
Robustness of vorticity in electron fluids

Khachatur G. Nazaryana, Leonid Levitovb
aMoscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia and
bDepartment of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

(Dated: December 7, 2021)

Vortices in electron fluids attract interest as a potential smoking-gun e↵ect of electron hydrody-
namics. However, a general framework that would allow to relate vorticity measured at macroscales
and the microscopic mechanisms of interaction and scattering has so far been lacking. We demon-
strate that vorticity originates in a robust manner from a nonlocal conductivity response �(k), no
matter what origin. This connection renders vorticity a property transcending boundaries between
di↵erent phases. We compare the behavior in the hydrodynamic and ballistic phases in a realistic
geometry, finding vorticity values that are similar in both phases. Interestingly, hydrodynamic vor-
tices are orders-of-magnitude more sensitive to the presence of momentum-relaxing scattering than
ballistic vortices. Suppression of vortices by disorder and phonon scattering therefore provides a
clear diagnostic of the microscopic origin of vorticity in electron systems.

Spatial patterns of currents in conductors, observable
on macroscales, encode information about carrier dy-
namics and interactions on microscales[1–8]. Recently,
vortices in electron fluids, manifested through currents
flowing against externally applied electric fields, at-
tracted interest as a striking testable signature of elec-
tron viscosity[9–12]. In these studies vorticity is often
taken as an unambiguous attribute of the hydrodynamic
phase. Here, we discuss conditions under which vortex
patterns can occur in an electron system, focusing on
laminar flows at low currents relevant for the ongoing
experimental work [13–19].

We find that vortices, rather than being unambigu-
ously associated with viscous flows, are a generic prop-
erty of systems with dispersive (k-dependent) conduc-
tivity that governs a nonlocal current-field response, see
Eqs.(1), (2). To compare vortex flows in di↵erent regimes
we employ a simple strip geometry pictured in Fig.1, in
which carriers are injected and drained through a pair of
slits positioned at the opposite sides of the strip. Tun-
ing the system from the viscous regime, occurring at
high electron-electron collision rates, to the ballistic free-
electron regime, we find that vorticity does not disappear
when the electron collision rate decreases. To the con-
trary, overall the vorticity experiences little change upon
the viscous-to-ballistic crossover, taking similar values in
the ballistic and viscous regimes.

The robustness and generic character of vorticity in
electron flows prompts a question of how the vortex pat-
terns observed experimentally can be linked to the micro-
scopic interactions and scattering mechanisms. Naively,
judging from Fig.1 this may seem challenging. Indeed,
despite somewhat di↵erent appearance in the viscous and
ballistic phases, vortex patterns feature comparable vor-
ticity values. However, while vorticity experiences lit-
tle change upon the viscous-to-ballistic crossover, its re-
sponse to momentum-relaxing collisions due to phonons
or disorder is completely di↵erent in the two cases.
Namely, vorticity is suppressed by momentum-relaxing
scattering orders-of-magnitude more strongly in the vis-
cous phase than in the ballistic phase. That is, a minus-
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FIG. 1. Vortices in a laminar (linear response) regime in
ballistic (a) and viscous (b) flows in a strip geometry. Current
enters the strip through a slit on one side and exits through a
slit on the opposite side. Parameters used: � = 0.1 v/w in (a),
� = 100 v/w in (b), the slit width equal to the strip width (see
text). The two flows feature vortices of comparable intensity
but di↵erent structure: two pairs of vortices in the viscous
regime at x1,10 ⇡ ±w and x2,20 ⇡ ±2w vs. one pair in the
ballistic regime. The interpolated current distributions used
to picture the flows, while accurately representing the flow
geometry, misrepresent the vorticity magnitude. The latter is
quantified by the stream functions shown in Fig.2, indicating
that vorticity values are quite similar in the two regimes.

cule momentum-relaxing scattering is su�cient to sup-
press the vorticity of viscous flows, leaving vorticity of
ballistic flows practically una↵ected. This striking be-
havior can therefore serve as a diagnostic allowing to de-
lineate between ballistic and viscous vortices.
This behavior can be readily established using the gen-

eral framework of a nonlocal current-field response

j↵(x) =

Z
d2x0�↵� (x� x0)E� (x

0) . (1)

As it will be clear, nonlocal conductivity is the key prop-
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erty responsible for the formation of vortices. Namely,
vorticity of the flow reflects the k dependence of conduc-
tivity no matter what origin, ballistic, viscous, or else:

j↵(k)=�↵�(k)E�(k), �↵�(k)=

Z
d2xe�ikx�↵�(x). (2)

To the contrary, a k-independent conductivity describes
ohmic transport with a local current-field relation; in this
case the flow is potential and vortex-free. Therefore, the
threshold for vorticity suppression by disorder can be in-
ferred directly from the conductivity k dependence.

