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Electronic compressibility, the second derivative of ground-state energy with respect to total electron
number, is a measurable quantity that reveals the interaction strength of a system and can be used to
characterize the orderly crystalline lattice of electrons known as the Wigner crystal. Here, we measure the
electronic compressibility of individual suspended ultraclean carbon nanotubes in the low-density Wigner
crystal regime. Using low-temperature quantum transport measurements, we determine the compressibility
as a function of carrier number in nanotubes with varying band gaps. We observe two qualitatively different
trends in compressibility versus carrier number, both of which can be explained using a theoretical model of
a Wigner crystal that accounts for both the band gap and the confining potential experienced by charge
carriers. We extract the interaction strength as a function of carrier number for individual nanotubes and
show that the compressibility can be used to distinguish between strongly and weakly interacting regimes.
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The Wigner crystal, an ordered crystalline lattice of
electrons with extremely strong interactions, is one of the
most fascinating regimes of solid-state physics [1]. One of
the observables of this regime is the electronic compress-
ibility κ, which is a reflection of the many-body interactions
of the target system and can be obtained from κ ¼
ðd2E=dN2Þ−1 ¼ ðdμ=dNÞ−1, where E is the ground-state
energy, N is the total electron number, and μ ¼ dE=dN is
the chemical potential of the system. The inverse com-
pressibility κ−1, in particular, corresponds to the amount by
which the chemical potential must be raised in order to
add an electron; small κ−1 indicates that the system easily
accommodates additional electrons. Various studies have
been conducted on compressibility (and quantum capaci-
tance, which is directly proportional to compressibility)
of quantum structures such as quantum wires, two-
dimensional electron systems, mono- and bilayer graphene,
etc. to explore the interactions in these systems [2–6].
When the density of states is constant and electron-electron
(e-e) interactions are relatively weak, the compressibility of
an electronic system is independent of the charge carrier
density. These assumptions are violated, however, in the
low-density regime, and the compressibility varies strongly
with density. In particular, in the Wigner crystal regime,
strong correlations between electrons are predicted to lead
to a sharp decrease in κ−1 with decreasing density [2,7,8].
Previous studies have indeed observed a reduction in κ−1
at low densities in macroscopic (i.e., laterally unconfined)

structures [9–13]; this trend has been attributed to strong
screening effects from a nearby metal gate, the presence of
disorder in the system, or contributions from the exchange
interaction. Unfortunately, for meso- or nanoscale systems,
the downward trend in κ−1 is easily reversed by the effect of
an electrostatic confining potential produced by gate and
source or drain electrodes, which tends to push electrons
into an even smaller spatial region as their density is
reduced. To our best knowledge, suppression in κ−1 at low
densities has never been reported in laterally confined
quantum structures.
Suspended carbon nanotubes (CNTs) are a promising

platform for investigating the effects of strong electronic
correlations in one dimension. As a clean, interacting
quantum system, electrons in a suspended CNT at low
density [14] may be described as a Wigner crystal [15].
Indeed, experimental studies have confirmed fascinating
magnetic and electronic properties of the Wigner crystal
phase, such as their exponentially suppressed exchange
energy [16], absence of excited energy states [17], and giant
orbital magnetic moment [18]. These observations indicate
that, despite more than a decade of studies on the 1D
Wigner crystal, improvement in device fabrication and
higher quality carbon nanotubes lead to the discovery of
novel signatures that have not been revealed before. Very
recently, Shapir et al. [19] have developed a technique to
observe the Wigner crystal directly by imaging the charge
density of the system in real space. Providing detailed
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theoretical calculations, they showed that the Wigner
crystal regime has one of the strongest e-e interactions
in the solid state. The strength of interactions is usually
parametrized by rs, defined as the ratio of the Coulomb
interaction between electrons separated by a distance r,
e2=r, to their typical kinetic energy h2=ðm�r2Þ. The
interaction strength can be written in terms of the effective
Bohr radius aB as rs ≈ 1=ðnaBÞ, where n is the one-
dimensional electron density. The effective mass m� is
proportional to the CNT band gap Δ (with Δ ¼ 2m�v2,
where v is the Fermi velocity), so that increasing Δ leads to
a larger rs and a stronger role for interactions. Previous
studies of the addition energy spectrum, capacitance, and
compressibility of CNTs have mostly focused on noninter-
acting physics and the weak-interaction regime [14,20–22].
But the effect of the band gap on these quantities in the
Wigner crystal regime has not yet been considered.
In this Letter, we have studied one-dimensional systems

