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Abstract. We introduce a numerical method for computing conductivity via the Kubo formula for
incommensurate 2D bilayer heterostructures using a tight-binding framework. We begin by deriving the
momentum space formulation and Kubo formula from the real space tight-binding model using the appro-
priate Bloch transformation operator. We further discuss the resulting algorithm along with its convergence
rate and computational cost in terms of model parameters such as relaxation time and temperature. In
particular, we show that for low frequencies, low temperature, and long relaxation times conductivity can
be computed very efficiently using the momentum space algorithm for a wide class of materials. We then
showcase our method by computing conductivity for twisted bilayer graphene (tBLG) for small twist angles.

1 Introduction

The electronic structure of incommensurate bilayers has
attracted renewed interest after the discovery that stack-
ing two layers of graphene on top of one another at a
specific relative twist, called magic angle twisted bilayer
graphene (tBLG), leads to electronic superconductivity
[1]. Twistronics, the tuning of electronic structure by
twisting stacks of 2D materials, gives a new set of parame-
ters for tuning electronic structure, expanding the possible
set of applications of these materials [2,3].

Incommensurate bilayers, especially for materials with
small relative twist, typically require large system sizes
to perform computations [2]. Further, given the weak van
der Waals bonding between the materials, these systems
are especially apt for studying via tight-binding mod-
els [4]. One approach for considering such materials is
through the supercell approximation [5], though this can
be prohibitively expensive at small angles, and leads to the
computation of electronic properties for heterostructures
with artificial strain since the system is not in a mechan-
ical ground state. Real space electronic approaches have
recently been developed that directly compute electronic
observables such as the density of states or conductiv-
ity [6–8]. There is also extensive literature on momentum
space or k · p approaches, which use the monolayers’ Bloch
bases [9,10].
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In this paper, we begin with a real space tight-binding
model and the real space Kubo formula [8] and transform
these using the Bloch transform into a momentum space
formulation and Kubo formula. Our approach extends the
momentum space approach for the electronic density of
states [11] to the computation of conductivity [11]. We
note that a related formula for conductivity is discussed
in works such as [12,13]. In these approaches, a Bloch
basis is used but only at commensurate (supercell) twist
angles and within the Dirac cone approximation. Even
in monolayer graphene, the cone approximation provides
accurate conductivity only at relatively low frequencies
[14]. Other approaches for calculating optical conductivity
in twisted bilayers have used density functional or tight-
binding techniques in realspace [15,16], but are limited in
their applicability at small twist angles. This is due to the
increasing system size and required energy resolution to
resolve spectral features as the twist angle decreases.

In this work, we focus on the rigorous transformation
of the real space Kubo setting to the momentum space
setting and on the convergence rate of the resulting algo-
rithm. In doing so, one can treat arbitrary incommensu-
rate angles by computing eigenvalues of small momentum
matrices. We note that our approach is not restricted to
only rigid tBLG: it can be extended to include mechanical
relaxation effects [17–19], trilayer systems [20], or other 2D
materials. We further demonstrate our results numerically
by computing the conductivity of tBLG within the linear-
response regime for several small twist angles and verify-
ing fast convergence in terms of matrix truncation size.

The momentum space formulation leads to an algo-
rithm with faster convergence than real space or supercell
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approaches with respect to a truncation radius r for cer-
tain materials. This causes the momentum formulation
to have a significantly lower computational complexity
compared to real space.

In Section 2, we define our real space formulation. In
Section 3, we derive the momentum space formulation, in
Section 4 we discuss the algorithm and convergence, and in
Section 5 we present simulations on tBLG to demonstrate
the algorithm.

2 Real space

We begin by defining the real space formulation for elec-
tronic structure in twisted 2D bilayers. Each layer, or
sheet, is periodic in this model, so we define them with
respect to Bravais lattices with bases generated by the
columns of Aj for j = 1, 2 by

Rj = AjZ2, j ∈ {1, 2}

with corresponding unit cells

Γj = Aj [0, 1)2.

Each sheet has a finite orbital index set, Aj , that
labels the orbitals associated with each lattice point in
the Bravais lattice. These orbitals can be centered any-
where within the unit cell to allow for the description
of any 2D material, such as the honeycomb structures
of graphene and MoS2 or anisotropic structures such as
black phosphorous.

For α, α′ ∈ Aj , we define the tight-binding interaction
function, hαα′ : Rj → R. For α, α′ in opposite orbital
index sets, we let hαα′ : R2 → R, which is defined over
all R2 because of the incommensuration. We assume hαα′
is smooth and exponentially localized in all its derivatives.

