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Signal processing techniques have been developed that use

different strategies to bypass the Nyquist sampling theorem in

order to recover more information than a traditional discrete

Fourier transform. Here we examine three such methods: filter

diagonalization, compressed sensing, and super-resolution. We

apply them to a broad range of signal forms commonly found

in science and engineering in order to discover when and

how each method can be used most profitably. We find that

filter diagonalization provides the best results for Lorentzian

signals, while compressed sensing and super-resolution per-

form better for arbitrary signals. VC 2016 Wiley Periodicals, Inc.

DOI: 10.1002/qua.25144

Introduction

The reconstruction of frequency-resolved spectra from limited

and undersampled measurements in the time domain is a sig-

nificant problem throughout the physical sciences. The stand-

ard approach to solving such a problem is the discrete Fourier

transform, which decomposes a time series in terms of its

component frequencies (or, more generally, decomposes a

series into its conjugate domain). The discrete Fourier trans-

form offers two major advantages: no a priori knowledge

about the signal is required, and the computation can be

implemented very efficiently via the fast Fourier transform.

Unfortunately, a major disadvantage is that the discrete Fourier

transform imposes a natural bound on the maximum fre-

quency resolution possible given the nature of the time series,

known as the Shannon–Nyquist condition.[1]

A natural question to ask is whether the Shannon–Nyquist

condition can be bypassed by exploiting any additional knowl-

edge we may have about the signal. Recent advances in signal

processing have provided many such techniques for leveraging

additional a priori knowledge about the signal to improve

reconstruction. Our goal in this article is to compare three

such methods, filter diagonalization,[2–7] compressed sens-

ing,[3,8–14] and super-resolution,[1,15–19] against a series of test

signals in order to understand their relative strengths and

weaknesses. Our comparison will be based on a subset of the

signals contained in the Sparco toolbox,[20] a Gaussian, a sum

of random Lorentzians, and the Jacob’s Ladder signal.[2] The

Sparco toolbox provides a standard set of signal processing

benchmarks while the other signals are commonly encoun-

tered throughout the physical sciences.

Filter diagonalization, one of the earliest techniques for bypass-

ing the Shannon–Nyquist condition, assumes that the time series

is generated by an underlying dynamical system with a frequency

spectrum modeled by a sum of Lorentzians. It attempts to express

the frequency spectrum as a sum of Lorentzian peaks by finding

the optimal frequencies, linewidths, and intensities that fit the

time series. Filter diagonalization has been applied to a broad

range of signals that vary from NMR spectra[2,6] to scattering

data[5] and image analysis.[4]

More recently, L1 minimization techniques, such as compressed

sensing and super-resolution, have also been proposed as an alter-

native technique for sampling below the rate imposed by the

Nyquist–Shannon condition. Rather than assuming a particular

kind of underlying dynamical system, these techniques simply

assume that the signal is sparse in some a priori known basis. The

two methods differ in both sampling strategy and the particular

optimization problem to be solved. Compressed sensing is

designed to recover sparse frequency spectra (or other signals) by

randomly undersampling data over the entire time domain, and

then minimizing the L1 norm of an underdetermined system of

linear equations. Compressed sensing has been successfully

applied to data acquisition in many different areas,[21] including

the improvement of the resolution of medical magnetic-resonance

imaging[22] and the experimental study of atomic and quantum

systems.[11,14,23]

Super-resolution is a related technique that shares the spirit of

compressed sensing, but with a different sampling tech-

nique.[3,8–10,12,22,24–28] Super-resolution was developed to recover

sparse frequency spectra (or other signals) from regularly sampled

data over a short segment of the time domain. It provides a prov-

ably convergent algorithm for the reconstruction of signals from

these limited time-domain measurements by using a total-

variation minimization procedure. Like compressed sensing, super-
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resolution has been applied to a broad range of scientific prob-

lems, including image[18] and video compression,[29] image denois-

ing,[30] atomistic modeling of open quantum systems,[31]

astronomy,[17] microscopy,[16] and medical imaging.[15]

The goal of this article is to elucidate the strengths and

weaknesses of the aforementioned signal processing techni-

ques to provide a clear and coherent aid in choosing a

method. To achieve this, we will first introduce the theory that

underlies each method and outline our procedure for bench-

marking the methods. Then, we will introduce the test signals

and compare the performance of each method on each signal.

Finally, we will present some general conclusions.

