Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit

I. Lovechinsky, J. D. Sanchez-Yamagishi, E. K. Urbach, S. Choi, S. Fang, T. I. Andersen, K. Watanabe, T. Taniguchi, A. Bylinskii, E. Kaxiras, P. Kim, H. Park, M. D. Lukin

Two-dimensional (2D) materials offer a promising platform for exploring condensed matter phenomena and developing technological applications. However, the reduction of material dimensions to the atomic scale poses a challenge for traditional measurement and interfacing techniques that typically couple to macroscopic observables. We demonstrate a method for probing the properties of 2D materials via nanometer-scale nuclear quadrupole resonance (NQR) spectroscopy using individual atomically impurities in diamond. Coherent manipulation of shallow nitrogen-vacancy (NV) color centers enables the probing of nanoscale ensembles down to approximately 30 nuclear spins in atomically thin hexagonal boron nitride (h-BN). The characterization of low-dimensional nanoscale materials could enable the development of new quantum hybrid systems, combining atomlike systems coherently coupled with individual atoms in 2D materials.

Hexagonal boron nitride (h-BN) is an insulating material consisting of equal concentrations of boron (80% 11B, 20% 10B) and nitrogen (close to 100% 14N) in a honeycomb layered structure. The individual atomic layers of h-BN are held together by weak van der Waals interactions, allowing the preparation of samples with varying numbers of layers via mechanical exfoliation. Nanometer-thick h-BN flakes are being extensively used as dielectric spacers and passivation layers for graphene and transition metal dichalcogenides.

Recent studies have shown that atomically thin h-BN can be the host for interesting quantum defects. We investigate both the electron density distribution and spin-spin interactions in nanoscale h-BN volumes by analyzing the magnetic fields produced by 11B, 10B, and 14N spins using nanoscale nuclear quadrupole resonance (NQR) spectroscopy.

Conventional NQR spectroscopy is a powerful tool for chemical analysis that relies on detecting the bulk magnetization of quadrupolar (I > 1/2) nuclear spins in a weak magnetic field. The NQR spectrum is determined by the interaction between the nuclear electric quadrupole moment and the local electric field gradients.

In our approach, individual NV centers in diamond are used as sensitive, atomic-scale magnetic field sensors to probe nanoscale h-BN samples under ambient conditions. Formed using ion implantation within several nanometers from the diamond surface, NV centers can have sensing volumes that are many orders of magnitude smaller than most conventional magnetic sensing techniques. In our experiments, a target h-BN flake is transferred onto the surface of a diamond, and a proximal NV center is used to detect NQR signals from small ensembles of nuclear spins within the h-BN crystal. Importantly, the coherence properties of the NV spin are not affected by the presence of the h-BN flake, indicating that the generation of a new quantum interface between a two-dimensional (2D) material and diamond is feasible. To use the NV center as a nanoscale NQR spectrometer, the NV electronic spin state is prepared in a coherent superposition of the magnetic sublevels m_s = 0 and m_s = 1 and is periodically modulated with k microwave (MW) π pulses using a modified XY8-k pulse sequence. When the local magnetic field spectrum contains a Fourier component near half of the modulation frequency, the NV spin state accumulates a net phase (resulting in a measurable population signal) while components at other frequencies are efficiently cancelled.

Two-dimensional (2D) materials offer a promising platform for exploring condensed matter phenomena and developing technological applications. However, the reduction of material dimensions to the atomic scale poses a challenge for traditional measurement and interfacing techniques that typically couple to macroscopic observables. We demonstrate a method for probing the properties of 2D materials via nanometer-scale nuclear quadrupole resonance (NQR) spectroscopy using individual atomically impurities in diamond. Coherent manipulation of shallow nitrogen-vacancy (NV) color centers enables the probing of nanoscale ensembles down to approximately 30 nuclear spins in atomically thin hexagonal boron nitride (h-BN). The characterization of low-dimensional nanoscale materials could enable the development of new quantum hybrid systems, combining atomlike systems coherently coupled with individual atoms in 2D materials.
Fig. 1. Experimental setup and sensing scheme. (A) Schematic of experimental setup. The h-BN flake (structure shown on top) is transferred onto a diamond surface. A proximal shallow NV center is used to detect nuclear spins within the h-BN crystal. (B) The dependence of the level structure of a quadrupolar nuclear spin on a small applied magnetic field. The three configurations shown correspond to a spin-3/2 object where the external magnetic field is applied parallel, at a 54.7° angle and perpendicular to the principal axis. The central transitions are shown by blue arrows. In the middle configuration, the center transitions are degenerate (indicated by *). As a specific example, these configurations are illustrated for the case of a 11B spin in h-BN, surrounded by its nearest five nitrogen atoms. (C) NV center subject to modified XY8-k pulse sequence used to measure the NQR spectrum. The unit indicated by the dashed box is repeated [see (2)]. APD denotes the photodetector measurement window. The magnetic field created by target nuclear spins, containing several Fourier components, is shown at the bottom.