We then define the tight-binding degrees of freedom

Ω = ∪2
j=1Rj ×Aj

and the finite domain

Ωr = ∪2
j=1(Rj ∩Br)×Aj ,

where Br is the ball of radius r centered at the origin.
Our tight-binding Hamiltonian operator H is defined on
the Hilbert space of vectors in `2(Ω) and given by the
expression

[H]Rα,R′α′ = hαα′(R−R′) (1)

for Rα ∈ Rj ×Aj and R′α′ ∈ Rk ×Ak.
We next construct our Kubo formula for the real space

model [8]. To begin, we let Xs be the position operator
such that (Xs)Rα = Rs for s ∈ {1, 2}, and then recall the
current operator

[Xs, H]Rα,R′α′ = (R−R′)sHRα,R′α′

= (R−R′)shαα′(R−R′). (2)

We define the current-current correlation measure
µij(E,E

′) [8] by the moments

∫
φ(E)ψ(E′) dµij(E,E

′)

= lim
r→∞

1

#Ωr
TrΩr

[φ(H)[Xi, H]ψ(H)[Xj , H]] (3)

for all polynomials φ(E) and ψ(E′) (the current-
current correlation measure is related to the current-
current correlation density, ρij(E,E

′), by dµij(E,E
′) =

ρij(E,E
′) dE dE′). We construct an efficient algorithm by

taking moments with respect to Chebyshev polynomials
Tk(E) [8]. Here TrΩr

means trace over Ωr ⊂ Ω and #Ωr
denotes the number of elements of the set Ωr.

Given the Fermi-Dirac distribution

fβ(E) =
1

1 + e−β(E−EF )

for EF the Fermi energy, β the inverse temperature, and
η the inverse dissipation time, we define the conductivity
function

F (E,E′) =
ie2

~(|Γ1|+ |Γ2|)/2
fβ(E)− fβ(E′)

(E − E′)(E − E′ + ~ω + iη)
(4)

where ω is the frequency. The Kubo conductivity can then
be given by [8]

σij =

∫
F (E,E′) dµij(E,E

′). (5)

We can formulate the conductivity in terms of the
moments (3) by expanding the conductivity function (5)
in Chebyshev polynomials

F (E,E′) =

∞∑
k1,k2=0

ck1k2 Tk1(E)Tk2(E′) (6)

where Tk(E) denotes the kth Chebyshev polynomial
defined through the three-term recurrence relation

T0(x) = 1, T1(x) = x, Tk+1(x) = 2xTk(x)− Tk−1(x).
(7)

We developed a fast computational method for the con-
ductivity (5) in [8] by a suitably truncated Chebyshev
series, which significantly improves on the computational
costs of a naive Chebyshev approximation. We also pro-
pose a rational approximation scheme for the low tem-
perature regime η−1/2 . β to remove the poles of the
conductivity function (4). Chebyshev expansions will not
be required in the momentum space formulation, as the
Hamiltonian matrices will be far smaller than in the real
space formulation, allowing for direct diagonalization.
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3 Momentum space formulation

We next consider how to transform the real space Kubo
formula to momentum space [11]. The reciprocal lattices
basis vectors are generated by the columns of 2πA−T

giving the reciprocal lattice

R∗j = 2πA−TZ2

with corresponding unit cells (Brillouin zones)

Γ∗j = 2πA−T [0, 1)2.

The Bloch waves for layer 1 defined by eiq1·R1 for q1 ∈ Γ∗1
and R1 ∈ R1 can be equivalently represented by eiK2·R1

for K2 ∈ R∗2 if the heterostructure is incommensurate, and
similarly for layer 2. The momentum degrees of freedom
space can thus be described in reciprocal space by [11]

Ω∗ = Ω∗1 ∪ Ω∗2 := (R∗2 ×A1) ∪ (R∗1 ×A2).

For wave functions ψ ∈ Rj ×Aj , we can define the Bloch
transform

[Gjψ]α(q) = |Γ∗j |−1/2
∑
R∈Rj

e−iq·RψR,

where |Γ∗j | denotes the area of Γ∗j . Likewise, we define the
Bloch transform over wave functions defined on the entire
heterostructure Ω by the isomorphism G = (G1,G2), where
G1 and G2 act on sheet 1 and sheet 2, respectively.

