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Surface plasmons in 2-dimensional electron systems with narrow
Bloch bands feature an interesting regime in which Landau damp-
ing (dissipation via electron–hole pair excitation) is completely
quenched. This surprising behavior is made possible by strong
coupling in narrow-band systems characterized by large values of
the “fine structure” constant α= e2/~κvF . Dissipation quenching
occurs when dispersing plasmon modes rise above the particle–
hole continuum, extending into the forbidden energy gap that
is free from particle–hole excitations. The effect is predicted to
be prominent in moiré graphene, where at magic twist-angle val-
ues, flat bands feature α� 1. The extinction of Landau damping
enhances spatial optical coherence. Speckle-like interference, aris-
ing in the presence of disorder scattering, can serve as a telltale
signature of undamped plasmons directly accessible in near-field
imaging experiments.

undamped plasmon excitations | Landau damping | twisted
bilayer graphene

Landau damping, a process by which collective mode decays
into electron–hole pairs, is often taken to be an integral

attribute of graphene plasmon excitations (1–5). Here, we pre-
dict extinction of this dissipation mechanism in materials with
narrow electron bands, such as twisted bilayer graphene (TBG)
(6–10). Intrinsically undamped plasmons in narrow-band mate-
rials arise due to large fine structure parameter values α=
e2/~κvF : strong interactions push plasmon dispersion into the
energy gap above the particle–hole (p-h) continuum as illus-
trated in Fig. 1. In this region, plasmons become decoupled
from p-h pair excitations. Dissipation quenching, which is a
surprising manifestation of strong coupling physics, is a robust
effect that persists up to room temperature and is insensitive
to disorder (Figs. 1 and 2). Collective charge modes, which
are damping free, are of keen interest for quantum informa-
tion science as a vehicle to realize dissipationless photon–matter
coupling, high-Q resonators, single-photon phase shifters, and
other missing components for the photon-based quantum infor-
mation processing toolbox (15). Although extinction of Landau
damping is a general effect present in all narrow electron bands,
our analysis will focus on TBG flat bands, a system of high
current interest (16–20), in which undamped plasmons can be
directly probed.

Fig. 1 depicts plasmon mode for a narrow-band model that
mimics the key features of the TBG band. Mode dispersion (red
line) and its damping are of a conventional form at energies
less than the bandwidth, ω.W . At lowest energies, plasmon
mode is positioned outside the p-h continuum, as expected; this
suppresses the T = 0 Landau damping but does not protect
the mode from decaying into p-h excitations through disor-
der scattering or from the conventional T > 0 Landau damping
(1, 2, 21–25). At higher energies, ω∼ 2EF (marked by arrows
in Fig. 1), the mode plunges into p-h continuum and is Landau
damped at 2EF .ω. 2W , even at T = 0. However, an interest-
ing change occurs after the mode rises above the p-h continuum.
In the forbidden gap region, ω> 2W , it becomes damping free,
since at these energies, there are no free p-h pairs into which
plasmon could decay. This behavior is manifest in the T depen-

dence of the resonances, which are washed out with increasing
temperature at ω.W but remain sharp at ω>W , even at
T ∼EF (Fig. 1 B and C).

As we will see, mode dispersion has a square root form
characteristic of 2-dimensional (2D) plasmons (26, 27),

ωp(q) =
√
βqq , [1]

with a weak q dependence in βq (Eq. 14). This expression, how-
ever, is valid not just at low energies, 0<ω.W , but also at
higher energies, ω�W , where the mode is undamped. While
the dispersion in Eq. 1 is of the conventional 2D plasmon form,
we emphasize that here it takes on a different role, as it describes
the plasmon mode at frequencies much higher than the carrier
bandwidth, extending to

ωp∼
√
αW �W , α∼ 20− 30, [2]

where the high-α values correspond to flat bands in magic-angle
moiré graphene. Also, unlike the conventional plasmons, the dis-
persion in Eq. 1 is not limited to longest wavelengths. Indeed, as
illustrated Fig. 1A, it extends to fairly high wavenumbers on the
order of the mini Brillouin zone size.