To gain insight, we consider dispersive conductivity in
the ballistic and viscous phases (see Eq.(7)):

a) �ball(k) =
D

�0 + v|k|/2 ; b) �visc(k) =
D

�0 + ⌫k2 (3)

with D = ne2/m the Drude spectral weight and ⌫ =
v2/4� the kinematic viscosity. Here �0 is the momentum
relaxation rate due to disorder, � is the electron-electron
collision rate that governs viscosity, and in the viscous
case the long wavelength limit kv ⌧ � is assumed. The
quantity in the denominators is the disorder scattering
rate �0 corrected by a k-dependent contribution describ-
ing momentum relaxation due to momentum spreading
over the lengthscales ` ⇠ 1/k. The k values for which this
contribution becomes smaller than �0 define the length-
scales beyond which the conductivity is e↵ectively local,
yielding a current flow that is potential and vortex-free.

For transport in a system of size w the relevant
wavenumber values, describing momentum escaping from
the systems, are k ⇠ 1/w. Comparing to Eq.(3), this pre-
dicts the threshold values for disorder scattering above
which the momentum dependence of conductivity is sup-
pressed, respectively for the ballistic and viscous regimes:

a) �0
0 ⇡ v/w; b) �00

0 ⇡ ⌫/w2. (4)

Condition a) states that vorticity is supressed when the
disorder mean free path is smaller than the system size.
Condition b) states that the momentum relaxation time
is shorter than the time momentum di↵uses across vis-
cous fluid in a system of size w, which is a considerably
more stringent condition than a). These two threshold
values are related as

�00
0 /�

0
0 ⇡ `ee/w, (5)

where `ee = v/� is the el-el collision mean free path.
We see that in a hydrodynamic regime, `ee ⌧ w, the
sensitivity of vortices to momentum-relaxing collisions is
orders of magnitude stronger than in the ballistic regime.

Our geometry of interest is an infinite strip of width
w,�1 < x < 1, 0 < y < w, with a pair of slits on oppo-
site sides serving as the injector and drain contacts, Fig.1.
In this geometry, we will solve for the current distribution
for a general nonlocal current-field linear response rela-
tion given in Eq.(1). We adopt no-slip boundary condi-
tions modeled using a fictitious field E(fic) concentrated

at the boundary, as discussed below. The distribution of
the electric field E(x) that drives the current, and that
of the fictitious field E(fic)(x) will be determined from
the solution of the transport problem within the strip.
To prepare for the discussion of nonlocal transport in a

strip, we first consider the properties of the k-dependent
conductivity, Eq.(2), found by Fourier transforming the
translation-invariant linear response function in Eq.(1).
In general, the conductivity �↵�(k) takes di↵erent values
for fields and currents parallel and perpendicular to the
wavevector k, such that

j?(k) = �?(k)E?(k), jk(k) = �k(k)
�
Ek(k)� ik�µ(k)

�
,

where we added a term �µ(k) to describe the poten-
tial of a space charge that builds up due to the spatial
nonuniformity of current. In a steady state described
by a time-independent field and current, the potential
�µ(x), determined from the continuity relation divj = 0,
cancels the longitudinal component Ek. Namely, for a
time-independent field and current there is no longitudi-
nal current jkk because of charge continuity. As a result,
transport is described solely by �?(k) through a relation
between transverse components of j and E given by a
k-dependent conductivity:

�↵�(k) = �(k)
⇣
�↵� � k̂↵k̂�

⌘
. (6)

From now on, for conciseness, we drop the subscript ?.
The quantity �(k) can be found from the transport

equation for quasiparticles at the Fermi surface. A direct
analysis, described in Supplement, gives

�(k) =
D

�0 + �(k)
, �(k) =

z

�1 +
z

�2+ z
�3+...

, (7)

where D = ne2/m, z = k2v2/4, and the quan-
tities �m are the eigenvalues of the linearized colli-
sion operator describing the relaxation rates for dif-
ferent harmonics of particle distribution, �f✓(x, t) =
eikx�i!t

P
m e��mt�fmeim✓, where ✓ is the azimuthal an-

gle on the Fermi surface.
This general form of �(k) describes a variety of di↵er-

ent regimes of interest. The rate �0 describes momen-
tum relaxation due to disorder of phonon scattering, the
quantity �(k) describes relaxation of momentum by par-
ticles transporting it away from the region of interest.
Here, for simplicity, we consider the case of equal rates,
�1 = �2 = ... ⌘ �, adequate for exploring vorticity in
the viscous, ballistic and ohmic phases, as well as in the
crossover between these phases. In this case, the quantity
�(k) is readily evaluated, giving