We now show that the momentum space operator with
shift q is given by [11]

[Ĥ(q)]Kα,K′α′ = δKK′ |Γ∗j |1/2Gjhαα′(q +K),

Kα ∈ Ω∗j , K
′α′ ∈ Ω∗j j = 1, 2 (8)

for intralayer coupling and

[Ĥ(q)]Kα,K′α′ =
√
|Γ∗1| · |Γ∗2|ĥαα′(q +K +K ′),

Kα ∈ Ω∗1, K
′α′ ∈ Ω∗2 (9)

for interlayer coupling where

ĥαα′(ξ) =
1

(2π)2

∫
hαα′(x)e−ix·ξdx.

The link between this momentum space operator and
the real space operator is shown by applying the Bloch
transform:

G[Hψ]α(q) =
[
Ĥ(q)ξ(q)

]
0α
, (10)

where ξ(q) is the wave function defined by [ξ(q)]Kα =
Gψα(q+K). See Section A.1 for the derivation of (10). We
define differentiation in momentum space ∂j as the deriva-
tive with respect to qj , where q = (q1, q2). In particular, we

consider the operator ∂jĤ(q). This in fact is the current

operator in momentum space since

[G1[Xj , H]ψ]α(q) =
[
̂[Xj , H](q)ξ(q)

]
0α

= i
[
∂jĤ(q)ξ(q)

]
0α
, (11)

where [ξ(q)]Kα = Gψα(q + K). See Section A.2 for the
derivation. If A and B are operators over the Hilbert space
with the two-center form of H and [Xj , H]

[A]Rα,R′α′ = aαα′(R−R′) and [B]Rα,R′α′ = bαα′(R−R′),
(12)

then ÂB(q) = Â(q)B̂(q). To derive this, we define ξ̃(q) =
{G[Bψ]α(q +K)}Kα∈Ω∗ . We then utilize (10) to find

G[ABψ](q) = Â(q)ξ̃(q) = Â(q)B̂(q)ξ(q) (13)

where [ξ(q)]Kα = Gψα(q +K). We showed in [11] that

lim
r→∞

1

#Ωr
TrΩr

[φ(H)] = lim
r→∞

1

#Ω∗r
TrΩ∗r

[φ(Ĥ(q∗))]

= ν∗
2∑
k=1

∑
α∈Ak

∫
Γ∗k

[φ
(
Ĥ(q)

)
]0α,0αdq

(14)
for all polynomials φ(E) and q∗ ∈ R2, and where

ν∗ =
1∑2

k=1 |Γ∗k| · (#Ak)

and Ω∗r is the finite domain in momentum space

Ω∗r = Ω∗1r ∪Ω∗2r := ((R∗2 ∩Br)×A1)∪ ((R∗1 ∩Br)×A2) .

We can now apply (14) and then subsequently (13) to
obtain that∫
φ(E)ψ(E′)dµij(E,E

′)

= lim
r→∞

1

#Ωr
TrΩr [φ(H)[Xi, H]ψ(H)[Xj , H]]

= ν∗
2∑
k=1

∑
α∈Ak

∫
Γ∗
k

[(
φ(H)[Xi, H]ψ(H)[Xj , H]

)∧
(q)

]
0α,0α

dq

= ν∗
2∑
k=1

∑
α∈Ak

∫
Γ∗
k

[φ
(
Ĥ(q)

)
∂iĤ(q)ψ

(
Ĥ(q)

)
∂jĤ(q)]0α,0α dq

(15)

for all polynomials φ(E), ψ(E). We are now in a position
to define the momentum space current-current correlation
measure, µ∗ij(E,E

′) by∫
φ(E)ψ(E′)dµ∗ij(E,E

′)

= ν∗
2∑
k=1

∑
α∈Ak

∫
Γ∗k

[φ
(
Ĥ(q)

)
∂iĤ(q)ψ

(
Ĥ(q)

)
∂jĤ(q)]0α,0αdq

(16)
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for all polynomials φ(E) and ψ(E′). Then by (15) we
obtain that the real space and momentum space current-
current correlation meaures are identical,

µij = µ∗ij . (17)

We can thus immediately transform the Kubo formula (5)
into our momentum space formulation using (15) to obtain

σij =

∫
F (E,E′)dµ∗ij(E,E

′). (18)

4 Algorithm

In this section, we will assume the two materials have
similar lattice sizes, i.e., A1 ≈ A2, and we’ll be inter-
ested in low temperature and large relaxation times.
In this regime, real space and supercell approximations
become expensive [8,15,16]. In contrast, in momentum
space we will show that only small matrix calculations
are required, which allows a rapid full diagonalization.
We also will assume frequency is low so that higher
energy modes are negligible. As defined above, σij still
requires the computation of a diagonal entry for an oper-
ator on an infinite-dimensional Hilbert space. To develop a
computational method, we define the injection operator by

[Prξ]Kα = ξKαδKα∈Ω∗r
.