The wavelengths of these plasmons are only 2 to 3 times
greater than the moiré superlattice period. Such short wave-
lengths are of considerable interest for plasmonics and are
within resolution of the state-of-the-art scanning near-field
microscopy techniques (4, 5) (currently as good as 10 nm
[28, 29]). In addition to measuring plasmon dispersion, these
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Fig. 1. (A) Electron loss function Im (−1/ε(ω, q)) for a narrow-band toy
model (the hexagonal tight-binding model) (Eq. 10). Parameter values are
chosen to mimic TBG bands (bandwidth W = 3.75 meV, lattice periodic-
ity LM = 13.4 nm, Fermi energy in the conduction band at EF ≈ 1.81 meV);
log scale is used to clarify the relation between different features. Arrows
mark the interband p-h continuum edges. Plasmon dispersion (red line)
is fitted with ωp(q) =

√
βqq (Eq. 1) (dashed line). The difference between

Landau-damped (B) and undamped (C) behavior is illustrated by line cuts of
plasmon resonances at the locations marked in A taken at temperatures
T/EF = 0, 0.075, 0.1, 0.2, 0.3, 0.4. Resonances broaden with T in B and are
T independent in C (the residual resonance width models extrinsic damp-
ing due to phonons and disorder [11–14]). Resonances at the 3 lowest T
values in C are slightly offset for clarity. (D) Speckle pattern in scanning near-
field microscopy signal (4, 5) S(r) (Eq. 3) due to undamped plasmons; optical
coherence is manifest in Fourier spectrum |Sk|2 (Inset). Results shown are
for plasmon momentum q0 = qM/2≈ 0.14 nm−1, where qM is the distance
between points M and Γ, and disorder is modeled as 40 randomly placed point
defects.

techniques can be used to directly visualize the qualitative
change in the damping character and strength. Enhanced optical
coherence will manifest itself in striking speckle-like interference
as illustrated in Figs. 1D and 2.

Indeed, because of the absence of Landau damping at the
energies of interest, ω>W , and also because these energies
are smaller than carbon optical phonon energies, the dominant
dissipation mechanism is likely to be elastic scattering by dis-
order. At low energies, where plasmon mode coexists with p-h
continuum, disorder scattering merely assists Landau damping,
allowing plasmons to decay into p-h pairs by passing some of
their momentum to the lattice. However, at the energies above
p-h continuum, ω>W , since the decay into pairs is quenched,
disorder will lead to predominantly elastic scattering among plas-
mon excitations. Such scattering preserves optical coherence
and is expected to produce speckle patterns in spatial near-field
images as illustrated in Fig. 1D.

To model this behavior, we consider the signal S(r) excited by
the scanning tip and measured at the same location. Monochro-
matic plasmon excitation at energy E is scattered by impurities
or defects and on returning to the tip, produces signal

S(r) = J0

∫
d2r′GE (r− r′)η(r′)GE (r′− r), [3]

where η(r) is the disorder potential, J0 is excitation amplitude,
and GE (r) is the Green’s function of the plasmon excitation
(SI Appendix, section 1). The spatial signal (Fig. 1D) exhibits
a characteristic speckle pattern familiar from laser physics. In
graphene plasmonics, speckle-like interference provides a direct
manifestation of optical coherence enhancement in the absence
of Landau damping. Accordingly, the Fourier transform of the
image, Sk =

∫
d2rS(r)e−ikr, yields power spectrum |Sk|2 that fea-

tures a ring-like structure; the ring radius is k = 2q0, where q0

is the plasmon excitation wavenumber (Fig. 1D, Inset). Simple
calculation, described in SI Appendix, section 1, predicts power
spectrum that sharply peaks at the ring:

|Sk|2∼
|ηk|2

|k2− 4(q0− iδ)2| , [4]

where δ is a parameter characterizing extrinsic damping due
to phonon scattering and other inelastic processes. In the fully
coherent regime (δ= 0), the quantity |Sk|2 exhibits a power law
singularity at the ring, k = 2q0. As the amount of incoherent scat-
tering increases, the peak is gradually washed out. This behavior
is illustrated in Fig. 2.