with different e-e interaction strengths, using long, sus-
pended CNTs of various band gaps. We report two con-
trasting trends of enhancement and suppression of κ−1.
In CNTs with very large band gaps, we observe suppres-
sion of κ−1 at low densities and provide a theory to show
how this trend can be produced by a Wigner crystal. Using
this theory, we show that compressibility is sensitive to
both band gap and confining potential of the nanotube,
which provides insight into the electronic interactions in
these materials.
Our CNTs are grown using chemical vapor deposition

across a ∼2 μm wide trench on prefabricated substrates to
eliminate disorder effects (see Supplemental Material [23])
[26]. A pair of gate electrodes is at the bottom of the trench
and ∼750 nm below the contact electrodes. Figure 1(a)
shows a schematic of the device.
We focus on the low-density regime of electrons or

holes in clean CNTs, which clearly exhibit single-electron
or -hole conductance peaks in the Coulomb blockade (CB)
regime, down to the last electron (hole) at the conduction
(valence) band edge. The charge carrier density of CNTs
can be modulated using electrostatic gating. A high-
resolution map of the differential conductance dI=dV as
a function of gate voltage Vg and source-drain bias voltage
VSD is shown in Fig. 1(b) for T ¼ 1.5 K and illustrates CB
diamonds and a band gap of Δ ∼ 25 meV in nanotube
CN1. Figure 1(c) plots the conductance of CN1 as a
function of carrier number. The regularity of CB peaks
in these data, as well as the electron interference patterns
in our devices with more transparent contacts [27] made
with the same procedure, indicates that our devices are high
quality and defect-free. In Fig. 1(c), the CB peaks get
closer going from low to high carrier number. Figure 1(d)
shows similar data from another device (CN2, with
Δ ∼ 165 meV). The CB peaks in CN2 show the opposite
behavior; i.e., the CB peaks spread further apart with
increasing carrier number.

The compressibility of the nanotube can be obtained
from gate voltage spacing between the neighboring
CB peaks in the transport data converted to energy: δN ¼
ENþ1 − 2EN þ EN−1 ¼ κ−1 see, e.g., [28,29], using μ ¼
αeVg, where gate voltage lever arm α ¼ Vc=Vg, and Vc is
the height of the rhombic pattern in the GðVg; VSDÞ
diagram [30]. Figures 1(e) and 1(f) plot the extracted value
of κ−1 as a function of carrier number for CN1 and CN2.
The alternating pattern in some parts of the plots arises
from filling the subsequent orbital states with two electrons
having opposite spins [14,20]. In CN1 (Δ ∼ 25 meV), κ−1
is higher at low densities. This trend of addition energy has
been reported previously and explained using a single-
particle picture [14,20,21]. Because of the small effective
mass of CN1, the energetics in this device has been
considered to be dominated by a classical charging energy
and the quantum kinetic energy. It is worth noting that the
device imaged by Shapir et al. [19] with Δ ¼ 45 meV has
similar energetics to CN1 and was found to be a Wigner
crystal. On the other hand, we observe the opposite trend in
CN2 with Δ ∼ 165 meV; in this device, κ−1 is suppressed
at low densities. In contrast to CN1, the effective mass of
CN2 is large and the energetics are more likely to be
dominated by Coulomb interactions. Correspondingly, the
electronic compressibility of a Wigner crystal may follow a
different trend in samples with such large gaps.
It is desirable to vary the band gap parameter to study its

effect on κ−1. One way to do this in a continuous manner is
by applying an external magnetic field (B) parallel to the