For an operator A defined over the Hilbert space `2(Ω∗),
we can compute the matrix Ar = P ∗r APr.

This will be used to restrict an infinite-dimensional
operator A to a finite-dimensional matrix. Indeed, we
can approximate the current-current correlation measure,
µrij(E,E

′), by∫
φ(E)ψ(E′)dµrij(E,E

′)

= ν∗
2∑
k=1

∑
α∈Ak

∫
Γ∗k

[φ
(
Ĥr(q)

)
∂iĤr(q)ψ

(
Ĥr(q)

)
× ∂jĤr(q)]0α,0αdq (19)

and the approximate conductivity by

σrij =

∫
F (E,E′)dµrij(E,E

′). (20)

When we are interested in long relaxation times and low
temperatures, the momentum space approach converges
very quickly for many materials of interest such as twisted
bilayer graphene as discussed at the end of the section.
Indeed, it converges so quickly that accurate results
may be obtained for r significantly less than the moiré
length scale ‖A−T1 −A−T2 ‖−1. For example, in tBLG only
wavenumbers q near the Dirac points will contribute
strongly to conductivity. As a consequence of this conver-
gence, we can reduce the domain of integration Γ∗k in (19)
to write a more efficient algorithm related to that used

in [9]. In particular, our Hamiltonian can be defined over
a grid of q-points based off the incommensurate supercell
reciprocal lattice

R∗12 = 2π(A−T1 −A−T2 )Z2. (21)

This motivates us to define its unit cell of the incom-
mensurate reciprocal moiré superlattice centered at q̃ to
be

Γ∗12(q̃) = {q̃ + 2π(A−T1 −A−T2 )ζ : ζ ∈ [0, 1)2}, (22)

where q̃’s will be chosen to center our regions where the
integrand in (19) is significant. In the case of tBLG, we
would consider two q̃’s near the Dirac points. One point
would be chosen near the K points for the two sheets and
the other near the K ′ points for the two sheets.

We denote (vm, Em) as the eigenpairs of Ĥr(q) where q
is suppressed from the notation for brevity’s sake. Then

Ĥr(q) =
∑
mEmvmv

∗
m. Then we can derive

σ̃rij = ν∗
∑
q̃

∫
Γ∗12(q̃)

∑
m,m′

F (Em, Em′)

×Tr[vmv
∗
m∂iĤr(q)vm′v

∗
m′∂jĤr(q)]dq. (23)

See Section A.3 for the derivation. To numerically approx-

imate ∂iĤr(q), we can use any standard single variable
differentiation scheme such as the centered midpoint for-
mula to compute the derivative matrix. Note that we sim-
ply store the matrix directly, and no eigen-decomposition
is used. Finally, the integral is evaluated by discretiza-
tion using a uniform mesh over the entire incommensurate
supercell Brillouin zone.

Our algorithm can achieve an exponential rate of con-
vergence when applied to many 2D heterostructures. First
we need ‖A−T1 −A−T2 ‖ to be small, which is an assumption
we have used throughout this section, and applies to the
small twist regimes in bilayers of the same material. We
further require that the Fermi energy roughly corresponds
to a non-flat band regime for the monolayers. It applies
well to regions with parabolic bands or Dirac points. From
a technical perspective, one must look at the collection of
level sets of the monolayer band structures in terms of
energy (See [11] for details).

We next consider the rate of convergence for our
algorithm to compute the conductivity for such 2D het-
erostructures. It has been shown [7] that the Green’s
functions of these Hamiltonians decay exponentially fast
in this energy window. As a consequence, we expect that
if the 2D materials and the Fermi level are as described
above, we have the following rate of convergence for
the our approximate conductivity to the exact Kubo
conductivity:

|σ̃rij − σij | ≤ p(ζ)e−γr (24)

where ζ = max{β, η−1}, the decay rate γ > 0 is indepen-
dent of ε, and p is a polynomial derived from the error
analysis. The proof of this estimate follows from the same
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Green’s function decay estimates found in Theorem 3.1 of
[11]. We do not address the proof here, but we do provide
numerical evidence for this decay rate in Figure 2 for the
tBLG case (see Sect. 5). Note that in this numerical exam-
ple the true solution is computed by a momentum space
calculation, not a real space calculation. We justify this
choice by using our derived formula (18), which implies
equivalence of the thermodynamic limit of momentum
space and real space conductivity formulations.

The outline of the algorithm is then the following:

– Find the required q̃’s corresponding to points near
parabolic band centers or Dirac points.

