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master equation, and spectral densities constructed via 
super-resolution are shown to reproduce the dynamics 
using only a quarter of the amount of MD data.

Keywords  Spectral densities · Super-resolution · 
Hierarchical equations of motion

1  Introduction

Irreversible processes such as solvation, energy transfer, 
and chemical binding have received renewed interest in 
recent years. Because these processes involve large sys-
tems with many degrees of freedom, the typical approach 
to studying these processes is the open quantum systems 
formalism, in which the degrees of freedom are partitioned 
into a system of interest and a bath held at thermal equilib-
rium [1, 2]. It is commonly assumed that the system only 
couples weakly to the bath, making the precise nature of 
the bath a secondary concern in the physical theory. For 
example, in studying the energy transfer dynamics in a sys-
tem of chromophores embedded in a protein framework, 
each chromophore is individually coupled to many thou-
sands of atoms in the protein, but the system–bath formal-
ism dramatically simplifies all of these couplings in order 
to make the dynamics tractable [3–5]. Renewed interest in 
the strong and intermediate coupling region, relevant for 
energy transfer in the exciton dynamics of light-harvesting 
complexes, has lead to various studies [5–28] on the precise 
influence of the bath on the higher systems. Higher-order 
phonon processes, non-Markovian effects, and structures 
in the exciton–phonon coupling change the energy transfer 
[29–31]. Thus, details in the bath are relevant and need to 
be taken into account in realistic simulations. Accordingly, 
our goal in this paper is to apply a recent signal processing 
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technique known as super-resolution to obtain realistic 
atomistic models of environments containing thousands of 
atoms at feasible computational expense. With these atom-
istic bath models in hand, one can begin to evaluate the 
importance of a realistic bath model in a physical theory.

In the approach to open quantum systems employed 
in this work, we model the bath by an ensemble of non-
interacting harmonic oscillators. The central mathematical 
object of such a model is the spectral density, J(ω), which 
gives the frequency-dependent strength of system–bath 
coupling. The spectral density can be understood as the 
density of bath oscillator states at each frequency. Owing 
to computational limitations, most studies of open quan-
tum systems assume an extremely simple functional form 
for the spectral density, such as a single broad peak cov-
ering all relevant excitonic transitions of the system. With 
the goal of providing more physically accurate bath mod-
els and dynamics, Valleau et  al. have previously obtained 
atomistic spectral densities for the Fenna–Matthews–Olson 
(FMO) complex from combined molecular dynamics (MD) 
[32, 33] and time-dependent density functional theory 
(TDDFT) [34] simulations. However, the difficulty of this 
more realistic approach is the high computational cost of 
running expensive TDDFT calculations at every step in an 
MD simulation. In order to obtain a spectral density of suf-
ficient resolution, the MD–TDDFT simulation must be run 
for over 40 picoseconds (ps) [35], which may become com-
putationally intractable for larger systems.

To make progress, we first observe that a typical vibra-
tional bath is not an arbitrary function, but rather a rela-
tively sparse collection of damped harmonic oscillators. 
Sparsity enables us to apply a novel numerical technique 
known as super-resolution in order to reconstruct the 
spectral density from much shorter MD–TDDFT simu-
lations. Many methods such as the filter diagonalization 
method [36] or the maximum entropy [37] method have 
been developed to achieve similar undersampling goals. 
Super-resolution provides us with the ability to recover 
the spectral parameters of our signal with a bias toward 
sparsity. Super-resolution has been applied to a broad 
range of scientific problems, including image [38] and 
video compression [39], image denoising [40], astronomy 
[41], microscopy [42], and medical imaging [43]. To our 
knowledge, this paper is the first application of super-res-
olution to quantum dynamics. Super-resolution provides 
a provably convergent algorithm for the reconstruction of 
signals from limited time-domain measurements using a 
total variation minimization procedure. Super-resolution is 
related to compressed sensing [44–55]. Compressed sens-
ing is a technique designed to recover sparse signals from 
randomly sampled data by minimizing the L1-norm of an 
underdetermined system of linear equations. Compressed 
sensing works by finding the sparsest signals consistent 

with the underdetermined system of equations. This usu-
ally involves an optimization problem. Despite its success 
in many applications, the L1-norm minimization of com-
pressed sensing can result in spurious signals as it empha-
sizes the sparsity of the solution only. Super-resolution is 
a numerical method that shares the spirit of compressed 
sensing. The difference between super-resolution and 
compressed sensing stems from both the choice of objec-
tive function and sampling technique. It was developed to 
recover sparse signals from nonrandomly undersampled 
data. By minimizing the L1-norm of the gradient of the 
function in addition to the L1-norm of the function itself, 
super-resolution allows for smoother solutions to the sam-
pling problem [56–58].