FIG. 1. (a) Schematic diagram (left) and SEM image of a device
(right). Carbon nanotube is suspended over a 2 μm wide trench.
The vertical spacing between trench and contact electrodes is
d ¼ 760 nm. (b) Color scale plot of differential conductance
versus gate voltage Vg and source-drain bias VSD in CN1.
Conductance G versus carrier number in (c) CN1 and
(d) CN2. (e),(f) Inverse compressibility as a function of carrier
number for the related device.
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axis of the tube [31–33]. This is particularly applicable to
CN1, which has a small band gap at B ¼ 0 and can display
field-dependent energetics. Figure 2 shows κ−1 in CN1 as
the magnetic field is varied from B ¼ 0.4 to B ¼ 4 T.
The minimum band gap Δmin is obtained at 0.4 T and at
higher fields the gap increases at a rate of ∼2.5 meV=T.
As the band gap is increased, κ−1 is observed to decrease at
lowest densities.
To study the suppression in κ−1 at low densities, similar

to CN2, we examine a range of different samples with
appropriately large band gaps. Figure 3(a) shows the
measured κ−1 as a function of carrier number in five
devices (CN2–CN6) with band gaps ≥150 meV. In all
of these samples, we observe the same trend as in CN2,
meaning that in these tubes κ−1 is suppressed by going to
low densities.
To understand behaviors of κ−1 at low densities, we

propose an interacting model in which we calculate the
ground-state energy E of a system havingN electrons using
the Hamiltonian H ¼ P

i Ki þ
P

i≠j VðrijÞ þ
P

i UðriÞ,
where Ki is the kinetic energy operator for electron i,
VðrijÞ is the interaction energy between two electrons
separated by a distance rij, and UðxÞ is the potential energy
of an electron at position x due to an external electric
potential. In the case of UðxÞ ¼ constant, electrons are
arranged with a uniform (voltage-dependent) density n
along a line of length Leff , so that the total number of
electrons in the system is N ¼ nLeff . In the Wigner crystal
limit, the electrostatic energy Eel of the system can be
approximated by that of a classical collection of point
charges with regular spacing 1=n. In the limit where Leff is
much longer than the distance d to the gate electrode, Eel ¼
N
P∞

i¼1 Vði=nÞ, where the interaction energy VðrÞ is
given by the gate-screened Coulomb repulsion VðrÞ ¼
½e2=ð4πε0Þ�fð1=rÞ − ½1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ð2dÞ2

p
�g. At low electron

densities nd ≪ 1, the typical interaction energy becomes
that of a dipole-dipole interaction, Vð1=nÞ ∼ e2n3d2=
ð4πε0Þ. This rapid vanishing of V with n at low density

implies that the electrostatic cost of inserting an additional
energy decreases with decreasing concentration in cases
where the electron density is uniform.
In the limit where e-e interactions dominate over the

quantum kinetic energy of electrons and the system adopts
a Wigner crystal-like arrangement, the kinetic energy can
be treated as a perturbation. In this situation, electron
wave functions have little spatial overlap with each other
and one can approximate the kinetic energy via a descrip-
tion where each electron is confined into a box of width
1=n, such that neighboring electrons have no wave function
overlap. Total kinetic energy is therefore given by the
number of electrons multiplied by ground-state energy of
a 1D particle in a box. We describe the kinetic energy
of an electron via the relativistic dispersion relation εðpÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvpÞ2 þ ðΔ=2Þ2

p − Δ=2, where v is the Fermi velocity, p
is the electron momentum, and the band gap is Δ ¼ 2m�v2.
Note that, at low electron densities with small p, εðpÞ
reduces to the familiar form of εðpÞ ≅ p2=ð2mÞ. Our
approximation of a Coulomb-dominated electron state is
justified when Vð1=nÞ is much larger than the typical
kinetic energy scale εðp ¼ πℏnÞ. At low electron densities,
this inequality is satisfied in the usual limit of large rs,
naB ≪ 1. In our experiments, aB is no larger than ∼15 nm,
while our CNT lengths are of order 2 μm, so our approxi-
mation is justified when there are fewer than ∼100

FIG. 2. Effect of magnetic field on κ−1 of CN1 for a range of
magnetic fields, from B ¼ 0.4 T, where the band gap reaches its
minimum, to 4 T. (Inset) Comparison of theoretical (solid line)
and experimental (dots) results of κ−1 as a function of carrier
number for CN1.

