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When a strong magnetic field is applied to a two-dimensional 
electron system, interactions between the electrons can 
cause fractional quantum Hall (FQH) effects1,2. Bringing two 
two-dimensional conductors close to each other, a new set 
of correlated states can emerge due to interactions between 
electrons in the same and opposite layers3–6. Here we report 
interlayer-correlated FQH states in a device consisting of two 
parallel graphene layers separated by a thin insulator. Current 
flow in one layer generates different quantized Hall signals 
in the two layers. This result is interpreted using composite 
fermion (CF) theory7 with different intralayer and interlayer 
Chern–Simons gauge-field couplings. We observe FQH states 
corresponding to integer values of CF Landau level (LL) filling 
in both layers, as well as ‘semiquantized’ states, where a full 
CF LL couples to a continuously varying partially filled CF LL. 
We also find a quantized state between two coupled half-filled 
CF LLs and attribute it to an interlayer CF exciton condensate.

The energy levels of a non-interacting two-dimensional elec-
tron system in a magnetic field are quantized into a discrete set 
of Landau levels (LLs) with degeneracy proportional to the area 
of the system6. A key parameter in these systems is the LL filling 
factor ν = nϕ0/B, where n is the electron density, B is the magnetic 
field perpendicular to the layer, and the magnetic flux quantum  
ϕ0 = h/e, with −e the electron charge. Integer quantized Hall effects 
occur when ν is an integer, where the Fermi level is in an energy 
gap between two LLs, and Coulomb interactions between electrons 
can often be ignored. However, Coulomb interactions have a dom-
inant effect in partially filled LLs, lifting the LL degeneracy and 
causing new collective states of matter to appear at a certain set of 
fractional values of ν, which is known as the fractional quantum 
Hall (FQH) effect1.

In single-layer systems, the most commonly observed FQH 
states can be understood in terms of the composite fermion (CF) 
picture7. Here, the electrons are each bound to an even number (2m) 
of quanta of an emergent Chern–Simons gauge field to form CFs, 
leaving only relatively weak residual interactions between them. 
Since the Chern–Simons field combines with the applied magnetic 
field, the CFs experience an effective magnetic field B* = B − 2mnϕ0, 
which is generally weaker than the original field B. From this effec-
tive magnetic field, we can relate ν to the CF LL filling factor p: 
ν = p/(2mp + 1). If p is an integer, positive or negative, then the CF 
system is predicted to have an energy gap, and the electrons will be 
in a corresponding FQH state, with ν equal to a fraction with odd 
denominator. Because of this energy gap, the FQH state has van-
ishing longitudinal electric resistance Rxx and quantized Hall resis-
tance1 Rxy = h/νe2. FQH states also have quasiparticles with fractional  

charge and fractional quantum statistics (anyons), different from 
the statistics of bosons or fermions2,8.

The scope of quantum Hall physics further expands when we 
bring two layers close to each other, allowing strong Coulomb 
coupling between them, while suppressing a direct interlayer tun-
nelling. One much studied state in such systems is the interlayer-
coherent integer quantum Hall state, which was first observed for 
the total filling factor νtot = 1, where νtot ≡ νtop + νbot is the sum of the 
filling factors in the top and bottom layers5,9,10. Due to the Coulomb 
interaction, electrons in one layer are correlated with holes in the 
other. The ground state may be described as having a Bose conden-
sate of interlayer excitons, added to a starting state in which one 
layer is empty while the other has a completely full LL. As the den-
sity of excitons can be varied continuously, the interlayer-coherent 
state can exist over a wide range of values for the difference in layer 
occupations, while νtot is fixed to be an integer.

Several experimental methods, including Coulomb drag11–13, 
counterflow14,15 and tunnelling measurements16, have been exploited 
to demonstrate the interlayer correlation, superfluidity and coherence 
of exciton condensation. In Coulomb drag measurements, current  
I is driven through one of the layers (drive layer), while the other layer 
(drag layer) is electrically not connected. When tunnelling is absent, 
development of a large drag voltage Vdrag proportional to I provides 
direct evidence for strong interlayer correlation. For νtot = 1, the Hall 
drag resistance = ∕R V Ixy xy

drag drag  is quantized to the same value as  
the Hall resistance of the drive layer, = = ∕R R h exy xy