�(k) =
�� +

p
�2 + k2v2

2
. (8)

The k-dependent conductivity �(k) defines a scale-
dependent linear response. At small k (large length-
scales) such that �(k) < �0 it describes ohmic dissipation
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due to disorder scattering. At large k (small lengthscales)
such that �(k) > �0 it describes momentum dissipation
due to particle transport within the system. The large-k
behavior can be either ballistic or fluid-like, depending
on the ratio of � and kv. Namely, for � ⌧ vk we have
�(k) = |k|v/2, giving an expression in Eq.(3) a), whereas
for � � vk we have �(k) = k2v2/4�, giving an expression
in Eq.(3) b).

For transport in a strip of width w the characteristic
wavenumber is k ⇡ 1/w. Accordingly, in our simulation
we will use � = 0.1v/w and 100v/w to model the ballis-
tic and hydrodynamic regimes, respectively; the values
� = 1v/w and 10v/w will be used to model the crossover
between these regimes.

Next we discuss the strategy for tackling the nonlo-
cal transport problem in a strip. This problem will be
dealt with by replacing the strip geometry with an infi-
nite 2D plane geometry and, simultaneously, introducing
suitable boundary conditions to make the infinite-space
problem mimic that for the finite-width strip. Passing
to the infinite-space setting allows to fully benefit from
the translation invariance of the current-field relation,
Eq.(1). The latter then becomes an exact property and
can be conveniently handled in a Fourier representation.

To tackle the boundary-value problem in the infinite-
space representation, we employ Eq.(1), with an electric
field corrected by a fictitious electric field of value chosen
to null the current at the boundary:

E�(x)=E(ext)
� (x)�E(fic)

� (x), E(fic)
� (x)=�j�(x), (9)

where the fictitious field E(fic)
� (x) is defined at system

boundary through a relation with the current at the
boundary, with � a ‘boundary resistivity’ parameter (see
[20, 21]). We will derive and solve equations that are
valid for any �. Then, in the numerical analysis of the
results we will take a large enough value for this parame-
ter (� = 105v) to simulate non-slip boundary conditions.

The field E(ext)
� is a constant external field along the y

axis, it can be integrated over, leaving an additive term

j(ext)↵ = j0�↵,y, which is the current that we inject into
our system.
It is convenient, for the purpose of analysis, to rewrite

the current-field relations with the fictitious boundary
fields, Eq.(9), by introducing a window function for the
slit �(x) = 1 for |x| � w/2, and 0 for |x| < w/2. Since the
fictitious field exists only at the strip boundaries y = 0
and w, Eqs.(1) and (9), relate currents in the strip bulk
and currents at the boundaries:

j↵(x) = j0�↵,y � �

Z
dx0�(y0)� (x0)�↵� (x� x0) j�(x

0)

� �

Z
dx0�(y0 � w)� (x0)�↵� (x� x0) j�(x

0) (10)

The symmetry of the strip with a pair of slits imposes
the relations for the components of the current,

jy(y, x) = jy(y,�x); jy(y, x) = jy(w � y, x) (11)

jx(y, x) = �jx(y,�x); jx(y, x) = �jx(w � y, x) (12)

Eqs.(10) for these quantities can be Fourier-transformed
to obtain integral equations for the Fourier harmonics of
currents at the boundaries j↵(x, y) =

R dq
2⇡ j↵(q, y)e

�iqx:

jy(q, y) =2⇡j0�(q)� �⌃yy(q) (�̃ (q) ⇤ jy(q, 0))
+ i�⌃yx(q) (�̃ (q) ⇤ jx(q, 0)) (13)

jx(q, y) =� �⌃xx(q) (�̃ (q) ⇤ jx(q, 0))
+ i�⌃xy(q) (�̃ (q) ⇤ jy(q, 0)) (14)

(for the derivation, see Supplement). Here we used the
symmetry relations for current components at y = 0
and w to eliminate the y = w quantities in favor of the
y = 0 quantities. We also introduced Fourier harmon-
ics of the slit window function �̃ (q) =

R
dx� (x) eiqx =

2⇡
⇣
�(q)� 1

⇡
sin(qw)

q

⌘
. The notation ⇤ stands for the con-

volution (�̃ (q) ⇤ j↵(q, 0)) =
R1
�1 �̃ (q � q0) j↵(q0, 0)dq0,

and the quantities ⌃ii0(q) are defined as

⌃yy(q) =

Z
dky
2⇡

[cos (kyy) + cos (ky (w � y))]
� () q2

2
; ⌃yx(q) =

Z
dky
2⇡

[sin (kyy) + sin (ky (w � y))]
� () qky

2
(15)

⌃xx(q) =

Z
dky
2⇡

[cos (kyy)� cos (ky (w � y))]
� () k2y

2
; ⌃xy(q) =

Z
dky
2⇡

[sin (kyy)� sin (ky (w � y))]
� () qky

2
(16)

where we introduced notation 2 = q2 + k2y.