FIG. 3. Experimental data (a) and theoretical results (b) of κ−1
as a function of carrier number (N) for nanotubes with different
band gaps. (c) Experimental (left) and theoretical (right) results
converted to κ−1 times Leff as a function of charge density.
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electrons in the system. The inverse compressibility is then
κ−1 ¼ ð1=LeffÞdμ=dn. A detailed expression for μ is given
in the Supplemental Material [23]. Our theoretical results
for κ−1, illustrated in Fig. 3(b), have the same trend and
magnitude as our transport data for CN2–CN6. These
modeling results demonstrate that our theory achieves an
expected explanation for the behavior of κ−1 in the large
band gap devices.
In addition to the Coulomb interactions between elec-

trons, the electric potential difference between the gate and
source or drain electrodes creates an external potential that
may significantly affect the compressibility of the system.
To model this effect, we assume that electrons reside in
the minimum of a potential well described generically by
UðxÞ ¼ ½e2=ð4πε0Þ�½ðx2=D3

1Þ þ ðx4=D5
2Þ�. The position x is

defined with respect to the location of the potential
minimum, and the value of the electrostatic potential at
this minimum can be set to zero. The length scales D1 and
D2 define the strength of the potential. In the presence of
such a confining potential, the electron density varies with
position x, with electrons being more densely spaced at
x ¼ 0 and more sparsely spaced at larger distances from the
minimum of the confining potential [7].
The inset of Fig. 2 compares the result of our theoretical

calculation (solid line) and the measured data (dots) for
CN1. Our fitted parameters D1 and D2 agree with the
estimated value from electrostatic calculations in Ref. [7].
It can be seen that the theory matches very well with the
experiment, implying that the confining potential plays an
important role in the enhancement of κ−1 at low density
for this tube. The larger values of κ−1 with decreasing N
suggest that electrons are pushed together by the confining
potential, so that Leff of the device increases with increas-
ing N. We have also calculated κ−1 in the presence of a
magnetic field by adding a field-tunable gap [29] ΔB to the
nonvanishing gap Δmin, and in the presence of a confining
potential, we are able to derive a change in κ−1 as a function
of B that is qualitatively similar to our experimental results
(see Supplemental Material Fig. S2 [23]). The opposite
trend of κ−1 observed in the larger band gap devices
(CN2–CN6) suggests that the confining potential plays a
weaker role in those devices, compared to CN1.
Obtained values of Leff and aB for individual tubes from

our theory are presented in Table S1 of the Supplemental
Material. The values of rs range from ∼3 (for small band
gap and large N) to ∼450 (for large band gap and small N).
Large rs is consistent with our initial assumption of the
Wigner crystal regime [19] and justifies our estimate that
contact interactions are negligible [34] in our large band
gap tubes.
Interactions in the low-density regime are stronger in

tubes with largerΔ × Leff. In order to eliminate the effect of
Leff and present compressibility dependence on band gap
of CNTs, results of Figs. 3(a) and 3(b) are illustrated in
Fig. 3(c) in terms of κ−1Leff as a function of density.

Levitov and Tsvelik [8] had previously theorized that large
band gap tubes with slowly increasing κ−1 (with increasing
density) are more strongly interacting. According to our
measurements and calculations in Fig. 3(c), our tubes with
larger band gap reach the constant κ−1 regime slower than
CNTs with smaller band gap, which is consistent with
Ref. [8]. Overall, our devices show the same behavior as
our model, indicating that e-e interactions are stronger in
the low-density regime of nanotubes with larger band gaps,
causing κ−1 to grow with density.
The observed compressibility behavior by itself is not

proof of a Wigner crystal. Previous works have explained a
similar suppression of compressibility as a function of
density, though not in a laterally confined structure, based
on the exchange interaction in a uniform gas (rs ¼ 0)
model [10,12]. The observed behavior in our devices could
also be described using the simple model of a uniform
electron gas with exchange interaction (presented in the
Supplemental Material [23]). However, given the over-
whelming evidence for Wigner crystallization from other
experiments [16–19] in the parameter space of our devices,
we can safely suggest our observed compressibility behav-
ior as a probe of interaction strength of 1DWigner crystals.
Future studies will incorporate independent control of the
band gap and confining potential.
In summary, we studied the effect of interactions on

electronic compressibility of carbon nanotubes with differ-
ent band gaps. We showed that contact interactions are
not negligible in tubes with smaller band gaps and their
compressibility can be tuned by applying an external
magnetic field. For stronger (weaker) interactions, inverse
compressibility decreases (increases) in the limit of low
density in the Wigner crystal regime. In devices with
suppression of addition energy at low density, tubes with
larger band gaps reach the noninteracting regime at larger
densities compared to tubes with smaller band gaps. Our
theoretical modeling suggests that we are in a regime of
relatively large rs, and our data are consistent with a
theoretical model of a Wigner crystal in a soft confining
potential.
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