Theory

Discrete Fourier transform

The Fourier transform is a cornerstone method in signal proc-

essing, as it provides a technique for decomposing an arbitrary

function of time into its component frequencies:

f̂ ðxÞ5 1ffiffiffiffiffiffi
2p
p

ð1
21

eixt f ðtÞ dt: (1)

When treating a problem numerically, we often only have

access to the values of the signal f(t) on an equally-spaced N-

point grid. Accordingly, we discretize the continuous Fourier

transform to obtain the discrete Fourier transform:

f̂ ðxiÞ5
1ffiffiffiffi
N
p

X
j

f ðtjÞeixi tj : (2)

which can be reformulated as a matrix multiplication accord-

ing to:

f̂ i5
X

j

F ij fj; (3)

where fj � f ðtjÞ; f̂ i � f̂ ðxiÞ, and F ij is the Fourier operator.

Here we have assumed a uniform frequency grid with a spac-

ing of fs/N, a time sampling rate of Dt, the maximum fre-

quency that can be sampled is 1/Dt, N is the number of time

points, and T is the time length of the signal. The Nyquist–

Shannon sampling theorem states that if a function is band

limited with maximum frequency X, it is completely character-

ized with a uniform series of time points spaced by 1/2 X. It is

often more convenient to use the converse statement in signal

reconstruction, which claims that the with a sampling rate of

Dt the maximum frequency that can be recovered is 1/2 Dt.

This is a direct consequence of discretizing the Fourier trans-

form. A major disadvantage of the discrete Fourier transform is

that a long and uniformly-sampled time series is required to

obtain high resolution in the frequency domain.[1,32]

L1 Minimization

L1 minimization methods, including compressed sensing and

super-resolution, have emerged as a powerful technique for

bypassing the constraint of the Shannon–Nyquist theorem in

the special case where the signal is known to be sparse in a

particular basis.[8,19]

To illustrate this, suppose we have an unknown function f(t)

that we wish to recover with as few samples as possible. Sup-

pose further that we can find a set of basis functions fgiðtÞg
such that f(t) is sparse when expanded in this basis. That is,

f ðtÞ5
X

j

kjgjðtÞ; (4)

where most of the kj expansion coefficients are equal to zero

(or near zero). Our goal is to find the set of coefficients fkjg,
since this would in turn identify the function f(t). All we know

a priori is that most of the kj are zero; we do not know which

of them are zero, and we do not know their values in general.

By sampling f(t) at a set of points ftig, we can obtain a set of

linear equations,

fi5
X

j

kjgij; (5)

where fi � f ðtiÞ and gij � gjðtiÞ, and our goal is to solve these

equations for the set of coefficients fkjg. Since we are trying

to obtain accurate resolution by taking as few time samples as

possible, this system of equations will be underdetermined

and we must impose additional constraints to pick out the

desired solution. One such constraint is the minimization of

the L1 norm.

In L1 optimization methods, including compressed sensing

and super-resolution, the desired solution to the underdeter-

mined system of Eq. (5) is chosen by solving the following L1

minimization problem:

argminkj
jjkjjj1 subjectto

����
����fi2

X
j

kjgij

����
����

2

< g; (6)

where g is a small thresholding parameter. In this minimization

problem, the L1 norm serves as a proxy for the sparsity-

enforcing L0 norm by selecting the sparsest set of coefficients

fkjg such that the system of Eq. (5) are satisfied to within g. It

is important to note that each gj(t) should be normalized to

unity so that no single basis function is privileged.

Compressed sensing and super-resolution differ in the sam-

pling strategy, which, in turn, is often determined by computa-

tional and experimental constraints. Compressed sensing

addresses the case where the value of the function f(t) is

sampled at random points ftig over the entire domain. This

random sampling of points fi ensures that each point provides

the maximum possible amount of information for the recon-

struction of the signal.[8] A key result from compressed sensing

is that the number of time samples fi which must be measured

for accurate recovery scales roughly with the sparsity of the

basis expansion (i.e., the number of nonzero kj), rather than

the total size of the basis expansion (i.e., the total number of

kj).
[8,32] In particular, Donoho showed if the basis obeyed a

condition called the “restricted isometry property” (RIP), this

basis expansion problem can be solved exactly provided that:
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M � CklogðN=kÞ; (7)

where M is the number of measurements (frequently in the

time domain), C is an instance specific constant, N is number

of desired conjugate variables (frequently the frequencies),

and k is the degree of sparsity. Many matrices obey RIP, includ-

ing all sub-Gaussian random matrices and the Fourier matrix.[8]

A related method to compressed sensing is super-resolution.