We note that recent work (19) analyzed interband plasmon
excitations in TBG, which are dominated by polarization of
the bands above the flat band and are distinct from the flat-
band plasmons analyzed here. Recent experiments (20) reported
observation of plasmons in TBG; however, their appeal for con-
structing intrinsically protected collective modes remained unno-
ticed in graphene literature. Also, plasmons in narrow bands
were analyzed in the context of high-Tc superconductivity (30),
finding that plasmon mode can rise above the flat band. How-
ever, in cuprates, unlike moiré graphene, the narrow band is not
separated from higher bands by a forbidden energy gap, and thus,

A B

C D

Fig. 2. (A–D) Speckle patterns arising due to optical coherence of
undamped plasmons in scanning near-field microscopy signal S(r) (Eq. 3) at
various ratios of the incoherent to coherent damping δ/q0. Insets show the
corresponding square of the speckle pattern’s Fourier transform amplitude
|Sk|2. In all panels, for clarity of comparison, we set the plasmon momen-
tum as in Fig. 1D (q0 = qM/2≈ 0.14 nm−1) and vary only the ratio δ/q0. The
disorder is taken as 40 randomly placed Dirac delta functions.
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the mode studied in ref. 30 will plunge into a higher band before
acquiring an undamped character.

Next, we present analysis of the hexagonal-lattice toy model
that mimics the key features of Landau-damped and intrinsically
undamped modes in TBG. The hexagonal-lattice tight-binding
model possesses the same symmetry and the same number of
subbands as the flat band in TBG. We match the energy and
length scales by choosing the width of a single band W and
the hexagonal lattice period LM identical to the parameters
in TBG: W = 3.75 meV, and LM = a/2 sin(θ/2) is the moiré
superlattice periodicity. For the magic angle value θ= 1.05◦,
using carbon spacing a = 0.246 nm, this gives LM = 13.4 nm.
To ensure that a unit cell of the toy model can accommodate
4 electrons just as the moiré cell does in TBG, we make the
toy model 4-fold degenerate. Comparison with plasmons for
the actual TBG model, presented below, will help us to identify
the features that are general as well as those that are a specific
property of TBG.

Our nearest neighbor tight-binding Hamiltonian is

Htoy =

(
0 hk
h∗k 0

)
, hk =

W

3

∑
ej

e ik·ej , [5]

with the hopping matrix element W /3 to nearest neighbors
at positions ej = (cos(2πj/3), sin(2πj/3))LM /

√
3, j = 0, 1, 2.

Here, W is the bandwidth measured from Dirac point, and the
nearest neighbor distance LM /

√
3 is chosen such that the lattice

period of the hexagonal toy model matches the moiré super-
lattice period. Corresponding energies Es,k and eigenstates Ψs,k
are then

Es,k = s|hk|, Ψs,k =
1√
2

(
se iϕk

1

)
, [6]

where ϕk = arg hk and the band index s =± labels the conduc-
tion and valence band.

Plasmons can be obtained from the nodes of the complex
dielectric function, describing the dynamical response of a
material to an outside electric perturbation:

ε(ω, q) = 1−VqΠ(ω, q). [7]

Here, Vq = 2πe2/κq is the Coulomb interaction in a medium
with a background dielectric constant κ, and Π(ω, q) is the elec-
tron polarization function. The relation in Eq. 7 is exact as long
as the polarization function is defined as an exact microscopic
density–density pair correlator given by a sum of all irreducible
bubble diagrams. As such, this relation can yield useful informa-
tion about plasmon dispersion, even when electron interactions
are strong.

Similar to the conventional analysis of plasmons in 2D sys-
tems, here a simplification occurs in the small-q limit, regardless
of whether the random-phase approximation (RPA) is used to
evaluate Π(ω, q). Indeed, since the Coulomb potential diverges
at small q , zeros of ε(ω, q) are found when the polarization
function is small. However, at small q , this quantity vanishes
as λq2/ω2, a behavior that is a consequence of the general
symmetry requirements (namely, gauge invariance demanding
that spatially uniform external potential does not perturb den-
sity) (31). This immediately yields a q1/2 scaling for plasmon
frequency at small-enough q .

Below, we use the RPA approach to estimate the prefactor λ
and to demonstrate that the mode ω∼ q1/2 extends far above the
TBG p-h continuum. To compare with other systems, we recall
the familiar “classical acceleration” behavior found for parti-
cles with parabolic dispersion: Π(ω, q) =nq2/mω2, where n is

the charge density and m is the electron band mass (31). For
a more general band dispersion, the ratio n/m is replaced by
the band Fermi energy, λ∼EF/~2 (1–3). Interactions have no
impact on the behavior of Π(ω, q) for the parabolic band case;
however, for nonparabolic bands, the band mass m must change
to an effective value m∗ described by Landau Fermi-liquid
renormalization (32).