The right-hand side in Eqs.(13) and (14) contains only
the currents on the lower boundary y = 0. We there-
fore set y = 0 to obtain a pair of coupled linear integral
equations for jx(q, 0) and jy(q, 0). Because of the convo-
lution these integral equations cannot be solved analyti-
cally, therefore a numerical approach must be used. For

this we introduce an interval �L/2 < x < L/2 on the
x-axis, discretized with a mesh of spacing L/N with a
large enough N . For the functions in this interval we as-
sume periodic boundary conditions. In Fourier represen-
tation, these functions are sums of harmonics with a dis-
crete set of wavenumbers chosen as qi =

�
i� N�1

2

�
�q0,

i = 1, 2, ..., N with a step size �q0 = 2⇡/L. We solve our
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FIG. 2. (a) Current backflow in the viscous, ballistic and
intermediate regimes on the line y = w/2 in the middle of
the strip. The backflow magnitude is nearly the same in
all regimes, being slightly larger in the intermediate regime
than in the viscous and ballistic regimes. (b) Stream func-

tion �y=w/2(x) normalized as �y=w/2(x)|L/2
�L/2 = 1 for di↵er-

ent regimes, detailing the backflows. The largest magnitude
is for � = 1v/w (intermediate regime). The inset shows the
full stream function.

equations on this dual lattice, approximating integrals as
Riemann sums. An inverse Fourier transform is then car-
ried out to find the currents in interval �L/2 < x < L/2
in real space. Thanks to the discretization the convolu-
tion in each Eqs.(13),(14) yields a linear operator repre-
senting the corresponding integral by a N ⇥ N matrix.
This allows us to solve the resulting linear equations by
inverting matrices.

We first consider the results for the disorder-free case
(�0 = 0 in (7)). After solving for currents at y = 0 as
described in Supplement we use (13), (14) to find currents
in the strip bulk. Below we discuss the behavior on a line
in the middle of the strip y = w/2. The resulting current
profile, pictured in Fig.2(a) shows that on both sides of
the direct current flowing from injector to drain there
are regions where current flows against the applied field,
signaling the presence of vortices. Vortices are seen to be
present in both the ballistic and viscous regime. Notably,
the vortices have similar intensities in the two regimes,
with a little change at the crossover.

One di↵erence between vortices in the two regimes is in
their spatial extent: ballistic vortices are about ⇠ 2 times
wider than viscous vortices. Another (minor) di↵erence
is that current undergoes multiple sign reversals, indicat-
ing the presence of several vortices of opposite orienta-
tion (so-called Mo↵att vortices[23, 24]). This confirms
the presence of multiple vortices in the viscous regime,
in line with the flow pictured in Fig.1. However, Fig.2
also indicates that the secondary vortices are extremely
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FIG. 3. Suppression of current backflow and vorticity by
ohmic dissipation in di↵erent regimes. (a) Current in the mid-
dle of the strip at a fixed disorder scattering rate �0 = 5 v/w
and varying �. The backflow and vorticity survive in the
ballistic regime but are completely suppressed in the viscous
regime. (b),(c) Weakening of the backflow upon increasing
ohmic scattering in the ballistic and viscous regimes (real-
ized at � = 0.1 v/w and � = 100 v/w, respectively). Ballistic
backflow is weakened roughly 2 times for �0 = 1 v/w, and
totally suppressed for �0 = 103 v/w. Viscous backflow is con-
siderably more fragile, being weakened roughly 2 times for
�0 = 2⇥ 10�2 v/w and completely suppressed for �0 = 5 v/w.

weak, illustrating that Fig.1 predicts correctly the flow
geometry but misrepresents the magnitude of vorticity.
To gain more insight, we consider the stream function

defined through u = r⇥(�(x)ẑ) = (@y�(x),�@x�(x))T,
where j = enu [see Fig. 2(b)]. This quantity has a
number of useful properties. In particular, it quanti-
fies the net integrated backflow regardless of how far
from the slit the backflow occurs and the details of its
spatial distribution and, as such, provides a meaning-
ful comparison between di↵erent regimes. This quantity,
shown in Fig. 2(b) on the line in the middle of the strip,
�w/2(x) =

R x
0 jy(⇠, w/2)d⇠ indicates a larger swing for

the ballistic flow (blue curve) than the viscous flow (red
curve), i.e. the backflow is actually somewhat stronger
in the ballistic case than in the viscous case. Yet, in
the absence of disorder scattering, the predicted di↵er-
ences between ballistic and viscous vortices are probably
not strong enough to unambiguously di↵erentiate these
regimes experimentally.