Unlike compressed sensing, which applies to randomly-sampled

data, super-resolution applies to data that is regularly sampled

in the time domain. Making no assumptions about the basis,

aside from sparsity, it has been proven that super-resolution ena-

bles the recovery of signals with frequencies at one quarter of

the Shannon–Nyquist condition reliably.[19]

A major advantage of both compressed sensing and super-

resolution is that we can recover f(t) in any basis in which the signal

is sparse. The methods work with bases as varied as wavelets,[33,34]

treelets,[35] geometric harmonics,[36] and polynomials.[13,37] All that

is required is that we know the sparse basis ahead of time.

Although this may seem like a strong restriction, for many scientific

problems physical intuition often leads to a sparse basis. One does

not need to pick the optimal basis; any reasonably sparse basis will

work. Moreover, both compressed sensing and super-resolution

are robust to choosing an overcomplete basis, which allows for a

lot more freedom in finding a sparse basis.[14]

For example, in computational chemistry, we are often inter-

ested in resolving spectra which are known to be sparse

directly in the frequency domain (i.e., the spectrum is mostly

zero except for a few sharp frequency peaks). In this case, we

might choose a basis of complex exponentials gjðtÞ5 1
2p eixj t .

After time sampling, the matrix gij5
1

2p eixj ti simply becomes an

undersampled set of rows of the discrete Fourier transform

matrix. Once the sparse coefficients kj have been found by

solving Eq. (6), the final spectrum may be plotted as

f̂ ðxÞ5
X

j

kj ĝjðxÞ5
X

j

kjd x2xj

� �
; (8)

Other similar bases commonly used when applying com-

pressed sensing or super-resolution to Fourier analysis are sine

functions gjðtÞ5 1
2p sin xjt

� �
and cosine functions gjðtÞ5

1
2p cos xj t

� �
.

To take another common example in the physical sciences,

we often find damped oscillatory signals which may be

expressed as a sum of damped cosines:

gjkðtÞ5e2ck tcos xj t
� �

: (9)

Compressed sensing and super-resolution are easily adapted to

this overcomplete basis and, once the sparse coefficients kjk have

been found via Eq. (6), the final spectrum may be plotted as

f̂ ðxÞ5
X

j;k

kjk ĝjkðxÞ

5
X

j;k

kjkffiffiffiffiffiffi
2p
p ck

c2
k1 x2xj

� �2
1

ck

c2
k1 x1xj

� �2

 !
:

(10)

In short, compressed sensing and super-resolution both enable

the recovery of an undersampled signal by using a custom-

ized, sparse basis that is appropriate to the problem at hand.

The central difference between the two methods is the sam-

pling technique, which defines the prior information available

to the reconstruction. Namely, random sampling over the

entire time domain is appropriate for compressed sensing,

while regular sampling over the time domain is the defining

characteristic of super-resolution. While the methods are

closely algorithmically, the differences in sampling provide

very different theoretical error bounds. In this sense, it is

important to note that both techniques have rigorously

defined scaling characteristics and computational bounds.

Filter diagonalization

Filter diagonalization is another approach to circumvent the

Shannon–Nyquist condition.[2,4–6] Inspired by quantum

mechanics, the method assumes that the signal f(t) to be

recovered is generated by the time evolution of a unitary

propagator,[5]

f ðtÞ5ðU0; e2î tU0Þ: (11)

If we sample f(t) on an equally spaced grid tn 5 ns, we can dis-

cretize this equation as

f ðtnÞ5ðU0; e2in̂sU0Þ: (12)

where Û5e2îs is the unitary propagator. By expanding the

propagator in terms of its eigenvalues and (possibly complex)

eigenvectors,

e2îs5
X

j

e2ixjsjujÞðujj; (13)

and substituting this expansion into Eq. (12), we obtain

f ðtnÞ5
X

j

jðuj;U0Þj2e2ixj ns; (14)

which is the equation for a Lorentzian signal with (possibly

damped) frequencies xj and amplitudes kj � jðuj;U0Þj2. Hence,

resolving a signal f(t) into a sum of Lorentzian peaks is

reduced to the standard linear algebra problem of finding the

eigenvalues and eigenvectors of the propagator Û5e2îs.
[5]