In our case, the scaling relation Π(ω, q)≈λq2/ω2 features dif-
ferent values of λ for low and high energies, ω.EF and ω> 2W .
To see this, we start with the RPA expression for polarization
function

Π(ω, q) = 4
∑

k,s,s′

(fs,k+q− fs′,k)F
ss′
k+q,k

Es,k+q−Es′,k−ω− i0
. [8]

Here, summation
∑

k denotes integration over the Brillouin
zone, the indices s, s ′ run over the electron bands, and the
factor of 4 in front of the summation accounts for the 4-fold
degeneracy of the toy model. Here, fs,k is the equilibrium distri-
bution 1/(eβ(Es,k−EF ) + 1), and F ss′

k+q,k describes band coherence
factors. For our toy model,

F ss′
k+q,k = |〈Ψs,k+q|Ψs′,k〉|2 =

1 + ss ′ cos(ϕk+q−ϕk)

2
, [9]

where Ψs,k are pseudospinors given in Eq. 6.
As we now show, an analytic expression for plasmon disper-

sion can be obtained, describing both the Landau-damped and
the undamped cases in a unified way. We first rewrite Eq. 8 by
performing a standard replacement k + q→−k in the term con-
taining fs,k+q followed by −k− q,−k→ k + q, k justified by the
k→−k time-reversal symmetry. This gives

Π(ω, q) = 8
∑

k,s,s′

fs′,k
F ss′

k,k+q(Es′,k−Es,k+q)

(Es,k+q−Es′,k)2− (ω+ i0)2
. [10]

The behavior of this expression at small q , which will be of inter-
est for us, can be found in a closed form. In the small-q limit, the
coherence factors behave as

F s=s′
k+q,k ≈ 1, F s=−s′

k+q,k ≈
1

4
(q ·∇kϕk)

2. [11]

The values O(1) for intraband transitions and O(q2) for inter-
band transitions might suggest that the polarization function is
dominated by the intraband transitions. However, as we now
show, the interband and intraband contributions are of the same
order of magnitude.

Indeed, the intraband contributions, s = s ′, can be rewrit-
ten by noting that, on integration over k, only the even-k
part of series expansion Es,k+q−Es,k survives, giving Π1(ω, q)≈
4
ω2

∑
k,s fs,k (Es,k+q +Es,k−q− 2Es,k). Expanding in small q ,

we have
Π1(ω, q)≈ 4

ω2

∑
k,s

fs,k(q ·∇k)
2Es,k. [12]

As a sanity check, for parabolic band Ek = k2/2m , we recover
the familiar result Π(ω, q) =nq2/mω2 (31).

The interband contributions, s =−s ′, can be simplified by
noting that Es,k+q≈−Es′,k, giving

Π2(ω, q)≈ 4
∑
k,s

fs,k
Es,k (q ·∇kϕk)

2

4E2
s,k− (ω+ i0)2

. [13]

As a sanity check, at T = 0, the imaginary part of Π2, describ-
ing interband transitions, is non-zero only for 2EF <ω< 2W as
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expected. The real part of Π2 is negative at small ω and positive
at large ω, because the valence band contribution dominates over
that of the conduction band.

Plasmon dispersion ωp is given by the solution of the equation
ε(ω, q) = 0 with Π = Π1 + Π2. Comparing the ω dependence of
Π1 and Π2, we see that, at small frequencies ω< 2EF , the intra-
band contribution Π1 dominates. This gives the dispersion in
Eq. 1 with

βq =β0 +β1q +O(q2), [14]

where the leading term β0 = 4αvFEF/~ originates from Π1 (SI
Appendix, section 2), and the subleading q-dependent contribu-
tion is due to Π2. The negative sign of Π2 translates into β1 < 0,
softening the dispersion at low frequencies. This behavior, which
holds the limit ω< 2EF , agrees with refs. 1, 2, and 27.

In the same manner, we can obtain the dispersion at
high frequencies, ω> 2W (the intrinsically undamped regime).
The analysis is again simplified by noting that, since α=
e2/~κvF � 1, the relevant values of q are small compared with
the Brillouin zone size, and thus, the small-q limit consid-
ered above is sufficient to describe this behavior. Taking both
the intraband and interband contributions in the asymptotic
form Π1 =λ1q

2/ω2, Π2 =λ2q
2/ω2, where λ1≈ 2EF/~2π,λ2≈

2(W −EF )/~2π (SI Appendix, section 2), yields Eq. 1 with β=
2πe2

κ
(λ1 +λ2). The first term is identical to β0 found at low

frequencies, and the second term is of a positive sign, λ2 > 0,
describing stiffening of the plasmon dispersion due to interband
transitions.