Fig. 2. 11B NQR spectroscopy of multilayer h-BN flakes. (A) NQR spectrum of 11B using XY8-371 with magnetic field (30 G) aligned (approximately) to the angle at which the central transitions become degenerate. The NMR contrast corresponds to the fluorescence difference of the $m_s = 0$ and $m_s = 1$ magnetic sublevels of the NV center. The experimental data (as well as all subsequent spectra presented in this work) are fit to a theoretical model consisting of the local magnetic spectral density convolved with the detector filter function (2). (B and C) Spectra of 11B using XY8-251 at ~1700 G taken at two different angles of the magnetic field. Here, the Larmor frequency is indicated by the vertical dashed lines. (D) Dependence of the spectrum at 30 G on the magnetic field angle. Here, the spectrum was measured in the region denoted by the dotted rectangle in (A). The angle at which the central transitions are degenerate is indicated by the horizontal dashed line. (E) Simulation of magnetic field angle dependence shown in (D).
spin coherence time T_2 of the NV sensor. Deconvolution of this calibration signal from the 11B resonance gives the natural NQR linewidth. A similar procedure yields the linewidth of 15B ($I = 3$), where the observed doublet (Fig. 3B) corresponds to two sets of triply degenerate transitions. Figure 3C shows the 14N spectrum measured at ~ 2000 G, with the field aligned to the NV symmetry axis. At this special angle, the $|0\rightarrow|\pm 3\rangle$ transitions are degenerate. The quadrupole interaction is manifested as a small shift of the 14N resonance (indicated by a dashed blue line) relative to the Larmor frequency (indicated by a dashed red line) corresponding to the nuclear spin decoherence (corresponding to the ~2.9 MHz quadrupole coupling constant).

Figure 3D shows the measured 11B, 10B, and 14N linewidths (blue bars) and the corresponding simulated linewidths (orange bars), where we assumed that the spins interact only via magnetic dipole-dipole coupling. The simulated values are in excellent agreement with our measurements, demonstrating that nanoscale volumes of h-BN constitute nearly ideal, dipolar-coupled spin systems. Figure 3E shows the measured values of the Q for 11B, 10B, and 14N (blue bars) along with calculated values (orange bars) based on density functional theory (DFT) simulations. Here, we used an all-electron model (see (2) for details) in the local density approximation (LDA), which yields the calculated quadrupole coupling constants within 2% of the measured values.

Figure 4A shows the 11B NQR spectrum of a h-BN monolayer as compared to that of a thick (50 nm) flake. The monolayer was characterized using Raman spectroscopy, atomic force microscopy (AFM), and second-harmonic generation microscopy [see (2)]. This monolayer signal corresponds to approximately $\sqrt{N} = 30$ polarized 11B spins and exhibits a ± 3 kHz shift in β relative to the bulk value. Figure 4B shows the shifts of β and the corresponding linewidths for measurements on several NV centers under a monolayer flake (red) and a bilayer flake (green), respectively, as compared to measurements on several thick layers (blue). We find that the bilayer shifts are in between the monolayer and bulk values, and the signals for all the NV centers in both the monolayer and bilayer configurations shift in a consistent manner.

The origin of the β shifts can be understood qualitatively by considering the reduction of the dimensionality of the h-BN crystal. As the number of layers in the crystal is reduced, we expect that the electric field gradient experienced by a nuclear spin will deviate from its bulk value. A toy model in which in-plane sp^3 bonding electrons are modeled as point charges placed at interstitial sites between the boron and nitrogen ions yields an electric field gradient shift in the correct direction, although the magnitude is smaller by a factor of ~20 than the observed value (2). To study this effect quantitatively, we performed DFT simulations of the electric field...
In addition to providing a new sensing modality, our approach can be used to observe and coherently control dynamic interactions of nuclear spins in 2D materials. In particular, NV centers can be used as actuators to coherently control nuclear spins in 2D materials (27–29). Nuclear spin polarization and control can be achieved by selectively pumping individual quanta of polarization from the NV center to the desired nuclear spin via Hartmann-Hahn double resonance (27,30), whereas interactions among nuclear spins can be engineered via pulsed radio frequency control (28). Our experiments show that nuclear dynamics in 2D materials can be limited by dipole-dipole interactions [the additional broadening observed in some of our measurements can likely be controlled by removing proton spins from the diamond surface (31)]. Such a coherently coupled system can be used as a novel hybrid platform for quantum information processing (28) and for studying quantum dynamics of isolated strongly interacting nuclear spin systems (31).