The key insight of filter diagonalization is that the propaga-

tor to be diagonalized, e2îs, may be expressed entirely in

terms of time samples of the signal fn � f ðtnÞ. A common

approach is to write the propagator in a so-called Krylov basis,

Wk5
XN

n50

Û

zk

 !n

U0; (15)

where zk5e2imks is a complex value chosen along the unit

circle.[2] By selecting the mk close to the frequencies we wish

to resolve, it is possible to filter f(t) and recover only those fre-

quency components near the mk; this is where the name filter
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diagonalization comes from. It is important to include more

basis vectors jWkÞ than there are frequencies we wish to

resolve.[2]

Expressing the propagator in the Krylov basis yields

Ukk05ðWk; ÛWk0 Þ5
XN

n50

XN

n050

fn1n011z2n
k z2n0

k0 ; (16)

which is expressed completely in terms of time samples of the

signal. Because the Krylov basis is not orthonormal, we also

need the overlap matrix

Skk05ðWk;Wk0 Þ5
XN

n50

XN

n050

fn1n0z
2n
k z2n0

k0 ; (17)

after which the eigenvalues and eigenvectors of Û may be

found by solving the generalized eigenvalue problem,

UBj5ujSBj: (18)

For computational efficiency, the double sums in Eqs. (16) and

(17) are rewritten as single sums, as shown in Ref. 4. With the

eigenvalues uj and eigenvectors

uj5
X

k

BkjWk (19)

in hand, the frequencies xj and amplitudes kj in the signal f(t)

may be reconstructed according to the formulas

uj5e2ixjs; and (20)

kj5jðuj;U0Þ
����

2

5j
X

k

BkjðWk;U0Þ
����

2

: (21)

Because the Krylov basis is often close to becoming linearly

dependent, we include a numerical conditioning step to

remove possible spurious frequencies. In particular, we select a

value of p and resolve the generalized eigenvalue equation

with Û
p11

and Û
p

(used in place of Û and Ŝ). We remove the

eigenvalues that are not shared in the two spectra, and then

select a filtering grid with frequencies mj located only at the

nonspurious eigenvalues. We rerun filter diagonalization one

more time on this adaptive frequency grid,[7] and these are

the results we report below.

While this technique was initially derived with quantum

mechanics in mind, it is not limited to such applications.

Indeed, with generalizations such as 2D filter diagonalization[4]

and multi-resolution filter diagonalization,[38] the method has

been expanded to be applicable to a broad range of signals.

Methods

As our goal in this article is to compare the performance of

compressed sensing, super-resolution, and filter diagonalization

in recovering sparse signals, we began by obtaining a series of

sparse signals from the Sparco toolkit, which is a well-known set

of sparse signals used for benchmarking various signal process-

ing techniques.[20] We also generated a few other signals of

interest to highlight particular properties of each technique.

Unless otherwise stated, each signal began as a continuous

function of time f(t) and, to generate a discrete time series, we

sampled f(t) at 4096 time points ranging uniformly from t 5 0 to

t 5 1 second. This gave a grid separation of 1/4096 s, with a

maximum recoverable frequency of 2048 Hz.

For each sparse signal processing method, we varied how

many of the 4096 time points we sampled (in increments of

64) and investigated the dependence of the recovery error on

the extent of undersampling. As a measure of the recovery

error, we employed the relative 2-norm error over all 4096

time points (regardless of the extent of undersampling):

Recovery Error5

X4096

i51

jfrecoveredðtiÞ2foriginalðtiÞj2

X4096

i51

jforiginalðtiÞj2
(22)

We consistently obtained similar results with the 1-norm error

and the 1-norm error, but the 2-norm error has the advant-

age that, by Parseval’s theorem, it is the same whether it is

measured in the time domain or the frequency domain. There-

fore, we adopted the 2-norm as our primary benchmark. In

some instances, filter diagonalization has been marketed as a

parameter estimation technique, but this problem is identical

to reconstruction of the signal as a whole. That is, if a method

can extract the characteristic parameters of the signal, then

these parameters can be used to reconstruct the signal.

For compressed sensing and super-resolution, we attempted

to recover each signal in an appropriate sparse basis. The basis

used depends on the signal and is discussed in the individual

sections below. Because super-resolution requires a grid of

equally spaced sample points, we began our analysis by exam-

ining the full signal and computing the errors. We then

repeated our analysis for the signal by successively undersam-

pling in powers of two, taking care to ensure that our sample

points were always equally spaced. In contrast, our analysis

with compressed sensing involved randomly selecting the

same number of points that were included in the super-

resolution analysis at each step.