In the undamped regime, plasmon frequency peaks at q val-
ues on the order of Brillouin zone scale. The peak value of
ωp, given in Eq. 2, can be found by estimating the energy dif-
ferences Es,k+q−Es′,k in Eq. 10 as W and noting that the
coherence band factor for large q is in general nonvanishing
and of order 1. This gives, for the practically interesting case of
EF ∼W , the result ωp∼

√
αW , which agrees with the dispersion

ωp =
√
βq = 2

√
αvFWq/~ provided that ~vFq saturates at W .

Indeed, the estimated values of β0,β compared with the fitted
curve in Fig. 1A (SI Appendix, section 2) indicate that ωp =

√
βqq

relation from Eq. 1 is a good approximation for the plasmon
dispersion at both small and large q.

The dielectric function of the 2-band toy model faithfully
reproduces all of the qualitative features expected for the TBG
band structure. However, we find that, despite matching the
bandwidth W and lattice period to those of TBG, the resulting
plasmon dispersion extends to much higher energies then those
that will be found below for the actual TBG band structure. This
is simply because the 2-band model does not account for the
effects of interband polarization of higher electron bands, which
renormalize the dielectric constant down and soften the plasmon
dispersion. We account for this in the toy model case by rescaling
the effective fine structure constant such that the resulting plas-
mon dispersion is comparable in magnitude with the TBG result.
Specifically, in Fig. 1A, we use an effective background dielec-
tric constant κ= 12.12, which is 4 times larger than the dielectric
constant κ= 3.03 corresponding to an air/TBG/hexagonal boron
nitride (hBN) heterostructure.

Next, we turn to the analysis of plasmons in TBG flat bands at
an experimentally relevant magic angle value θ= 1.05◦ (16–18).
To accurately describe the TBG band structure and eigenstates,
we use the effective continuum Hamiltonian HTBG introduced
in ref. 33. The full discussion of the band structure details can
be found in SI Appendix, section 3; here, we only discuss 2
relevant energy scales: flat-band bandwidth W and the gap ∆
between the flat bands and the rest of the band structure. With
regard to W value, we note that, technically, the bandwidth of
the flat bands, as predicted by the continuum mode HTBG , is
on the order of W ≈ 3.75 meV. However, the bandwidth scale

relevant for the interband and intraband excitations is actually
closer to W̃ ≈ 2 meV, because most of the states in the band lie
below 2 meV. In addition, since the states with energies outside
−2 meV<E < 2 meV are small k , their contribution to polar-
ization function (Eqs. 12 and 13), evaluated at small q , is small.
We also note that, while the bandgap as predicted by the contin-
uum model is ∆≈ 11.75 meV, the actual gap size is still a subject
of debate (34).

The definition of the polarization function for this TBG
Hamiltonian is essentially identical to that of the tight-binding
toy model (Eq. 8). Now, however, we must account explicitly for
the valley and spin degrees of freedom, for a larger number of
electron bands, and for different coherence factors. Accordingly,
we promote the band indices s, s ′ in Eq. 8 to composite labels
n,m , which label all electron bands, spins σ, and valleys ξ; this
makes the additional factor of 4 in front of Eq. 8 redundant. The
toy model coherence factors are replaced by the TBG coherence
band factors Fnm

k+q,k, which are given by

Fnm
k+q,k =

∣∣∣∣∫
Ω

d2rΨ†n,k+q(r)e iq·rΨm,k(r)
∣∣∣∣2 , [15]

where Ψn,k(r) are the Bloch wavefunctions for momentum k and
band/valley/spin composite label n , which diagonalize the con-
tinuum Hamiltonian (SI Appendix, section 3). The integral in Eq.
15 is carried over the moiré unit cell Ω.