Because of the ample experimental and theoretical 
data to compare against [5, 8–11, 13, 16–19, 21, 22, 24, 
27, 31, 32, 59–66], we apply super-resolution to the FMO 
light-harvesting complex of C. tepidium but emphasize 
that this technique is broadly applicable. While this paper 
focuses on a vibrational bath which perturbs the energies 
of molecular electronic states, the techniques we introduce 
are generic for any model of a bath which is based on time 
correlation functions.

2 � Super‑resolution of spectral densities

In this section, we briefly review the procedure for simu-
lating the dynamics of open quantum systems and comput-
ing spectral densities from combined MD–TDDFT simu-
lations. We then apply the theory of super-resolution to 
accelerate and improve the accuracy of these computations. 
Computing spectral densities from atomistic calculations, 
rather than from semi-empirical functional forms, enables 
the inclusion of molecular vibrations and other physical 
effects (such as solvation effects) to produce a more real-
istic bath model [32]. Super-resolution, in turn, brings the 
construction of these atomistic bath models into the realm 
of computational feasibility.

Armed with our more realistic bath model, we will 
employ a second-order time-convolutionless master equa-
tion (TCL-2) to simulate the dynamics of the FMO mono-
mer, allowing us to evaluate the physical impact of differ-
ent approximations to the spectral density. TCL-2 includes 
non-Markovian effects up to second order in the system–
bath coupling. By comparing TCL-2 with exact methods 
like the hierarchical equations of motion (HEOM) [67], 
we show that most of the relevant effects of the structured 
spectral density of the FMO complex are captured by 
TCL-2. Here we use TCL-2, since it is numerically more 
treatable than HEOM, in particular for structured spec-
tral densities where HEOM becomes cumbersome and 
requires a high-performance GPU implementation [17, 
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31, 68]. We employ the equation of motion [1, 7, 9, 20, 
24, 63, 69–74]:

where H is the system Hamiltonian, ρ is the system den-
sity matrix, D is our bath kernel, the subscript I indicates 
that we are in the interaction picture, the summation runs 
over all sites, and J(ω) is the spectral density computed via 
super-resolution [17, 64, 65, 75]. The bath kernel is heav-
ily dependent on our spectral density, causing it to play a 
central role in our dynamics. Therefore, a more physi-
cal bath picture should provide more physically intuitive  
dynamics.

In our atomistic bath model, molecular vibrations in the 
environment (e.g., a protein framework or solvation effects) 
create fluctuations in the energy gaps between the ground 
and excited states of the system (e.g., a set of chromo-
phores). These time-dependent energy gaps are computed 
from TDDFT calculations run on each of the chromophores 
at each step of the MD simulation. The key object in the 
computation of spectral densities is the correlation function 
of the energy gap time series,

where �̂(t) is the time-dependent energy gap between the 
ground and the first excited state of the system (as calculated 
with TDDFT), ρ̂b is the density matrix of the bath at ther-
mal equilibrium, and C(t) is the correlation function obtained 
after tracing over all the modes of the bath. We discretize this 
equation by using an unbiased autocorrelation function,

where �̄ is the mean energy gap and i and k denote discrete 
time indices. Note that Ck involves comparing energy gaps 
that are k time steps apart (�i and �i+k), and N − k is the 
total number of included comparisons.