For filter diagonalization, we used the same regular sam-

pling strategy as for super-resolution, and we monitored the

recovery error as a function of the sampling. Filter diagonaliza-

tion requires specifying a grid of frequencies on which we

expect the components of the signal to lie, so we specified a

frequency range of 0 kHz to 20 kHz. To find the appropriate

grid density and number of frequencies, we tuned these two

parameters for optimal reconstruction with the full time signal

and assumed these parameters would be valid for the entire

numerical experiment. To ensure the robustness of our results,

we also performed the analysis from 0 to 5, 10, 50, 100, 200,

and 500 kHz, with a similar density of frequencies.

From a numerics standpoint, compressed sensing and

super-resolution require a fast, memory-efficient L1 solver. For

all results in this article, we implemented the two-step iterative
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shrinkage/thresholding (TwIST) algorithm in Python.[39,40] Our

TwIST solver is capable of solving arbitrary optimization prob-

lems given a measurement matrix, signal vector, and objective

function, and gives numerically identical answers to the Matlab

version for a wide range of test signals, including all those in

this article.

We implemented filter diagonalization in Python, performing

all required matrix diagonalizations using the zgeev function

from LAPACK. We benchmarked our implementation against

Harminv, a freely-available C11 implementation based on the

methods described in Ref. [7], and found that they give the

same answers to within numerical precision for a wide range

of signals, including all of those presented in this article.

Gaussian signal

We begin with one of the most ubiquitous signals throughout

signal processing, a simple Gaussian centered at time t 5 0

with r 5 0.4 (Fig. 1a),

f ðtÞ5e2 t2

0:42 : (23)

To recover this signal with compressed sensing and super-

resolution, we employ a basis of displaced Gaussians

gjkðtÞ5e
2
ðt2tj Þ2

r2
k ; (24)

with 100 centers tj ranging uniformly from 0 to 1, and 100

standard deviations rk also ranging uniformly from 0 to 1, for

a total of 10,000 different basis functions. It is clear that the

function we hope to recover, f(t), is sparse in this basis.

Figure 1b compares the performance of compressed sensing,

super-resolution, and filter diagonalization in recovering the Gaus-

sian signal. Compressed sensing and super-resolution both con-

verge quickly to the correct signal, and as more time-domain

information is sampled, the signal becomes more obviously com-

posed of a single Gaussian. Moreover, compressed sensing con-

verges more quickly than super-resolution, indicating that

randomly sampling over the entire time domain provides more

complete information about the overall shape of the signal than

sampling uniformly with a coarse grid. Both compressed sensing

and super-resolution recover a single strongly converged, correct,

peak with amplitude 1 and a few spurious peaks with amplitudes

smaller than 1026. This represents a small numerical instability in

our implementation of TwIST but these spurious features are easy

to identify and disregard.

By contrast, filter diagonalization fails to converge com-

pletely because it attempts to recover the Gaussian as a sum

of Lorentzian peaks, rather than taking advantage of the natu-

ral sparsity of the signal in a Gaussian basis. This example

highlights the basis set agnosticism of the L1 minimization

techniques, which is one of their principal advantages.

Sparco problem 1

For our second signal, we consider a sinusoid that is

“disrupted” by two Heaviside step functions (Fig. 2a),

f ðtÞ54sin ð4ptÞ2Hðt20:3Þ2Hð0:722tÞ; (25)

one of the earliest signals used to benchmark wavelet and

compressed sensing techniques.[8,41,42] This signal is problem 1

in the Sparco toolbox of sparse signals.[20]

To recover this signal via compressed sensing and super-

resolution, we employ a composite basis of sine functions and

Heaviside step functions

gjðtÞ5sin xj t
� �

hjðtÞ5Hðt2tjÞ;

with the spectral spacing xj of the sine functions ranging uni-

formly from 0 to 4096p kHz in units of p
10 kHz, and the unit

steps tj of the Heaviside step functions ranging uniformly from

0 to 1 s in units of 0.01 s. While either basis gj(t) or hj(t) by

itself would provide a complete basis for recovery of the signal

f(t) (to within numerical precision), the function f(t) would not

be sparse in either basis on its own. On the other hand, there

is no problem in L1 minimization techniques with using the

combined basis, which affords the additional advantage that

f(t) is sparse in this combined basis. However, when building a

composite basis with different functional forms, it is important

Figure 1. a) Time series consisting of a Gaussian given by Eq. (23) centered at t 5 0 with standard deviation r 5 0.4. b) Comparison of the relative 2-norm

error in the reproduction of a Gaussian signal as a function of undersampling betweening compressed sensing, super-resolution, and filter diagonalization.
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to ensure that each basis function is normalized to the same

value, for which we chose unity.