drive drag
2, proving 

interlayer correlation and exciton superfluidity5. Previously, Coulomb 
drag studies have been exclusively performed on integer νtot exciton 
condensate states. In GaAs double quantum wells, νtot = 1 is the only 
observed interlayer-correlated state, while exciton condensation at 
several other integer νtot values have been reported in the graphene 
double-layer system12,13. Despite theoretical expectations6,7,17–20, no 
direct experimental observation of interlayer correlation at fractional 
total filling factor has been made thus far. The observed incompress-
ible state at νtot = 1/2 in double-layer or wide single-layer GaAs has 
been proposed to be the correlated Halperin (331) state3, but without 
direct experimental verification4,9,10,21. The delicacy of these expected 
interlayer FQH states demands extremely high sample quality.

In the present study, we have fabricated monolayer graphene 
double-layer devices with top and bottom graphite gates. The het-
erostructure, stacked all at once, is composed of two graphene layers 
separated by hexagonal boron nitride (hBN), with the graphite/hBN 
encapsulation layers at the top and the bottom (Fig. 1d; topmost 
hBN layer not shown). The thickness of interlayer hBN is approxi-
mately 2.5 nm, which allows strong interlayer Coulomb interaction 
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while preventing direct tunnel coupling between the graphene lay-
ers. The stack is then etched into a Hall bar shape and individual 
contacts on each layer are fabricated. No appreciable tunnelling was 
observed and all measurements are conducted under perpendicular 
magnetic fields. The top and bottom graphite gates are used to con-
trol the carrier densities of the two layers, while no interlayer bias 
voltage is applied. Due to the comparably reduced contact trans-
parency for the hole doping, we focus our experiment only on the 
electron doping in this experiment.

Coulomb drag measurements were first performed with both lay-
ers at the same carrier density (νtop = νbot ≡ νeq) (Fig. 1a,b). The pre-
viously observed νtot = 1 exciton condensate state12,13 can be clearly 
identified at νeq = 1/2, with quantized = = ∕R R h exy xy

drive drag 2 and van-
ishing Rxx

drag. In this high-quality sample, however, additional fea-
tures with large drag responses are also observed away from νtot = 1, 
indicating that strong interlayer coupling persists, thereby enabling 
additional interlayer-correlated states (Fig. 1a). In particular, we 
observe vanishing Rxx

drag at νeq = 1/4, 1/3, 2/5, 3/7, 2/3 (data for 1/4 
is found in the Supplementary Information), which suggests that 
incompressible states are developed at these filling factors. Among 
them, νeq = 1/3 and 2/3 appear as trivial single-layer FQH states, evi-
dent from vanishing Rxy

drag. We thus focus our attention first par-
ticularly on νeq = 2/5 and 3/7, which are the two most prominent 
states that produce quantized Hall responses in the drive and drag 
layers. Interestingly, for these states, the two Hall resistances, Rxy

drag 
and Rxy

drive, are quantized to different fractional values. For νeq = 2/5 
we observe =R 1xy

drag  and = ∕R 3 2xy
drive , while for νeq = 3/7, = ∕R 2 3xy

drag  
and = ∕R 5 3xy

drive  (from now on we use the unit of resistance quan-
tum h/e2 for the quantized resistance values). These quantization 
values are accurate to 1% of h/e2 for νeq = 2/5 and 2% for νeq = 3/7, 
and stay the same for B = 25 T and B = 31 T. From these numbers, we 
note that the sum of the Hall resistances in the drive and drag lay-
ers, ν+ = ∕R R 1xy xy

drive drag
eq, as if a portion of the Hall voltage is shifted 

from the drive layer to the drag layer.

We demonstrate that the νeq = 2/5 state can be understood with a 
generalized CF description extended to double-layer systems. Here, 
we introduce multiple species of gauge field, coupling fermions in 
different layers as well as in the same layer. For our purposes, we 
attach two intralayer flux quanta and one interlayer flux quantum 
to each electron, so that a CF in a given layer sees two flux quanta 
attached to every electron in the same layer, but only one flux quan-
tum attached to electrons in the other layer (Fig. 1e). We only work 
in the |νtop|, |νbot| < 1 region, and we assume that electrons are spin 
and valley polarized. By generalizing the single-layer CF picture, it 
is natural to define CF filling factors pA and pB for the top and bot-
tom layers respectively. These are defined as the ratio between the 
fermion density in a given layer and the effective magnetic field felt 
by CFs in that layer (Supplementary Information):
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Inverting equation (1), the LL filling factors for electrons in the two 
layers will then be given by
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In the case where the layers have equal densities, this formula sim-
plifies to νeq = p/(3p + 1), where p = pA = pB.
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Fig. 1 | Interlayer-correlated states at fractional filling factors in graphene double layer with equal densities. a, Vanishing longitudinal resistance 
R R( , )xx xx