The frequency-dependent spectral density, J(ω), is typi-
cally obtained by computing the Fourier transform of the 
correlation function [32]. From the definition of Ck above, 
it is easy to check that the correlation function is real and 
symmetric (Ck = CN−k), which implies that the Fourier 
transform should be real and symmetric as well. Because 

(2.1)

dρI(t)

dt
= − i

�
[HI , ρI ]

− 1

�2

∑

n

∫ t

0

dτ Dn(t − τ)[HIn(t), [HIn(τ ), ρI(t)]]

(2.2)

Dn(t) =
∫ ∞

0

dω Jn(ω)

[

coth

(

�ωβ

2

)

cos(ω t)− i sin(ω t)

]

(2.3)C(t) = Trb[�̂(t)�̂(0)ρ̂b],

(2.4)Ck =
1

N − k

N−k
∑

i=1

(�i − �̄)(�i+k − �̄),

quantum mechanical spectral densities must instead be 
antisymmetric and obey detailed balance, it is necessary 
to introduce a prefactor that enforces these two properties. 
Many choices are possible [76], but Valleau et al. have pre-
viously shown that a harmonic prefactor, β�ω/2, produces 
the most physical temperature dependence [32]. With this 
choice, the spectral density becomes the cosine transform

which characterizes the frequency-dependent coupling 
strength of the system to all of the nuclear vibrational 
modes.

The standard approach to performing this integral is 
the fast Fourier transform. Unfortunately, the fast Fourier 
transform requires sampling on a uniform grid at the Shan-
non sampling rate. This means that a relatively long time 
series, C(t), must be computed in order to obtain good reso-
lution of the spectral density in the frequency domain [35, 
77]. Given the computational cost of MD simulations, and 
the even greater expense of running TDDFT calculations 
on top of these simulations, any method which can reduce 
the required length of the time series C(t) unplugs the com-
putational bottleneck in deriving physically accurate atom-
istic spectral densities. That is our main goal in this paper.

While reducing the amount of time required to repro-
duce J(ω), we also choose a basis of functions which has 
a convenient physical form. When decomposed into a basis 
of damped cosines,

the function C(t) is smooth and sparse. This allows for the 
use of the machinery of super-resolution.

To apply the super-resolution method, we discretize in 
time and cast our task as an inversion problem

where we seek the basis expansion coefficients λij and have 
assumed Einstein summation convention over repeated 
indices. This can be rewritten as

where

is a matrix of damped cosines and λij is the set of basis 
coefficients we seek to recover.

The central idea of super-resolution is that the spar-
sity of λij enables its full recovery even when the sys-
tem Ck = Aijkλij is underdetermined, which is to say the 
number of time samples Ck is significantly smaller than 
the number of total expansion coefficients λij we seek to 
recover. Hence, we can recover the expansion coefficients 

(2.5)J(ω) = β�ω

2

∫ ∞

−∞
cos(ωt)C(t)dt,

(2.6)gij(t) = e−γi t cos(�jt),

(2.7)Ck = λije
−γi t cos(�jtk),

(2.8)Ck = Aijkλij,

(2.9)Aijk = e−γi t cos(�jtk)
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on a dense grid of frequencies �j and damping coefficients 
γi from fewer time samples Ck. Of the many possible solu-
tions to our underdetermined system, super-resolution sim-
ply selects a balance between the smoothest and sparsest 
(with an emphasis on smoothness) set of basis expansion 
coefficients. Formally, this is done by finding the vector λij 
that minimizes

where the subscript 1 represents the L1-norm (sum of abso-
lute values), µ represents a sparsity penalty, ∇λij represents 
the total variation norm, and η represents the solution toler-
ance. By minimizing ||∇λij||1, or the total variation term, we 
are enforcing smoothness in the time domain on the recon-
structed signal. This throws out the “peaky” solutions that 
can appear with compressed sensing [78, 79]. The total vari-
ation norm also provides us with a provably exact technique 
for recovering peak position at the expense of peak ampli-
tude [56], which solves one of the issues seen previously 
with compressed sensing [78].

Recovering the expansion coefficients λij in this manner 
by solving an underdetermined matrix inversion problem 
takes advantage of the natural sparsity of the problem and, 
as we will see in the next section, enables the construction 
of a well-resolved spectral density with far less time-domain 
data. Even more attractive, with the λij coefficients in hand, 
it is possible to construct an analytical representation of the 
spectral density by taking the cosine transform of the basis 
functions gij(t) and applying the appropriate prefactors:

where the Einstein summation convention has again been 
assumed. This is an analytical representation of the spec-
tral density in Drude–Lorentz form, and it explicitly pro-
vides the oscillation frequencies which characterize the sys-
tem–bath coupling. We note that the Drude–Lorentz basis 
naturally provides us with a width parameter, γ, that can be 
understood as the lifetime of oscillations in the bath. This is 
seen by examining the time-dependent formula, Eq. (2.7), 
where this γ parameter determines the strength of damping. 
It is important to note that in the limit as γ → 0, we recover 
the cosine basis in the time domain and a Dirac delta dis-
tribution in the frequency domain. By using this super-res-
olution technique in concert with the Drude–Lorentz basis, 
we see that we can recover a small set of peaks with physi-
cally relevant information. Additionally, the parameters 