Figure 2b compares the performance of compressed sens-

ing, super-resolution, and filter diagonalization in recovering

the signal f(t). For super-resolution and filter diagonalization,

both of which involve regular sampling over a coarse time

domain grid, most of the initial error simply comes from the

fact that the methods cannot reproduce aspects of the signal

that have not been sufficiently sampled.

Super-resolution and compressed sensing are able to iden-

tify that the signal has some underlying sine structure, but ini-

tially fails to recognize the exact position of the step

functions. As more samples are included in the analysis, both

techniques are able to quickly converge to the exact location

of the step function. This convergence leads to a very sharp

phase transition characteristic of an L1 analysis, and represents

the minimum amount of information required to exactly repro-

duce the full signal. This phase transition is a well known

aspect of L1 minimization techniques, and provides a useful

and valid check on convergence and accuracy.

This stands in contrast to filter diagonalization, which

attempts to match the Heaviside step functions by creating a

signal that contains exponentially growing components, even-

tually resulting in an explosion of error. To better understand

this behavior, we varied the magnitude of the Heaviside step

functions, but found that the creation of an exponentially

growing signal persisted even when the Heaviside step func-

tion was 0.1% of the amplitude of the oscillating sine wave.

Not surprisingly, compressed sensing fares better than both

super-resolution and filter diagonalization. This is easily explained

by the fact that compressed sensing randomly samples the entire

domain, so it can quickly “recognize” all features of the signal and

recover them accurately. After roughly one sixty-fourth of the sig-

nal has been sampled, the error changes only marginally, and this

effect is robust across different runs of random sampling.

Sparco problem 5

For our third signal, we consider the sum of three cosines with the

addition of 40 spikes at random time points ftig (Fig. 3a),

f ðtÞ52cos ð2ptÞ13cos ð9ptÞ2cos ð20ptÞ

1
X

i

aidðt2tiÞ; (26)

where dðt2tiÞ is regarded here as the Kronecker delta function

(equal to 1 at the time point t 5 ti, 0 otherwise) and ai is a uni-

form random number between 0 and 1. This signal is problem

5 in the Sparco toolbox of sparse signals,[20] and including it in

our comparison is particularly useful for benchmarking the

ability of compressed sensing, super-resolution, and filter diag-

onalization to deal with random noise.

To recover this signal via compressed sensing and super-

resolution, we employ a cosine basis:

gjðtÞ5cos xjt
� �

with the spectral spacing xj of the cosine functions ranging

uniformly from 0 to 4096p kHz in units of p
10 kHz. Note that we

do not include Kronecker delta functions d(t – ti) in our basis,

since our goal is to see whether our signal processing meth-

ods can recover the underlying cosine functions despite the

random noise.

As shown in Figure 3b, both compressed sensing and super-

resolution successfully recover the underlying cosine functions

in spite of the noise peaks (the noise peaks simply get

absorbed into the denoising parameter g). As expected, com-

pressed sensing recovers the signal with less sampling than

super-resolution, since randomly sampled points over the

entire time domain effectively contribute more information

than regularly sampled points over that same time domain.

In contrast, filter diagonalization does not include a robust

denoising procedure, and the method struggles with the Kro-

necker delta peaks because they represent sharp deviations

from the underlying cosine signal. In particular, in attempting

to match the Kronecker delta peaks, filter diagonalization cre-

ates a signal that contains exponentially growing components

rather than exponentially damped Lorentzians.

In summary, compressed sensing and super-resolution both

pick out the underlying cosine signals by denoising the Kro-

necker delta peaks, whereas filter diagonalization does not.

Figure 2. a) The combination of a sinusoid and a Heaviside signal in the time domain as given by Eq. (25). b) Comparison of the 2-norm error in the repro-

duction of problem 1 from the Sparco toolbox as a function of undersampling between compressed sensing, super-resolution, and filter diagonalization.