– Build Ĥr(QN ) and ∂iĤr(QN ) using (8) and (9) for
{QN} a uniform discretization of Γ∗12(q̃).

– Compute eigenvectors and eigenvalues of Ĥr(QN ).
– Compute the conductivity σ̃rij from (23).

We observe that this algorithm is highly parallel in the
QN discretization and critical points q̃.

5 Numeric example: tBLG

Applying this method to tBLG provides validation of the
scheme numerically and physically interpretable results.
For construction of the momentum Hamiltonian of tBLG,
the only challenging ingredient is the Fourier transform

of the interlayer coupling, ĥ. A square-grid FFT is not
ideal as it may violate the three-fold rotational or sub-
lattice exchange symmetries still present in the twisted

geometry. We therefore directly compute components of ĥ
on a triangular grid and ensure our interpolation respects
the appropriate crystal symmetry. As we are performing
a discretization of momenta, QN , the singular nature of
F (E,E′) even at finite ω is regularized by the size of η. We
use a 60× 60 mesh sampling of QN around each copy of
the moiré Brillouin zone, finding this sufficient to obtain
the key physical results for tBLG with twist angle larger
than 1◦. A value of η corresponding to the relaxation time
of graphene (η ≈ 10−6 eV) is too small to give smooth
results in this case. Instead, η is taken on the order of
10−2 eV, and is a tunable parameter to ensure sufficient
smoothness in the resulting σ(ω) curve. For a finer mesh
of QN , or if a finite element approach for interpolating
between q points is used, η can be made smaller.

All results are normalized in units of the conduc-
tance of monolayer graphene, which is nearly frequency-

independent for EF < ~ω � 3 eV with a value of σ0 = 1
4
e2

~
(it is exactly frequency-independent in the Dirac cone
approximation) [14]. As tBLG has time-reversal symme-
try, only σxx and σyy can be non-zero, and taking into
account the three-fold rotational symmetry one must have
σxx = σyy. As a consequence, the current–current correla-
tion measure dµ is purely real, and σ can be decomposed
into its real and imaginary part by manipulating F (E,E′).
This leads to Im(σ) not having any dependence on fβ(E),
and thus necessitating a sum over all states of the tBLG
system, which removes the advantage of the momentum
space method. Such a divergence can be partly corrected
with a “cancellation of infinities” [12], but here we focus

Fig. 1. (a) Band structure of tBLG for θ = 1.5◦. The green and
purple arrows highlight the interband transitions important in
the conductivity calculation. (b) Real part of the conductiv-

ity, Re(σ(0, ω)), normalized by σ0 = 1
4
e2

~ , for three different
twist angles and T = 0.3 K. The two inter band transitions
are marked with small arrows, matching the band structure
arrows. The background value for a decoupled bilayer, 2σ0, is
shown with a dashed line.

instead on the real part. Thus, all results are given in
normalized units of Re(σ)/σ0.

In Figure 1b, we calculate σ(EF , ω) for various ω and
with EF fixed at the charge neutrality point, which is set
to 0 eV. Evaluating σ(0, ω) returns reasonable results for
three choices of θ, with two clear peaks in the conduc-
tivity in each case. These two peaks are associated with
the interband transitions highlighted with the arrows in
the band structure of Figure 1a. There is also a large
divergence in Re(σ) as ω → 0, which is a result of the
singularity inherent in the definition of F (E,E′).

We next study the convergence of the conductivity as
the momentum truncation radius is increased in Figure 2.
Excellent agreement to (24) is observed, with an exponen-
tial decay with factor γ = 1.25 Å at all relevant energy
values. Such convergence ensures accuracy of the conduc-
tivity even for highly truncated momentum Hamiltonians,
and allows the algorithm to produce quality results even
on a laptop. Compared to real space approaches, which
require large amounts of memory and processing power
due to the weak convergence in their truncation radius
[8], this is a significant improvement.

Turning now to the dependence of σ on EF , we fix ω to
the value of the first interband transition of θ = 3.0◦ and
sweep EF in Figure 3b. Comparing the result to the band
structure at the same twist angle, it is clear that the inter-
band tranistion is strongest at the charge neutrality point,
and quickly falls off as one approaches the edges of any

https://epjb.epj.org/
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Fig. 2. (a) Error in the conductivity of the approximate model,
σ̃r, as a function of truncation radius in momentum space, r,
for four different choices of ω for a twist angle of θ = 3◦. The
conductivity obtained with a truncation radius of r = 13 Å−1

is taken as the true value, σ. Only the real part of the conduc-
tivity is considered, in units of σ0, and with the same settings
as in Figure 1b. Each colored curve corresponds to a specific
ω given in the inset, and an error dependence of e−γr with
γ = 1.25 Å plotted as a dashed black line. (b) Real part of the
conductivity, Re(σ(0, ω)), for 3◦ twist angle. For axis units,
see Figure 1b. The opacity of the curves indicate their trun-
cation radius, with the darkest (lightest) line corresponding to
13 Å−1 (2 Å−1). The colored vertical lines give the ω values
for the four colored error curves in panel (a).