5

Yet, the ballistic and viscous vortices behave very dif-
ferently in the presence of disorder scattering (ohmic dis-
sipation). Namely, a relatively weak disorder scatter-
ing is su�cient to suppress viscous vortices, while having
little impact on ballistic vortices, as illustrated in Fig.
3. Usually, disorder scattering is nearly temperature-
independent, whereas the el-el scattering is strongly tem-
perature dependent (behaving as ⇠ T 2 in Landau Fermi-
liquids). This means that the quantity � can be tuned
by varying temperature, while keeping �0 approximately
constant. As an illustration we set �0 = 5 v/w and vary
� (see Fig. 3(a)). We see that this dissipation value
is enough to fully suppress viscous backflow (red line),
while reducing the ballistic backflow (blue line) only by
⇠ 5 times. The property of ballistic vortices to be more
resilient than viscous vortices in the presence of ohmic
dissipation suggests a simple and direct diagnostic allow-
ing to discriminate the two regimes in experiment.

It is also instructive to consider how ballistic and vis-
cous vortices, which have approximately equal intensity
in the absence of ohmic dissipation, are suppressed as
the disorder scattering rate �0 increases, see Fig. 3 (b)
and (c). In both cases we observe a transition to the
ohmic flow regime that shows no backflow. Yet, the val-
ues �0 above which the flow becomes e↵ectively Ohmic
are very di↵erent for the two cases. Ballistic vortices
are quite robust and can endure disorder scattering as
high as �0 = 103 v/w. Viscous vortices, to the contrary,

are a↵ected significantly by much smaller ohmic dissipa-
tion. E.g., dissipation as small as �0 = 2 ⇥ 10�2 v/w
results in a loss of the second (Mo↵att) vortex and weak-
ens the backflow amplitude 2 times, while for the ballistic
case a similar reduction of the backflow happens only for
�0 = 1 v/w. These values are in a good agreement with
the simple estimates given above in Eq.(3).
In summary, vorticity of a current flowing in a re-

stricted geometry is a salient feature arising due to
the nonlocal k-dependent conductivity that governs the
current-field relation. As such, it is present and takes
similar values in the ballistic and viscous transport
regimes. We expect the qualitative behavior found in
the strip geometry — similar intensity for vorticity in the
ballistic regime and in the viscous regime, the resilience
of ballistic vortices in the presence of ohmic dissipation
and the comparatively more fragile behavior of viscous
vortices — to hold in any realistic geometry. The strik-
ingly di↵erent dependence of vortex flows on el-el scat-
tering and ohmic dissipation is an observable signature
that can be used to discriminate the origin of vorticity in
electron fluids.
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Supporting Material for ”Robustness of vorticity in electron fluids”

I. SCALE DEPENDENT CONDUCTIVITY AND CONTINUED FRACTIONS

Here we derive a relation between nonlocal conductivity �(k) and the relaxation times for di↵erent angular harmonics
of carrier distribution, which is used in the main text. As a starting point, we use the quantum Boltzmann equation
for electrons in the presence of an external electric field, linearized in small deviations of carrier distribution from
equilibrium:

(@t + vrx � I) �fp(t,x) = �eErpf
(0)
p (17)

where f (0)
p is the equilibrium distribution, and I is the collision operator. In what follows it will be convenient to

rewrite the expression on the right-hand side as Erpf
(0)
p = Ev

⇣
@f (0)

p /@✏
⌘
. The perturbed distribution can be

decomposed into a sum of cylindrical harmonics as �fp = eikx�i!t
P

m �fmeim✓, where ✓ is the azimuthal angle on the
Fermi surface. Due to the cylindrical symmetry, the harmonics �fmeim✓ are eigenfunctions of the collision operator,

I�fmeim✓ = ��m�fmeim✓, (18)

where �m are relaxation rates originating from microscopic processes of carrier scattering and collisions. For instance,
�1 originates from momentum relaxation due to disorder of phonon scattering, �2 is due to electron-electron collisions,
�0 = 0 due to particle number conservation, and so on.