We attribute the large spike in error by filter diagonalization to the recovery of spurious exponentially divergent solutions.
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Jacob’s Ladder

Next, we consider a time series devised by some of the origi-

nal developers of filter diagonalization for benchmarking

sparse signal processing techniques.[2] This signal is known as

Jacob’s Ladder, and it consists of a very large number of Lor-

entzian peaks (Fig. 4a):

fn5
X49

m50

e21:8mp231024�n½cos ð1:8mp2310242500nÞ

1cos ð1:8mp2310242487:5nÞ1cos ð1:8mp2310242475:0nÞ�

(27)

In this experiment, we created a signal with 1000 data

points that ranged, uniformly, from 0 to 1 s using the formula

in Eq. (27). We first analyzed this signal with a numerical

implementation of filter diagonalization using a frequency

range of 0 kHz to p kHz and assumed that we had a maximum

of 4500 frequencies in our signal.

We started by performing the filter diagonalization analysis

with the above frequency grid using the entire signal, and

used the recovered frequencies and expansion coefficients to

construct the recovered signal. This allowed us to compute

the 2-norm error between the recovered signal and the exact

signal over the entire range. We then repeated the analysis,

while successively undersampling, first taking every second

point, then every fourth, fifth, eighth, tenth, twentieth, twenty-

fifth, fortieth, fiftieth, and finally, hundredth. We then per-

formed the same analysis with super-resolution and com-

pressed sensing. Because compressed sensing involved

random sampling, we took care to randomly sample the same

number of points that were included in the super-resolution

analysis at each step.

In order to perform the L1 analysis we examined the func-

tional form and the signal itself and concluded that it should

be sparse in the basis of damped oscillators. Thus we con-

structed such a basis with a spectral spacing of 0.01 Hz and a

maximum of 4p Hz. We also scanned exponential decay

parameters ranging from 0 to p Hz in steps of 0.01 Hz. For the

super resolution analysis, we performed the same time addi-

tion procedure that was performed with filter diagonalization.

We began the compressed sensing analysis by picking 50 ran-

dom time points, and at each subsequent step an additional

Figure 3. a) The combination of three cosines and random spikes in the time domain as described in Eq. (26). b) Comparison of the 2-norm recovery error

for the problem 5 from the Sparco toolbox as a function of undersampling for compressed sensing, super-resolution, and filter diagonalization. We attrib-

ute the large error peaks found by filter diagonalization to the recovery of spurious exponentially divergent solutions.

Figure 4. a) The Jacob’s Ladder signal, a combination of many Lorentzian peaks, in the time domain as given by Eq. (27). b) Comparison of the 2-norm

error for the reproduction of the Jacob’s Ladder signal as a function of undersampling for compressed sensing, super-resolution, and filter diagonalization.

We have no explanation clear for why our implementation of filter diagonalization fails to reproduce this signal, and we note that further work may be

necessary.

FULL PAPERWWW.Q-CHEM.ORG

International Journal of Quantum Chemistry 2016, 116, 1097–1106 1103

http://q-chem.org/
http://onlinelibrary.wiley.com/


50 random points were taken from those remaining until we

were sampling the full signal.

From the errors given in Figure 4b, both compressed sens-

ing and super resolution converge to a better answer more

rapidly than filter diagonalization. We attribute these errors to

the recovery of exponentially divergent solutions but we have

no way of accounting for the difference between our results

and those obtained elsewhere. Our working theory is a sensi-

tivity of filter diagonalization to the frequency grid and param-

eter choice, and we have not found the correct combination

of parameters that allows us to completely recover the desired

signal. This suggests that our implementation, as well as our

standard of comparison suffered from significant numerical

instability. We are unsure whether this is explained better by

fundamental instabilities in the method at hand, or simply

instabilities in the current implementations.

By contrast, super-resolution and compressed sensing do

not suffer from these same problems. Many current methods

are extremely stable. These techniques only include the basis

functions that are explicitly chosen. Unfortunately, we are lim-

ited to the recovery of Lorentzian parameters (frequency and

line-width), that are on the grid, which requires a sufficiently

dense set of parameters for accurate recovery. As a result, L1-

optimization methods become more and more memory inten-

sive as the number of basis functions increases.

Sum of random Lorentzians

For the final comparison, we created a sum of twenty random

damped cosines:

f ðtÞ5
X20

n51

e2cn tcos xnt (28)

with cn drawn from a uniform random distribution ranging

from 0 to 20 Hz and xn ranging from 0 to 50p Hz. This type

of autocorrelation signal is ubiquitous not only in chemistry

applications, but in signal processing at large. Extracting

parameters from the power spectrum of an autocorrelation

function is one of the most powerful tools in the whole of

Figure 5. a) Combination of twenty random damped cosines as described in Eq. (28). b) The power spectrum for this particular random sum of damped

cosines.