Fig. 3. (a) Band structure of tBLG for θ = 3.0◦. b) Real part

of the conductivity, Re(σ(EF , ω)), normalized by σ0 = 1
4
e2

~ as
a function of the Fermi energy. The black (red) line corresponds
to T = 0.3 K (300 K).

bands associated with that specific interband transition.
Changing the temperature from 0.3 K to 300 K smooths
the features of Re(σ), but otherwise has no effect.

The twist-dependent interband transitions and satura-
tion of the conductivity to a nearly constant value at large
frequency are well understood linear-response phenom-
ena in TBLG [12,13]. Their recovery in our formulation
is proof that not only the method converges, but that it
converges to a correct result. This physical demonstration
complements our numeric convergence to demonstrate our
algorithm’s accuracy.

6 Conclusion

In this paper, we introduced an efficient algorithm for
computing conductivity in a momentum space frame-
work and demonstrate its effectiveness for tBLG. For
applicable 2D heterostructures, the algorithm’s computa-
tionally complexity will be far less than that of real space
approaches, and bypasses the need for commensurate
supercells. We derived the momentum space model and
Kubo formula directly from the real space formulation.

The momentum space framework is very generalizable
and versatile in applicability, generalizing to many incom-
mensurate 2D systems including twisted bilayer with
mechanical relaxation [17], and even trilayers, and pro-
viding a foundation for the development of efficient and
accurate methods to compute the Kubo conductivity in
2D heterostructures.
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Appendix A

A.1 Derivation of (10)

We can verify (10) for intralayer coupling by setting α ∈
A1 and observing that

[G1H(ψ1, 0)T ]α(q)

= |Γ∗1|−1/2
∑
R∈R1

e−iq·R
∑

R′α′∈Ω1

HRα,R′α′ψR′α′

= |Γ∗1|−1/2
∑
R∈R1

e−iq·R
∑

R′α′∈Ω1

hαα′(R−R′)ψR′α′

= |Γ∗1|−1/2

( ∑
R∈R1

e−iq·Rhαα′(R)

)( ∑
R′∈R1

e−iq·R
′
ψR′α′

)
= |Γ∗1|1/2G1hαα′(q)G1ψα′(q),

https://epjb.epj.org/
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which gives (10) for the intralayer coupling in momentum
space (8).

Next we consider interlayer coupling. Letting α ∈ A1

again, we have that

[G1H(0, ψ2)T ]α(q)

= |Γ∗1|−1/2
∑
R∈R1

e−iq·R
∑

R′α′∈Ω2

HRα,R′α′ψR′α′

= |Γ∗1|−1/2
∑
R∈R1

e−iq·R
∑

R′α′∈Ω2

hαα′(R−R′)ψR′α′

= |Γ∗1|−1/2
∑
R∈R1

e−iq·R
∑

R′α′∈Ω2

∫
ĥαα′(ζ)e

iζ·(R−R′) dζ ψR′α′

= |Γ∗1|1/2|Γ∗2|1/2
∑
K∈R∗1

∑
α′∈A2

∫
ĥαα′(ζ)δ(ζ − q −K)Gψα′(ζ) dζ

= |Γ∗1|1/2|Γ∗2|1/2
∑
K∈R∗1

ĥαα′(q +K)G2ψα′(q +K)

by the Poisson summation formula
∑
R∈R1

ei(ζ−q)·R =

|Γ∗1|
∑
K∈R∗1

δ(ζ − q −K) which gives (10) for the inter-

layer coupling in momentum space (9).

A.2 Derivation of (11).

To derive the Bloch transform of the current operator (11),
we first let α ∈ A1 and consider the intralayer interaction.
We have

[G1[Xj , H](ψ1, 0)T ]α(q)

= |Γ∗1|−1/2
∑
R∈R1

e−iq·R
∑

R′α′∈Ω1

[Rj −R′j ]HRα,R′α′ψR′α′

= |Γ∗1|−1/2
∑
R∈R1

e−iq·R
∑

R′α′∈Ω1

[Rj −R′j ]hαα′(R−R′)ψR′α′

= |Γ∗1|−1/2

( ∑
R∈R1

e−iq·RRjhαα′(R)

)( ∑
R′∈R1

e−iq·R
′
ψR′α′

)
= i|Γ∗1|−1/2

( ∑
R∈R1

∂je
−iq·Rhαα′(R)

)( ∑
R′∈R1

e−iq·R
′
ψR′α′

)
= i|Γ∗1|1/2∂jG1hαα′(q)G1ψα′(q).