drive drag  and quantized Hall resistance R R( , )xy xy
drive drag  in the drive and drag layer appear at νeq = νtop = νbot = 2/5 and 3/7. The solid curves are obtained 

under B = 31 T and dotted curves are from B = 25 T. Short horizontal lines mark the Hall resistance quantization values. b, The same measurement as in a at 
25 T, but with the drive and drag layers switched. c, Microscope image of the device. d, Schematic of device structure. Graphite gates are represented by 
black sheets while three hBN layers are shown in blue. For this specific device, the thickness of hBN between the graphene layers is 2.5 nm. Yellow blocks 
denote metal contacts on graphene. e, Illustration of Chern–Simons flux attachment. Each electron (deep blue spheres) in the system is bound with two 
intralayer magnetic flux quanta (black arrows) and one interlayer flux quantum (red arrows).
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Fig. 2 | Interlayer correlation through quasiparticle pairing. a, Longitudinal drag resistance as a function of filling factors in the top and bottom 
layers. Dotted lines show locations of semiquantized states where longitudinal drag resistance vanishes. All these lines connect ν = 1 in one layer with 
various ν = 1/3, 3/5, 2/3, 1 of the other layer. Among them, the intersection of red dotted lines marked by L1 and L2 corresponds to the νeq = 2/5 state 
discussed above. The dashed rectangle denotes the scope of the magnified measurements of Fig. 3. b,c, Illustrations of quasiparticle pairing for two 
filling-factor configurations (green and red dots in a). The circles on the two graphene layers represent quasiparticle excitations with marked electrical 
charges (−e, 2/3e, …). These quasiparticle pairs are balanced by the transverse electrical fields on the top and bottom layers (Etop and Ebot, depicted by 
black arrows).
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Fig. 3 | Semiquantized fractional Hall states. a–e, Various resistance measurements in the magnified area indicated by the dashed rectangle in Fig. 2. 
Rxx xy,

top  R( )xx xy,
bot  is the drive layer resistance when the current is driven on the top (bottom) layer. The dotted lines mark L1 and L2 (the same as the red lines 

in Fig. 2). Along L1, quantum Hall signatures = = ∕R R h e( 0, 3 2 )xx xy
top top 2  persist on the top layer but not on the bottom layer ≠ ≠ ∕R R h e( 0, 3 2 )xx xy

bot top 2 , while the 
opposite is true for L2. Meanwhile, drag signals are quantized along both L1 and L2. f, Line cut through L2. It is notable that Rxy

bot remained constant all the 
way until νeq = 2/5 (vertical dotted line), across the phase transition between the single-layer νbot = 2/3 FQH state ≈R( 0)xy

drag  and the interlayer FQH state 
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The experimentally observed interlayer-correlated state νeq = 2/5 
corresponds to pA = pB = −2. Since the CFs in the two layers are cor-
related, the Hall signal in the two layers must be correlated as well. 
Using the Chern–Simons field calculation, we find that the double-
layer Hall resistivity tensor obeys (see Supplementary Information 
for derivation)
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In this equation, ρx̂y is the Hall resistivity matrix in the unit of 
the resistance quantum, which contains two contributing terms: 
ρĈS originates from the motion of the Chern–Simons flux consider-
ing the two intralayer flux quanta and one interlayer flux quantum, 
while ρĉf is caused by the Hall effect of CFs. At νeq = 2/5, equation 
(3) produces =R 1xy

drag  and = ∕R 3 2xy
drive , matching the experimental 

observations in Fig. 1a,b.
Applying CF formalism similar to that discussed above (equation 