Figure 6. a) Reconstructed signals for compressed sensing, super-resolution, and filter diagonalization as a function of the number of points included in

the reconstruction algorithm. The full signal has 4096 points. b) Comparison among compressed sensing, super-resolution, and filter diagonalization of the

2-norm error in the reproduction of the combination of random damped cosines as a function of undersampling. We attribute the large error peaks found

by filter diagonalization to the recovery of spurious exponentially divergent solutions.
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chemistry. While no explicit chemical application is present in

this manuscript, we have included the power spectrum of the

sum of random lorentzians to emphasize the importance of

this problem. Indeed, the power spectrum plotted in Figure 5b

is similar to chemically relevant spectra, such as those

obtained from NMR experiments.

To recover this signal via compressed sensing and super-

resolution, we employ a basis of damped cosine functions:

gjkðtÞ5e2ck tcos xj t
� �

:

Here, the spectral spacing xj ranges uniformly from 0 to 40p
Hz in steps of p=24 Hz and the damping parameters ck ranges

uniformly from 0 to 20 Hz in steps of 1/2 Hz. For filter diago-

nalization, we selected a frequency range from 0 to 100p Hz

and chose a basis of 1200 frequencies. This was chosen

because it gave near perfect reconstruction of the full signal,

while bases smaller than this were prone to numerical

instability.

In Figure 6a we present the signal that was recovered by

each method when restricted only to the number of points

indicated. With only 128 included points, Super-resolution and

filter diagonalization are both capable of recovering the gen-

eral shape of the signal, but miss many of the key features,

including the dominant frequencies. Compressed sensing isn’t

able to recover a sensible signal and thus, returns a vector of

zeros. As more points are added Super-resolution recovers a

more faithful representation of the signal. In fact, the visual

difference between the signal recovered with 1024 and 4096

points is negligible. While compressed sensing systematically

improves the recovered signal as more points are added, it

requires 2048 points to recover a signal that is visually indistin-

guishable from the original. In contrast, filter diagonalization

does not display the characteristics of systematic improve-

ment. In fact, with 2048 included points filter diagonalization

returns a recovered signal with exponentially growing compo-

nents. With the exception of the recovery with the full signal,

even when filter diagonalization returns bounded signals, it

fails to recover a signal that is a faithful representation of the

original. While filter diagonalization ends with a better repre-

sentation of the signal, it is unclear how to develop diagnos-

tics for systematic improvement.

As shown in Figure 6b, both compressed sensing and super-

resolution successfully recover the underlying damped cosine

structure but is restricted to the functions on the grid. This is

the most significant source of error. As expected, compressed

sensing recovers the signal with less sampling than super-

resolution, since randomly sampled points over the entire time

domain effectively contribute more information than regularly

sampled points over a short time.

In contrast, filter diagonalization can recover off-grid fre-

quencies extremely efficiently. Because of this, the final errors

should be smaller than the errors from both compressed sens-

ing and super resolution. Unfortunately, we encountered sig-

nificant stability issues during many of our decompositions

that resulted in exponentially growing solutions. These solu-

tions gave L2 errors on the order of 104 at times (note that

we have chosen to only plot a few orders of magnitude in Fig.

6b) While filter diagonalization is capable of giving a much

better answer, the technique is significantly more sensitive to

slight deviations in the operational parameters chosen.

Conclusions

In conclusion, we have performed a broad comparison of

three different signal processing techniques that attempt to

“beat” the Shannon–Nyquist limit. With prior information

about a reasonable basis for your signal, L1 minimization tech-

niques provide a robust and faithful reproduction of the sig-

nal. We emphasize that the difference between super-

resolution or compressed sensing is simply a choice of sam-

pling procedure and normally is determined by the data acqui-

sition technique.

Additionally, we found that if the signal at hand was Lorent-

zian, filter diagonalization was capable of significantly outper-

forming both compressed sensing and super resolution

because of its ability to sample off the grid. Even still, the

technique was sensitive to a broad range of parameters, which

were capable of making it divergent if chosen incorrectly.

Given enough tuning and the appropriate signal form, how-

ever, filter diagonalization is the superior method for these

types of signals.
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