(A.1)

Next, we consider interlayer coupling and let α ∈ A1

again to derive

see equation (A.2) next page.

Putting these derivations for intralayer and interlayer
coupling together gives the final result (11).

A.3 Derivation of (23)

It is useful at this point to define in parallel to (19) approx-
imate and exact local conductivities in momentum space
given by the local correlation measure defined by

∫
φ(E)ψ(E′)dµrij,Kα[q](E,E′)

= [φ
(
Ĥr(q)

)
∂iĤr(q)ψ

(
Ĥr(q)

)
∂jĤr(q)]Kα,Kα,

(A.3)∫
φ(E)ψ(E′)dµij,Kα[q](E,E′)

= [φ
(
Ĥ(q)

)
∂iĤ(q)ψ

(
Ĥ(q)

)
∂jĤ(q)]Kα,Kα.

(A.4)

The local conductivity and its approximation are then
defined by

σrij,Kα[q] =

∫
F (E,E′)dµrij,Kα[q](E,E′), (A.5)

σij,Kα[q] =

∫
F (E,E′)dµij,Kα[q](E,E′), (A.6)

and the global conductivity and its approximation are
given by

σrij = ν∗
2∑
k=1

∑
α∈Ak

∫
Γ∗k

σrij,0α[q]dq, (A.7)

σij = ν∗
2∑
k=1

∑
α∈Ak

∫
Γ∗k

σij,0α[q]dq. (A.8)

We denote P1 = 2 and P2 = 1. For Kα ∈ Ω∗k such that

K = 2πA−TPk
n where n = (n1, n2)T is a pair of integers,

we define

qn = 2π(A−TPk
−A−Tk )n. (A.9)

We have the identity

σij,Kα[q] = σij,0α[q + qn]. (A.10)

See Section A.4 for the derivation of this result. We
additionally have the approximation

σrij,Kα[q] ≈ σrij,0α[q + qn]. (A.11)

An important factor in the validation of this approxima-
tion is that only energies near the Fermi energy contribute
to conductivity, at least to leading order. This is because
F (E,E′) to leading order is dominated by E ≈ E′ ≈ EF .
Consider sheet j as a monolayer for a moment. Suppose
εjn(q) is the nth eigenvalue corresponding to wavenumber
q. Then it turns out only wavenumbers q with correspond-
ing eigenvalues εjn(q) near the Fermi energy contribute
strongly to conductivity in the bilayer case. In other
words, monolayer band structure informs what wavenum-
bers are relevant for the bilayer system. In the case of
tBLG, only wavenumbers near the Dirac cones contribute
strongly when the Fermi energy is near the Dirac point.
For local conductivity, this means σij,0α[q] becomes small
if εjn(q) is sufficiently far from the Fermi energy for all n.
This gives us a reduced space of wavenumbers we need to
consider.

https://epjb.epj.org/
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[G1[Xj , H](0, ψ2)T ]α(q) = |Γ∗1|−1/2
∑
R∈R1

e−iq·R
∑

R′α′∈Ω2

(Rj −R′j)HRα,R′α′ψR′α′

= |Γ∗1|−1/2
∑
R∈R1

e−iq·R
∑

R′α′∈Ω2

(Rj −R′j)hαα′(R−R′)ψR′α′

= |Γ∗1|−1/2
∑
R∈R1

e−iq·R
∑

R′α′∈Ω2

(Rj −R′j)
∫
ĥαα′(ζ)eiζ·(R−R

′)dζψR′α′

= i|Γ∗1|−1/2
∑
R∈R1

e−iq·R
∑

R′α′∈Ω2

∫
∂j ĥαα′(ζ)eiζ·(R−R

′)dζψR′α′

= i|Γ∗1|1/2|Γ∗2|1/2
∑
K∈R∗1

∑
α′∈A2

∫
∂j ĥαα′(ζ)δ(ζ − q −K)Gψα′(ζ)dζ

= i|Γ∗1|1/2|Γ∗2|1/2
∑
K∈R∗1

∂j ĥαα′(q +K)G2ψα′(q +K)

(A.2)

As described above, the local conductivity σrij,0α[q] is
small for q far from the q̃ points. As such, we can approx-
imate integrals of σrij,0α[q] over the Brillouin zones Γ∗k by
integrals over the much smaller isolated regions defined by
the sets

Γ∗(q̃, k) =
⋃

{n:|2πA−T
Pk

n|<r}

(
Γ∗12(q̃) + 2π(A−TPk

−A−Tk )n

)
.

