C, followed
by annealing in a forming gas at 400 °C. The SG-FETs fabrication process excludes step (f).
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Fig. 3. (a) Graphene (oxide) sheet resistance vs number of O, pulses. The insets show schematics
of a plasma pulse (power ramp from 0 to 100 W in 3 s) and the plasma setup with a device placed
upside-down for indirect plasma exposure. (b) The evolution of Raman spectra of O,
plasma-treated graphene-MoS, stack.
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Fig. 5. Room temperature transfer characteristics of a 1 wm long channel (a) SG monolayer MoS,
FET and (b) SG and DG 4-layer MoS, FETs.
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Fig. 8. Ing vs Vs for a Lgp=15 nm 4-layer ~ Fig. 9. Ips vs Vps for the Fig. 10. DIBL values of 4-layer SG & DG FETs.
DG MoS, FET with record performance = MoS,-FET in Fig. 8 for various The DG has a downshifted upward turning point
values including SS.;,=90 mV/dec. and I,y  Vgs values. compared with the SG FET and its maximum shows

<10 pA/um.

a three-fold decrease.
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