(1)) to νeq = 3/7, however, we obtain pA = pB = −3/2, indicating that 
two half-filled CF LLs are involved in this state. A half-filled CF LL 
by itself should not develop an incompressible state. Moreover, if we 
were to enforce equation (3) for these values of pA and pB, we would 
predict ρ = 1xy

drag  and ρ = ∕4 3xy
drive , which is in strong disagreement 

with the experimentally observed values, 2/3 and 5/3, respectively.
To correct the weakly interacting CF model presented above for 

half-filled CF LLs, we can draw an analogy between the half-filled 
CF double-layer system and the half-filled electron double-layer 
system, in which an exciton condensate can be formed. If we assume 
pairing between CFs in one layer and CF holes in the second layer, 
the CF Hall resistivity tensor becomes

ρ ̂ =
+ ( )p p
1 1 1

1 1 (4)cf
A B

Inserting equation (4) into equation (3), we obtain = ∕R 2 3xy
drag  

and = ∕R 5 3xy
drive , which agrees with our experimental observations, 

thus suggesting that the CF exciton condensation phase is indeed 
responsible for νeq = 3/7 (further discussion of CF paring in half-
filled CF LLs can be found in the Supplementary Information).

Away from equal filling status, Fig. 2a shows that the vanishing 
Rxx

drag persists along the segments of two symmetric lines (labelled 
L1 and L2) that intersect at νeq = 2/5. The line L2 has a slope of −2/3 
and traces from (νtop, νbot) = (0, 2/3) to (1, 0), while L1 is the inverse. 
We find that the longitudinal drag vanishes and Hall drag remains 
quantized along these lines, as shown in Fig. 3a,d, indicating that 
the strong interlayer interaction persists along these line segments. 
Unlike the quantized interlayer drag resistance, which is layer inde-
pendent by the Onsager relation, we find that the drive Hall resis-
tance depends on which layer we measure. For example, along L2, 
we find that driving the bottom layer exhibits a quantum Hall effect 
with = ∕R 3 2xy

bot  and =R 0xx
bot . However, when we drive the top layer 

along L2, >R 0xx
top  and Rxy

top is not quantized. Along L1, the role of 
the top and bottom layers is reversed. The experimentally observed 
behaviours of all the resistance components along L1 and L2 are 
summarized in Table 1.

We note that, along L1 or L2, either pA or pB remains at −2 
while the other can change continuously. For example, for pB = −2, 
νtop and νbot given by equation (2) satisfy the expression of L2: 
ν ν+ =( )1top

3
2 bot . In principle, a series of discrete incompressible 

FQH states can be formed along this line, corresponding to various 
positive and negative integer values for pA in equation (2). These 
should all exhibit vanishing longitudinal resistance and quantized 

=R 1xy
drag  and = ∕R 3 2xy

bot , which do not depend on pA, while the 
quantized values of Rxy

top would depend on the value of pA. What 
originally surprised us, however, is that the experimentally observed 
quantization of =R 1xy

drag  and = ∕R 3 2xy
bot , together with vanishing 

Rxx
drag and Rxx

bot, exists continuously along an entire segment of L2, 
even when pA is not an integer.

We now understand the above results as follows. For a general 
point on the line segment L2 (that is, fixed pB = −2), there is an 
energy gap for adding or removing a CF of type B (δpB), but not 
of type A (δpA). Thus, while the state should not be as stable as at 
a point where pA and pB are both integers, such that both species 
of CF are gapped, it should nevertheless be more stable than at a 
nearby point where both CF filling factors are fractions. Therefore, 
it is plausible that CF states along a line where one of (pA, pB) is an 
integer should be good candidates for the true ground state at the 
corresponding filling fractions. We call such states semiquantized, 
as one CF filling factor is fixed but the other can vary continuously. 
The observed transport properties of these states can be understood 
with the CF picture as well (Methods).

An alternative approach to understanding properties of the 
states along L1 and L2 is to begin with the balanced quantized state 
at νeq = 2/5, and add quasiholes to this state. Elementary quasiholes 
in this state have total charge e/5, with 3e/5 in one layer and −2e/5 
in the other. The addition of one type of quasihole or the other will 
move the system along the line L1 or L2, in a direction decreasing 
the total filling factor. The relative stability of states on the two line 
segments can be understood by considering the energy cost for qua-
siholes versus quasiparticles (see the Supplementary Information 
for more discussion).