(2.10)
argmin

λij

{

||∇λij||1 + µ||λij||1
}

subject to ||Aijkλij − Ck||2 < η,

(2.11)

J(ω) = λij√
π

(

β�ωγi

γ 2
i +

(

ω −�j

)2
+ β�ωγi

γ 2
i +

(

ω +�j

)2

)

,

that characterize the Drude–Lorentz spectral densities can 
be input directly into both TCL-2 and HEOM without any 
additional parameter fitting or numerical integration.

3 � Numerical methods

We employ the proposed Drude–Lorentz super-resolu-
tion method described above and apply it to a monomer 
of the Fenna–Matthews–Olson (FMO) photosynthetic 
energy transfer complex of the green sulfur bacterium C. 
tepidium. The FMO monomer is a system of seven chlo-
rophyll molecules which are excitonically coupled to 
each other, as well as to the vibrations of the atoms in the 
protein framework. It functions as a molecular excitonic 
wire, passing excitons from the light-harvesting antenna 
complex to the reaction center, where a biochemical cas-
cade is initiated. To create spectral densities for the FMO 
complex, we use the MD–TDDFT results of Shim et  al. 
[63]. The calculations were done in an isothermal–isobaric 
ensemble at 77 K using the AMBER force field [80, 81]. 
These calculations began with a 2-ns equilibration before 
performing the production computations. The production 
steps ran for a total of 40 ps with a 2-fs time step, and the 
optical gap was calculated for each fragment every 4  fs 
using TDDFT with the BLYP [82–84] functional in the 
3-21G basis set in Q-Chem [85].

To perform super-resolution numerically, we require 
an algorithm which minimizes the total variation norm to 
solve the minimization problem described by Eq. (2.10). 
In our implementation, we use the two-step iterative 
shrinkage thresholding (TwIST) algorithm [57, 58], 
which combines computational efficiency with strong 
convergence. To construct the measurement matrix A 
described in Eq. (2.9), we must select a grid of possible 
frequencies (

{

�j

}

) and linewidths ({γi}). In our imple-
mentation, we use a grid of frequencies ranging from 0 to 
2000 cm−1 in 2 cm−1 intervals, and a grid of linewidths 
ranging from 0 to 160  cm−1 in 6  cm−1 intervals. We 
assume that our calculations are converged when 
η < 10−7 [in Eq.  (2.10)], or the solution vector remains 
constant for 100 iterations. Finally, we perform an L2 
minimization of Aijkλij − Ck while freezing the recovered 
nonzero basis functions, allowing us to further minimize 
the error. We refer to this procedure as debiasing because 
it partly removes the bias toward sparsity and smoothness 
introduced by the L1 minimization. This debiasing proce-
dure reduces our solution tolerance to η < 10−9, allowing 
convergence to a better solution. It is important to note 
that, in general, the super-resolution technique is robust 
to an over-complete basis.



Theor Chem Acc (2016) 135:215	

1 3

Page 5 of 8  215

4 � Results

Figure 1 shows the results of employing the Drude–Lorentz 
super-resolution method to recover the spectral density for 
site 1 of FMO. The figure compares Drude–Lorentz super-
resolution with 10 ps of MD to a standard fast Fourier 
transform approach with both 10 and 40 ps of MD. We take 
the fast Fourier transform with 40 ps of MD as our stand-
ard for comparison. By comparing the two methods with 
10 ps of MD, it is clear that super-resolution resolves more 
features of the spectral density than the standard fast Fou-
rier transform from the same amount of time-domain data. 
Moreover, super-resolution captures most of the features of 
the fast Fourier transform with the full 40 ps of MD: We 
see the expected CO stretch at 1600 cm−1, which we attrib-
ute to the amides in the protein scaffold, as well as all of 
the other major peaks in the spectral density. We attribute 
a significant amount of the error in our spectral density 
reconstruction to the fact that the truncated MD series does 
not explore the phase space as thoroughly in only 10 ps.