It will be convenient to use the basis �fmeim✓ to bring the problem to the form described by a tridiagonal matrix,
a representation in which a closed-form solution for conductivity �(k) can be given in terms of continued fractions.
This representation is obtained by noting that the terms vk and evE, when rewritten in the angular harmonics basis,
have nonzero matrix elements only between harmonics m and m± 1. This is made apparent by the identities

vk =
v

2
(kx + iky) e

�i✓ +
v

2
(kx � iky) e

i✓ = ⇣e�i✓ + ⇣̄ei✓ (19)

evE =
ev

2
(Ex + iEy) e

�i✓ +
ev

2
(Ex � iEy) e

i✓ = Ee�i✓ + Ēei✓ (20)

where we introduced ⇣ = v(kx + iky)/2, E = ev (Ex + iEy) /2. Accordingly, the Boltzmann equation turns into a
system of coupled linear equations:

�m�fm + ⇣�fm+1 + ⇣̄�fm�1 =
@f (0)

p

@✏

�
E�m,�1 + Ē�m,1

�
(21)

This problem describes a response of variables �fm to the “source” E�m,�1 + Ē�m,1. To solve these equations, we first
consider the source term with m = 1, adding the contribution of the source term with m = �1 later. We introduce
↵m = i�fm+1/�fm, which brings equations with m > 1 to the form

�m + ⇣↵m � ⇣̄

↵m�1
= 0 (22)

These equations give a simple recursion equation ↵m�1 = ⇣̄
�m+⇣↵m

, which can be solved iteratively overm+1,m+2, . . .
giving a continued fraction

↵m�1 =
⇣̄

�m + |⇣|2

�m+1+
|⇣|2

�m+2+...

(23)

Similarly, for m < 1 we define �m = i�fm�1/�fm and obtain

�m+1 =
⇣

�m + |⇣|2

�m�1+
|⇣|2

�m�2+...

(24)

Now, the harmonic �f1 can be found from the m = 1 equation

�1�f1 + i⇣�f2 + i⇣̄�f0 =
@f (0)

p

@✏
E . (25)
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Rewriting it as �f1
�
�1 + ⇣↵1 + ⇣̄�1

�
=

@f(0)
p

@✏ E and substituting the continued fractions for ↵1 and �1 yields

�f1 =
@f (0)

p

@✏

E
�1 +

|⇣|2

�2+
|⇣|2

�3+
|⇣|2

�4++...

+ |⇣|2

�0+
|⇣|2

��1+
|⇣|2

��2+...

=
@f (0)

p

@✏

E
2�1 +

2|⇣|2

�2+
|⇣|2

�3+
|⇣|2

�4++...

, (26)

where we used the identities ��m = �m and �0 = 0 that account for the inversion symmetry and particle number
conservation. The contribution of the m = �1 source term, found in a similar manner, is given by an expression
identical to Eq.(26) up to a replacement of E with Ē .

With this it is straightforward to obtain the nonlocal conductivity by combining the current density jy,k =
ev⌫0

H
(d✓/2⇡) sin ✓�f(✓) and the definition of conductivity jk = �(k,!)Ek. We find

�(k) =
D

�0 + �(k)
, �(k) =

z

�1 +
z

�2+ z
�3+...

(27)

with D = ne2/m the Drude weight and z = k2v2/4.
The quantity �(k) can be evaluated in a closed form for the model �2 = �3 = ... ⌘ �. In this case, a simple recursion

relation yields �(k) = z/(� + �(k)), solved by

�(k) =
�� +

p
�2 + k2v2

2
. (28)

This gives a scale-dependent conductivity used in the main text:

�(k) =
2D

2�0 +
p
v2k2 + �2 � �

, (29)

where we replaced �1 with �0 to make the notation agree with that in the main text.

II. EQUATIONS FOR CURRENT COMPONENTS IN THE STRIP GEOMETRY

Here we detail the procedure used to evaluate the nonlocal response in the strip geometry. We will work in the
mixed representation defined in the main text – Fourier components along the strip (x) and direct-space normal to
the strip (y). This representation is found by passing from the system with a boundary to an infinite plane, replacing
boundary conditions with an fictitious electric field as described in the man text. This gives coupled equations for
di↵erent current components:

j↵(x) =j0�↵,y � �

Z
dx0�(y0)� (x0)�↵� (x� x0) j�(x

0)� �

Z
dx0�(y0 � w)� (x0)�↵� (x� x0) j�(x

0),

where � (x0) = 1 if x0 � w/2, and zero for x0 < w/2.
We first consider the y component:

jy(x) = j0 � �

Z
dx0�(y0)� (x0)�yy (x� x0) jy(x

0)� �

Z
dx0�(y0 � w)� (x0)�yy (x� x0) jy(x

0)

� �

Z
dx0�(y0)� (x0)�yx (x� x0) jx(x

0)� �

Z
dx0�(y0 � w)� (x0)�yx (x� x0) jx(x

0). (30)