Finally, we turn to the state at νeq = 1/4 and the lines through it. The 
state νeq = 1/4 may be described in our CF language by pA = pB = 1. As 
discussed in the Supplementary Information, the state is also equiva-
lent to the Halperin (331) state, which has been proposed as a possi-
ble explanation for the FQH state at νtot = 1/2 in wide GaAs quantum 
wells. The line L3 in Supplementary Fig. 2, which passes through this 
point, corresponds to pA = 1 with continuously varying pB. Although 
there appears to be a well developed FQH state at pB = 2 with pA = 1 
along this line, corresponding to the values νtop = 3/13, νbot = 4/13, 
there does not appear to be a line of semiquantized states between 
these two points. The absence of continuous semiquantization along 
these lines suggests that stabilization of the interlayer-correlated CF 
state requires microscopic consideration of the energetics of the  
quasiparticle addition to the system (Supplementary Information).
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Methods
Sample fabrication. The hBN–graphite–hBN–graphene–hBN–graphene–hBN–
graphite (from top to bottom) stack is prepared by mechanical exfoliation and 
the van der Waals transfer technique. The dual graphite gates shield the graphene 
layers from impurities and contaminations, enabling lower disorder and more 
homogeneous samples22. The shapes of the graphene and graphite are carefully 
chosen and arranged so that we can use the overlapping part as the main channel 
area, while fabricating individual contacts on each layer in the regions with just 
one conducting layer. A square-shaped top graphene layer is chosen, while we pick 
strip-shaped bottom graphene and bottom graphite layers, which are narrower but 
longer than the top graphene. We align the bottom graphite and bottom graphene 
layers into a cross, while keeping the overlapping area inside the top graphene 
square. The top graphite layer covers everything after stacking but is etched into 
the same shape as the bottom graphite layer. We then etch the stack into the final 
device geometry and fabricate the Cr/Pd/Au contact on all the graphene and 
graphite layers. Contacts on the two layers are spatially separated to avoid shorting 
the two graphene layers together12. Finally, we grow 20–30 nm atomic layer 
deposited Al2O3, and then deposit contact gates above the top-layer graphene lead 
to increase the contact transparency.

Coulomb drag measurement. We perform Coulomb drag measurement with 2 nA 
excitation current on the drive layer using lock-in amplifiers at 17.7 Hz. We use a 
symmetric bias scheme to eliminate any possible interlayer bias effect12,23,24. In this 
scheme, we apply positive bias +V on the source and −V on the drain (both on the 
drive layer). The drag layer is open circuit but with one of the contacts connected 
to the ground through a 1 MΩ resistor to allow charges to flow in and out of the 
layer for the gating effect. Using an atomic layer deposited contact gate and a 
silicon back gate, we dope the lead area of both layers to high carrier density and 
matching carrier type with the channel. The measurements are made in a helium-3 
cryostat at 300 mK. The filling factors presented are calculated from gate voltages 
with gate capacitance calibrated by gate voltages of sharp single-layer quantum 
Hall states νtop = νbot = 1/3 and νtop = νbot = 2/3, and are reasonably well matched with 

measured hBN thickness. The perpendicular electric field generated by the gate 
voltages has no effect in the case of a monolayer graphene double layer.

Understanding transport properties of semiquantized states. To understand 
transport properties in a semiquantized state, we first note that in the absence of 
CF scattering or of pinning by impurities there would be no longitudinal resistance 
and the Hall resistances would be given by equation (3), even in the absence of an 
energy gap. For the semiquantized state along L2 (pB = −2), if an electrical current 
is driven on the bottom layer, then the current can be carried entirely by CFs of 
type B (bottom drive), with stationary CFs of type A (top, drag layer). Since type 
B CFs are contained in a filled CF LL, the current is carried without dissipation. 
Furthermore, as there is no tendency for flow of the type A CFs, a small density of 
impurities will have no effect, leading to quantization ρ = ∕3 2xy

bot  and ρ = 1xy
drag . On 

the other hand, if current is applied to the top layer, CFs of type A will be forced 
to move. If CFs in the partially filled CF LL are not pinned by impurities, they will 
participate in the motion, and they can be scattered by impurities. This will lead to 
a longitudinal resistance, and deviations from the result = + ∕R p(2 1 )xy

top
A

 predicted 
by equation (3), except in the case where pA is so close to an integer value that the 
small density of excess CFs is pinned by impurities.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author on reasonable request.
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