The Drude–Lorentz basis also provides significant spar-
sity gains in comparison with the cosine basis: We require 
only 56 Drude–Lorentz peaks to create the spectral density 
given in Fig.  1. This sparsity provides a significant com-
putational advantage for excitonic propagation in both 
hierarchical equations of motion (HEOM) [67] and sec-
ond-order time-convolutionless master equation [1] (TCL-
2) approaches because the propagations scale factorially 
and linearly, respectively, as a function of the number of 
peaks included. In the excitonically accessible regime of 
0–540  cm−1, we recover only 20 Drude–Lorentz peaks, 
and six of them have amplitudes that are two orders of 

magnitude smaller than the rest. These Drude–Lorentz 
peaks can be entered directly into master equation simula-
tions, including HEOM codes, without the need to perform 
any intermediate fitting [68]. In summary, super-resolution 
yields a well-resolved spectral density using less time-
domain data than is required by the standard fast Fourier 
transform approach and precludes the need for additional 
fitting.

As mentioned above, the TCL-2 propagation of the exci-
ton dynamics of the FMO complex, with the Hamiltonian 
coming from [60], was carried out using the Drude–Lor-
entz spectral densities obtained from super-resolution. We 
propagated 1 ps of dynamics and obtained the populations 
of sites 1–3, as well as the coherence between sites 1 and 3.

Figure  2 shows the coherence between excitonic eigen-
states 1 and 3 as a function of time. Compared to the 40-ps 
fast Fourier transform, we see that the 10-ps Drude–Lorentz 
super-resolution more faithfully reproduces the coherence 
dynamics than the 10-ps fast Fourier transform, in terms of 
both the oscillation frequency and the overall damping. The 
fast Fourier transform with 10  ps of MD data introduces 
serious overdamping as well as a significant shift in oscil-
lation frequency. In contrast, the Drude–Lorentz expan-
sion with 10 ps of MD data introduces only a small shift in 
oscillation frequency, resulting in more accurate coherence 
dynamics overall. We attribute most of the discrepancies to 
slight relative differences in the reorganization of each site 
between spectral densities constructed with 10 and 40 ps of 
MD data. It appears that while the oscillations are extremely 
sensitive to the relative reorganization energies between the 
sites, the damping is more dependent on the fine structure of 
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the spectral densities. The Drude–Lorentz super-resolution 
(10-ps MD–TDDFT data) reproduces the coherence life-
times obtained by fast Fourier transform recovered using all 
40  ps of MD–TDDFT data—representing a factor of four 
improvement.

The contrast between the two approximation techniques 
becomes even more significant when we simulate dynam-
ics beginning with an exciton fully localized on site 1. In 
Fig.  3, we have plotted the populations of the first three 
sites as a function of time. The Drude–Lorentz expan-
sion with 10 ps of MD yields good qualitative agreement 
with our standard of comparison. The fast Fourier trans-
form on 10  ps overestimates population transfer to site 3 
at short times and grows much more quickly from there, 
whereas the Drude–Lorentz expansion slightly underpre-
dicts the population transfer at long times. We attribute 
these errors in the asymptotic behavior to slight differences 
in the reorganization energies for the spectral densities of 
each of the sites: Since each site is embedded in a different 

environment, the reorganization process of the individual 
pigments is different. This sensitivity affects overall dis-
sipation, and even small changes in the spectral density 
of the Drude–Lorentz expansion (10  ps) when compared 
to the standard of comparison affects energy relaxation. 
Beyond that, the Drude–Lorentz expansion is capable of 
reproducing the oscillations at 0.2 and 0.4 ps in the data for 
sites 1 and 2, whereas the fast Fourier transform reproduces 
them less faithfully. In summary, the Drude–Lorentz super-
resolution technique provides us with much more physical 
behavior.

5 � Conclusions

We have shown that the Drude–Lorentz super-resolution 
method provides significant computational advantages for 
the construction of atomistic bath models. In particular, the 
super-resolution calculations require only 10  ps of MD–
TDDFT simulations to obtain reasonable atomistic spec-
tral densities and system dynamics; this is one quarter the 
amount of data needed in standard fast Fourier transform-
based calculations. Ultimately, this will permit the use of 
more physically accurate calculations or larger systems. 
Given the computational expense of running TDDFT cal-
culations at every MD simulation step, we believe that the 
super-resolution method will enable the treatment of larger 
systems than previously possible.