(A.12)
See Figure A.1.

Using these approximations, we have

σrij ≈ ν∗
∑
q̃

∫
Γ∗12(q̃)

∑
Kα∈Ω∗r

σrij,Kα[q]dq. (A.13)

See Section A.5 for the derivation. The sum in the inte-
grand is simply a trace, which motivates us to define an
approximate measure µ̃rij by

∫
φ(E)ψ(E′)dµ̃rij(E,E

′)

= ν∗
∑
q̃

∫
Γ∗12(q̃)

Tr[φ
(
Ĥr(q)

)
∂iĤr(q)ψ

(
Ĥr(q)

)
∂jĤr(q)]dq.

(A.14)

Here we sum over the relevant regions via q̃. For simplic-
ity, we are assuming that the approximating integration
domains are centered around points as in Γ∗12(q̃), though
this framework can be generalized beyond such restric-
tions [11]. We now have the corresponding approximate
Kubo formula:

σ̃rij =

∫
F (E,E′)dµ̃rij(E,E

′). (A.15)

Recall (vm, Em) are the eigenpairs of Ĥr(q) where q is
suppressed from the notation for brevity’s sake. Then

Fig. A.1. The grey large cell is Γ∗1. Here Γ∗12 = 2π(A−T1 −
A−T2 )[0, 1)2, a sample of the supercell reciprocal lattice unit
cell. Each bottom-left vertex of the parallelograms around the
q̃ points represent q̃ + qn positions. Hence the decomposition
given by (A.12) breaks the regions around the q̃ points into a
union of small parallelograms.

Ĥr(q) =
∑
mEmvmv

∗
m. As a consequence, we have

σ̃rij = ν∗
∑
q̃

∫
Γ∗12(q̃)

∑
m,m′

F (Em, Em′)

×Tr[vmv
∗
m∂iĤr(q)vm′v

∗
m′∂jĤr(q)]dq. (A.16)

A.4 Derivation of (A.10)

To show this, suppose α ∈ A1. Then let TK (K =

2πA−T2 n) be the translation of sheet 1 operator defined
by

[TKξ]K′α′ = ξ(K′−K)α′ if α′ ∈ A1, (A.17)

[TKξ]K′α′ = ξ(K′+2πA−T
1 n)α′ if α′ ∈ A2. (A.18)

Now we observe

T ∗KĤ(q)TK = Ĥ(q + qn). (A.19)

https://epjb.epj.org/
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Note we defined the translation TK in such a way that as

n ∈ Z2 varies, Ĥ(q + qn) varies slowly. We next observe

[φ
(
Ĥ(q)

)
∂iĤ(q)ψ

(
Ĥ(q)

)
∂jĤ(q)]Kα,Kα

= [T ∗Kφ
(
Ĥ(q)

)
∂iĤ(q)ψ

(
Ĥ(q)

)
∂jĤ(q)TK ]0α,0α

= [φ
(
T ∗KĤ(q)TK

)
T ∗K∂iĤ(q)TKψ

(
T ∗KĤ(q)TK

)
T ∗K∂jĤ(q)TK ]0α,0α

= [φ
(
Ĥ(q + qn)

)
∂iĤ(q + qn)ψ

(
Ĥ(q + qn)

)
∂jĤ(q + qn)]0α,0α.

Since this holds for the local current-current correlation,
it extends to local conductivity.

A.5 Derivation of (A.13)

We have

σrij = ν∗
2∑
k=1

∑
α∈Ak

∫
Γ∗k

σrij,0α[q]dq

≈ ν∗
2∑
k=1

∑
α∈Ak

∑
q̃

∫
Γ∗k(q̃,k)

σrij,0α[q]dq

= ν∗
2∑
k=1

∑
α∈Ak

∑
K∈R∗Pk

∩Br

∑
q̃

∫
Γ∗12(q̃)

σrij,0α[q + qn]dq

≈ ν∗
2∑
k=1

∑
α∈Ak

∑
K∈R∗Pk

∩Br

∑
q̃

∫
Γ∗12(q̃)

σrij,Kα[q]dq

= ν∗
∑
q̃

∫
Γ∗12(q̃)

∑
Kα∈Ω∗r

σrij,Kα[q]dq.
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