Substituting conductivity by the Fourier representation,

�↵� (x� x0) =

Z
dkxdky
(2⇡)2

eikx(x�x0)eiky(y�y0)�↵�(k), (31)

and integrating over y0, gives

jy(x, y) = j0 � �

Z
dkxdky
(2⇡)2

Z
dx0� (x0) jy(x

0, 0)eikx(x�x0)eikyy
�
1 + e�ikyw

�
�yy(k)

� �

Z
dkxdky
(2⇡)2

Z
dx0� (x0) jx(x

0, 0)eikx(x�x0)eikyy
�
1� e�ikyw

�
�yx(k). (32)
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FIG. 4. Current distributions at the boundary y = 0 in the dissipation-less dynamics �0 = 0 for the viscous, ballistic and
intermediate regimes. (a), (b) show the current components along the y and x axes, respectively
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FIG. 5. Current distributions along the y axis at the boundary y = 0 for increasing disorder scattering (a) ballistic to ohmic
crossover (b) viscous to ohmic crossover

Here we have used spatial mirror symmetries of the current density components: jx(x,w) = �jx(x, 0) and jy(x,w) =
jy(x, 0).

Next we carry out a Fourier transform over x, jy(q, y) =
R
jy(x, y)e�iqxdx, to obtain

jy(q, y) = 2⇡j0�(q)� �

✓Z
dx0� (x0) jy(x

0, 0)e�iqx0
◆✓Z

dky
2⇡

⇣
eikyy + eiky(y�w)

⌘
�yy(q, ky)

◆

� �

✓Z
dx0� (x0) jx(x

0, 0)e�iqx0
◆✓Z

dky
2⇡

⇣
eikyy � eiky(y�w)

⌘
�yx(q, ky)

◆
. (33)

At the last step we use the relations �↵�(q,�ky) = ��↵�(q, ky) for ↵ 6= � and �↵�(q,�ky) = �↵�(q, ky) for ↵ = �.
Hence, in the second term we may replace

�
eikyy + eiky(y�w)

�
with (cos (kyy) + cos (ky (w � y))), and similarly in

the third term
�
eikyy � eiky(y�w)

�
with i (sin (kyy) + sin (ky (w � y))), since the remaining parts will be nulled due to

parity of the integrals. Moreover, we can notice that
R
dx0� (x0) jy(x0, 0)e�iqx0

= �̃ (q) ⇤ jy(q, 0) is convolution in the
q-space. Using the similar approach for the jx(q, y) we will obtain the relations given in Eqs.(13), (14) of the main
text. These relations express the currents in the interior of the strip 0 < y < w through the currents at the lower
boundary y = 0. To determine the currents in the strip interior we first determine currents at the boundary, and then
use the above bulk/boundary relations to find currents in the entire strip. This procedure is detailed and illustrated
in Sec.III.

III. FINDING CURRENTS AT THE STRIP BOUNDARY

Here we introduce the approach used for solving the equations (13), (14). The right-hand side in both of these
equations contains only the currents at the lower boundary y = 0. Therefore, we set y = 0 to obtain a pair of coupled
linear integral equations for jx(q, 0) and jy(q, 0). After the discretization in the q space introduced in the main text the
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FIG. 6. Current distributions at y = w/2. (a) Dynamics without ohmic dissipation �0 = 0. The left insets zoom on the
backflows. The right inset shows vortices in our geometry with the horizontal line indicating the line at which the current
distributions are calculated. (b) Dynamics with ohmic dissipation rate �0 = 5v/w. The left insets zoom on the backflows. The
vorticity in the viscous regime is completely suppressed, while in the ballistic regime it is reduced ⇠ 5 times.

currents jx(q, 0), jy(q, 0) become vectors with N elements and the convolution becomes a linear operator representing

the corresponding integral by a N ⇥N matrix: �̃ (q) ⇤ jy(q, 0) ! M̂�jy(q, 0). This rewrites the current equations in
a form:

jy(q, 0) = 2⇡j0�(q)� �M̂�⌃yy(q)jy(q, 0) + i�M̂�⌃yx(q)jx(q, 0) (34)

jx(q, 0) = ��M̂�⌃xx(q)jx(q, 0) + i�M̂�⌃xy(q)jy(q, 0) (35)

To solve these equations we need to address several technical issues. First of all, in the absence of ohmic dissipation
(�0 = 0) the quantity ⌃yy(q) diverges when q ! 0. This problem can be eliminated either by introducing an
infinitesimal �0 or by multiplying (34) by ⌃�1

yy (q), which provides a regularization since ⌃�1
yy (0) = 0. In order treat all

the regimes on an equal footing we adopt the second approach. However, since ⌃�1
yy (0) = 0, the term j0⌃�1

yy (q)�(q)
appears to vanish at all q, both zero and non-zero, due to the property of the �-function. Naively, this poses a problem,
because the equations seem to loose the information about the injected current. However, we recall that j0 originated

from an external electric field E(ext) through
R
d2x0�↵� (x� x0)E(ext)