One of the most significant advantages of our super-
resolution method is the decomposition of these atomistic 
spectral densities into a naturally sparse basis of Drude–
Lorentz oscillators. This makes it easy to perform fast mas-
ter equation simulations within either the TCL-2 or HEOM 
formalisms by exploiting analytic integrals of the spectral 
density. Beyond this, we also directly extract physically 
important parameters such as the coherence lifetimes of all 
the oscillators in the bath. In the future, it is easy to imag-
ine turning this technique on its head to create new spectral 
densities in a constructive fashion from a set of Drude–Lor-
entz oscillators.

While the application that we have presented here 
focuses on the construction of bath spectral densities, it is 
easy to imagine applying our presented technique to any 
correlation function with a damped oscillatory functional 
form. Such applications could include the construction of 
colored noise kernels, force autocorrelation functions, and 
real-time Raman spectroscopy.
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Phys Chem B 116:7449

	30.	 Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga SF, 
Plenio MB (2013) Nat Phys 9:113

	31.	 Kreisbeck C, Kramer T (2012) J Phys Chem Lett 3:2828
	32.	 Valleau S, Eisfeld A, Aspuru-Guzik A (2012) J Chem Phys 

137:224103
	33.	 Tuckerman M (2010) Statistical mechanics: theory and molecu-

lar simulation. OUP, Oxford
	34.	 Runge E, Gross EK (1984) Phys Rev Lett 52:997

	35.	 Mallat S (2008) A wavelet tour of signal processing, 3rd edn: the 
sparse way. Academic Press, London

	36.	 Hu H, Van QN, Mandelshtam VA, Shaka AJ (1998) Refer-
ence deconvolution, phase correction, and line listing of NMR 
spectra by the 1D filter diagonalization method. J Magn Reson 
134(1):76–87

	37.	 Hoch JC, Maciejewski MW, Mobli M, Schuyler AD, Stern AS 
(2014) Nonuniform sampling and maximum entropy reconstruc-
tion in multidimensional NMR. Acc Chem Res 47(2):708–717

	38.	 Freeman WT, Jones TR, Pasztor EC (2002) IEEE Comput Graph 
Appl 22:56

	39.	 Patti AJ, Sezan MI, Murat Tekalp A (1997) IEEE Trans Image 
Process 6:1064

	40.	 Elad M, Feuer A (1997) IEEE Trans Image Process 6:1646
	41.	 Puschmann KG, Kneer F (2005) Astron Astrophys 436:373
	42.	 Mccutchen CW (1967) J Opt Soc Am 57:1190
	43.	 Kouame D, Ploquin M (2009) Super-resolution in medical 

imaging: an illustrative approach through ultrasound. In: IEEE 
international symposium on biomedical imaging: from nano to 
macro, 2009. ISBI ’09, pp 249–252

	44.	 Ma J (2010) IEEE Trans Instrum Meas 59:1600
	45.	 Donoho DL (2006) IEEE Trans Inf Theory 52:1289
	46.	 Oka A, Lampe L (2009) A compressed sensing receiver for 

bursty communication with UWB impulse radio. In: IEEE inter-
national conference on ultra-wideband, 2009. ICUWB 2009, pp 
279–284

	47.	 Herman MA, Strohmer T (2009) IEEE Trans Signal Process 
57:2275

	48.	 Qiu C, Lu W, Vaswani N (2009) Real-time dynamic MR image 
reconstruction using Kalman filtered compressed sensing. In: 
IEEE international conference on acoustics, speech and signal 
processing, 2009. ICASSP 2009, pp 393–396

	49.	 Lustig M, Donoho D, Pauly JM (2007) Magn Reson Med 
58:1182

	50.	 Nagahara M, Quevedo DE, Ostergaard J (2012) Sparse repre-
sentations for packetized predictive networked control. In: 2012 
IEEE 51st annual conference on decision and control (CDC), pp 
1362–1367

	51.	 Tuma T, Rooney S, Hurley P (2009) On the applicability of com-
pressive sampling in fine grained processor performance moni-
toring. In: 2009 14th IEEE international conference on engineer-
ing of complex computer systems. IEEE, pp 210–219