REFERENCES AND NOTES

2. Materials, methods, and supplementary online text are available as supplementary materials.

Fig. 4. NQR spectroscopy of a h-BN monolayer and bilayer. (A) 18H NQR spectrum using XYB:187 of thick (greater than 50 nm) h-BN flake (blue) as compared to a monolayer (red). Magnetic field is aligned with respect to NV symmetry axis. Spectra have been normalized so that the resonances have the same magnitude, for comparison. The integration time for the monolayer data was about 1 day, or 1 hour per data point. (B) Values of the shift Q and deconvolved linewidths for several NV centers under a monolayer flake (red), a bilayer flake (green), and five bulk flakes (blue). Error bars, mean ± 1 SD. (C) Visualization of electron density for two layers of bulk h-BN, as calculated with DFT. A single contour, corresponding to a value indicated by dashed line (in left panel). Projected positions of boron and nitrogen ions are indicated.

gradient in the monolayer, bilayer, and bulk configurations (2). These simulations indeed show that reducing the number of layers in the crystal shifts Q to lower frequencies. We find that the calculated shifts (~15 kHz for bilayer, ~25 kHz for monolayer) are within 50% of the measured values. Remarkably, DFT calculations show that the contribution to the electric field gradient shift resulting from the removal of the outer layers (and their associated charges) accounts for only ~20% of the shift. The dominant contribution arises from a partial redistribution of the electron density (at the level of 10^{-4} of an elementary charge) from its bulk configuration (see Fig. 4C) into a pair of negative charge "caps" above and below boron in the monolayer configuration (Fig. 4D). The additional broadening observed in some of the monolayer and bilayer spectra is likely due to dipolar interactions with proximal 1H spins contained within the polycarbonate stamp, as well as in the ubiquitous proton layer at the diamond surface, associated with adsorbed hydrocarbons [see (19) and (2), where we probe this layer directly via proton nuclear magnetic resonance (1H NMR)]. In addition to changes in the electrostatic and magnetic environment due to the reduction in layers, differences in lattice strain between the bulk and 2D configurations or the presence of the diamond and polycarbonates may also contribute to shifts and broadening.

These observations provide new insight into the local properties of 2D materials. The sensitivity and spectral resolution can be improved using spin-to-charge conversion readout (20) and advanced photonic structures for improved collection efficiency. With these improvements, individual 13B spins can be detected within 1 second of integration time (2). The use of correlation spectroscopy (Fig. 3D) provides a way of extending the sensing time beyond the coherence time of the NV center. Combined with advanced nuclear decoupling pulse sequences (27) and modest cooling of the diamond samples to ~100 K (22), this method can be used to improve the spectral resolution down to the level of ~1 Hz. Scanning diamond tips (23) or optical super-resolution techniques (24) can be used for nanoscale imaging of local strain fields, localized defects, piezoelastic properties, and crystallinity in nanoscale materials (3, 25, 26).

Downloaded from http://science.sciencemag.org/ on April 24, 2017

ACKNOWLEDGMENTS
The authors thank R. Walsworth, F. Casola, B. Dwyer, N. de Leon, O. Grånäs, and S. Carr for many helpful discussions and experimental help. This work was supported by the Defense Advanced Research Projects Agency (QuASAR program), National Science Foundation (NSF), Center for Ultracold Atoms, Army Research Office (ARO) MURI program, National Security Science and Engineering Faculty Fellowship program, and Moore Foundation. S.F. was supported by the STC Center for Integrated Quantum Materials, NSF grant DMR-1231319. E.K.U. acknowledges support by the NSF (Graduate Research Fellowship Program under grant DGE1144152). S.C. acknowledges support from the Kwanjeong Educational Foundation. E.K. acknowledges support from ARO MURI award W911NF-14-0247. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF grant ACI-1053575. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT, Japan, and JSPS KAKENHI grants JP26248061, JP15K21722, and JP25106006.

SUPPLEMENTARY MATERIALS
www.sciencemag.org/content/355/6324/503/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S4
References (32–48)
20 October 2016; accepted 6 January 2017
Published online 19 January 2017
10.1126/science.aal2538
Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit

Editor’s Summary

Getting a sense of atomically thin materials

Two-dimensional materials such as graphene and transition metal dichalcogenides provide a powerful platform for optoelectronic applications. As the materials get thinner, however, characterizing the electronic properties can present an experimental challenge. Lovchinsky et al. demonstrate that atomic-like impurities in diamond can be used to probe the properties of 2D materials by nanometer-scale nuclear quadrupole resonance spectroscopy. Coherent manipulation of shallow nitrogen-vacancy color centers enabled probing of nanoscale ensembles down to several tens of nuclear spins in atomically thin hexagonal boron nitride.

Science, this issue p. 503