� (x0). This integral diverges as well, and in

fact, it is equal to ⌃yy(0). As a result the product j0⌃�1
yy (q) has a finite limit at q ! 0, and hence, j0⌃�1

yy (q)�(q) can

be legitimately replaced by E(ext)�(q).
The second issue that needs to be addressed is with ⌃xx(q). This quantity, for y = 0, diverges logarithmically

for arbitrary q. The divergence originates from ky ! 1, i.e. the small length scales. This problem is treated by
introducing a finite thickness a for the boundaries. From physical perspective we conclude that for a small enough a,
jx(q, a) ⇡ jx(q, 0), which allows to evaluate ⌃xx(q) by plugging into the equation (16) y = a instead of y = 0:

⌃xx(q) =

Z
dky
2⇡

⇥
cos (kyy)� cos (ky (w � y))

⇤��
y=a

�
⇣q

q2 + k2y

⌘
k2y

q2 + k2y
(36)

This integral converges for large ky and shows a logarithmic dependence on the scale a. In our numerical calculation
we take a = �x/10, where �x is the lattice step size in direct space.

After these adjustments we can solve the equations (34),(35). From the eq. (35) we find

jx(q, 0) = i�
⇣
1 + �M̂�⌃xx(q)

⌘�1
M̂�⌃xy(q)jy(q, 0) (37)

Then we plug it into (34) (multiplied by ⌃�1
yy (q)):

jy(q, 0) =2⇡E(ext)

✓
⌃�1

yy (q) + �M̂� + �2⌃�1
yy (q)M̂�⌃yx(q)

⇣
1 + �M̂�⌃xx(q)

⌘�1
M̂�⌃xy(q)

◆�1

�(q) (38)

which we then use in (37) to find the x component. For the final step we carry out an inverse Fourier transform of
the currents. In the presence of ohmic losses, the problem with divergent ⌃yy(q) does not occur, and the equations
can be treated similarly but without multiplying by ⌃�1

yy (q).
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The results of this calculation are presented in Fig.4 and Fig.5. Current at the boundary vanishes outside the
slit, as expected, and has an interesting profile within the slit that reflects the interplay between di↵erent scattering
mechanisms. The dependence jy(x) is nearly flat in the ballistic regime, as expected from Sharvin’s phase space
argument, and acquires a convex profile as the el-el collision rate grows, see Fig.4(a). In this limit, current drops
as x approches the slit edges, as expected for a viscous flow with no-slip boundary conditions. The sign-changing
profile of jx(x) indicates that within the slit on the y = 0 boundary the current flows towards x = 0 vertical axis, see
Fig.4(b). As can be seen in Fig.1 of the main text, the convergence towards the central vertical axis is replaced by a
divergence form it at a slightly larger y. This behavior persists in the strip interior up to the middle line y = w/2;
above this line the current flow is a mirror image of that below the line y = w/2, such that jx(x, y) = �jx(x,w � y)
and jy(x, y) = jy(x,w � y). The profile jy(x) in the slit undergoes an interesting transformation when ohmic losses
are introduced, developing a double-horn structure in both the ballistic and viscous regimes as the disorder scattering
increases, see Fig5(a,b). This behavior reflects the familiar e↵ect of current crowding near sharp corners expected for
ohmic transport, and is in agreement with previous work[3, 25].

The current density at the strip boundary, found as described above, is then used to find current distributions in
the strip bulk using the equations (13), (14) with an arbitrary y. Fig. 6 shows the entire current distribution on
the y = w/2 line, for the ballistic and viscous regimes. Each panel shows several curves for the rate of ohmic losses
gradually increasing. Dashed boxes indicate the regions of current backflow discussed in the main text and detailed
there in Figs. 2(a),2(b), and reproduced in Fig. 6 insets.

IV. THE ABSENCE OF VORTICITY IN THE OHMIC REGIME

Here, as a consistency check, we briefly discuss the extreme ohmic regime �0 ! 1. This will provide a useful
comparison with the ballistic and viscous regimes discussed in the main text. We can use a constant conductivity
�(k) = D

�0
to evaluate the integrals ⌃↵� except for ⌃xx, for which we still need to include the k-dependence in order

to control the convergence of the integrals. This leads to the current distribution shown in Fig. 7. As expected, in
the ohmic regime the flow is potential and thus vortex-free.
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FIG. 7. Current distribution in the Ohmic regime obtained by the same procedure as the results for the ballistic and viscous
regimes discussed in the main text. Unlike the latter, ohmic flow is potential and thus features no vortices.