	52.	 Shabani A, Kosut RL, Mohseni M, Rabitz H, Broome MA, 
Almeida MP, Fedrizzi A, White AG (2011) Efficient measure-
ment of quantum dynamics via compressive sensing. Phys Rev 
Lett 106(10):100401

	53.	 Mishali M, Eldar YC (2010) IEEE J Sel Top Signal Process 
4:375

	54.	 Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly 
KF, Baraniuk RG (2008) IEEE Signal Process Mag 25:83

	55.	 Coulter WK, Hillar CJ, Isley G, Sommer FT (2010) Adaptive 
compressed sensing — A new class of self-organizing cod-
ing models for neuroscience. 2010 IEEE International confer-
ence on acoustics, speech and signal processing, Dallas, TX,  
p 5494–5497

	56.	 Candès EJ, Fernandez-Granda C (2014) Commun Pure Appl Math 
67:906–956

	57.	 Bioucas-Dias JM, Figueiredo MA (2007) IEEE Trans Image 
Process 16:2992

	58.	 Bioucas-Dias JM, Figueiredo MAT (2007) Two-step algorithms 
for linear inverse problems with non-quadratic regularization. In: 
IEEE international conference on image processing, 2007. ICIP 
2007, pp I–105–I–108

	59.	 Vulto SIE, de Baat MA, Louwe RJW, Permentier HP, Neef T, 
Miller M, van Amerongen H, Aartsma TJ (1998) J Phys Chem B 
102:9577



	 Theor Chem Acc (2016) 135:215

1 3

215  Page 8 of 8

	60.	 Adolphs J, Renger T (2006) Biophys J 91:2778
	61.	 Chen X, Cao J, Silbey RJ (2013) J Chem Phys 138:224104
	62.	 Yuen-Zhou J, Krich JJ, Aspuru-Guzik A (2012) J Chem Phys 

136:234501
	63.	 Shim S, Rebentrost P, Valleau SP, Aspuru-Guzik AN (2012) Bio-

phys J 102:649
	64.	 Kolli A, Nazir A, Olaya-Castro A (2011) J Chem Phys 

135:154112
	65.	 Jang S (2011) J Chem Phys 135:034105
	66.	 Ishizaki A, Fleming GR (2009) J Chem Phys 130:234111
	67.	 Tanimura Y, Kubo R (1989) J Phys Soc Jpn 58:101
	68.	 Kreisbeck C, Kramer T, Rodríguez TM, Hein B (2011) J Chem 

Theory Comput 7(7):2166–2174
	69.	 Pereverzev A, Bittner ER (2006) J Chem Phys 125:4906
	70.	 Timm C (2011) Phys Rev B 83:115416
	71.	 Ahn D (1994) Phys Rev B 50:8310
	72.	 Heinz-Peter B, Kappler B, Petruccione F (2000) Decoherence: 

theoretical, experimental, and conceptual problems. 233
	73.	 Shabani A, Lidar DA (2005) Phys Rev A 71:020101
	74.	 Smirne A, Vacchini B (2010) Phys Rev A 82:022110

	75.	 Kleinekathöfer U (2004) J Chem Phys 121:2505
	76.	 Berens PH, White SR, Wilson KR (1981) J Chem Phys 75:515
	77.	 Candes EJ, Romberg J, Tao T (2006) IEEE Trans Inf Theory 

52:489
	78.	 Andrade X, Sanders JN, Aspuru-Guzik A (2012) Proc Natl Acad 

Sci 109:13928
	79.	 Sanders JN, Saikin SK, Mostame S, Andrade X, Widom JR, 

Marcus AH, Aspuru-Guzik A (2012) J Phys Chem Lett 3:2697
	80.	 Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Fer-

guson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA 
(1995) J Am Chem Soc 117:5179

	81.	 Ceccarelli M, Procacci P, Marchi M (2003) J Comput Chem 
24:129

	82.	 Becke AD (1988) Phys Rev A 38:3098
	83.	 Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 

157:200
	84.	 Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785
	85.	 Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown 

ST, Gilbert AT, Slipchenko LV, Levchenko SV, O’Neill DP 
(2006) Phys Chem Chem Phys 8:3172


	Accelerating the computation of bath spectral densities with super-resolution
	Abstract 
	1 Introduction
	2 Super-resolution of spectral densities
	3 Numerical methods
	4 Results
	5 Conclusions
	Acknowledgments 
	References