After the polarization function is evaluated, we can deter-
mine the dielectric function and identify TBG’s collective modes
from poles of 1/ε(ω, q) as above. An example of a TBG’s dielec-
tric function at approximately half-filling of the electron band,
EF = 0.289 meV, is shown in Fig. 3; fixed q line cuts and zeros
of ε(ω, q) are illustrated in SI Appendix, section 4. In discussing
the figure, it is helpful to contrast it with the calculation for the
hexagonal-lattice toy model shown in Fig. 1A. We again see a
well-defined intrinsically undamped plasmon mode ωp (red in
Fig. 1A) positioned above the p-h continuum; the mode resides
inside the band gap 2W <ωp <W + ∆, which peaks at ~ωp≈
8.5 meV before decreasing and becoming almost flat ~ωp≈ 6.5
meV at large momenta. In agreement with the analytic con-
siderations above, we see the interband continuum extending

Fig. 3. Electron loss function Im (−1/ε(ω, q)) for TBG band structure. The
Fermi energy value EF = 0.289 meV corresponds to electron band half fill-
ing, and the average background dielectric constant is κ= 3.03 (typical of
an air/TBG/hBN heterostructure). Log scale is used to clarify the relation
between different features. Arrows mark the approximate interband p-h
continuum edges obtained for the effective bandwidth W̃ ≈ 2 meV (see
text). Plasmon dispersion (red line) at small q is fitted with ωp(q) =

√
βqq

(Eq. 1) (dashed line), demonstrating a significant deviation from the typical
2D plasmon dispersion at large q. In the calculation, we used both flat bands
and the next conduction/valence nonflat bands and verified that higher
bands do not alter the quantitative and qualitative behavior.
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from 2EF to 2W , but since EF = 0.289 meV is extremely small,
it makes the conventional (Landau-damped) part of plasmon
dispersion ω< 2EF invisible on the figure.

There are several unique aspects of the TBG plasmon dis-
persion compared with the behavior of generic narrow-band
plasmons discussed above. To analyze the dispersion at ωp >
2W , we proceed just as in the toy model case, rewriting the TBG
polarization function in a slightly different form of Eq. 10, where
the indices n,m and the band coherence factor are modified as
described above.

To proceed further analytically, we need to analyze Eq. 10
in the long-wavelength limit. However, unlike the 2-band toy
model, where the only characteristic energy scale was the band-
width W, the TBG band structure features an additional energy
scale, namely, the gap between the flat bands and the rest of the
energy spectrum. This impacts the small-q series expansion of
the polarization function, as now the energy difference En −Em

between the occupied and unoccupied states can be larger than
ω. To account for such contributions in the series expansion, we
split the summation over TBG bands into 2 parts, depending on
whether ω or the energy difference En −Em is the largest energy
scale in the denominator of Eq. 10. This yields an approximate
expression for the dielectric function

ε(ω, q)≈ 1 +A(q)− B(q)

ω2
, [16]

where we defined 2 auxiliary functions:

A(q) =
8πe2

κq

∑′

k,n,m

fm,k
Fnm

k+q,k

En,k+q−Em,k
[17]

and

B(q) =
8πe2

κq

∑′′

k,n,m

fm,kF
nm
k+q,k(En,k+q−Em,k). [18]

Here, the band summations
∑′ and

∑′′ run over bands such that
ω2 > (En,k+q−Em,k)

2 and ω2 < (En,k+q−Em,k)
2, respectively:

for example, at large momenta, as seen in Fig. 3, the plasmon
mode lies in the gap between the flat and nonflat bands, and
hence, the B(q) summation extends only over the flat bands,
whereas the summation in A(q) includes all of the remaining
combinations of band indices. This allows us to write a closed
form expression for the plasmon dispersion as

ω2
p≈

B(q)

1 +A(q)
, [19]

which must hold for both small and large q . We consider these 2
limits separately.

At small q , the matrix element of the Bloch wavefunctions, just
as in the toy model case, favors the overlap between states from
the same band. At the same time, there are fewer states in the
A(q) satisfying the condition ω2 > (En,k+q−En,k)

2, and hence,
A(q) vanishes for small q. This amounts to the plasmon disper-
sion ωp from Eq. 19 reducing to ω2

p≈B(q), and by comparison
with Eq. 12, we similarly expect a conventional 2D plasmon dis-
persion ωp =

√
βqq with βq given by the series from Eq. 14. As

we see in Fig. 3, the ωp =
√
βqq dispersion is a valid description

only at very small q compared with Fig. 1A, which can be traced
back to higher bands softening the plasmon dispersion through
the A(q) term in Eq. 19.

To determine how high the plasmon mode rises above the
p-h continuum, we consider large q values comparable with
the reciprocal lattice vector. The arguments similar to those in
the toy model show that, since α� 1, we have A(q)� 1. The
dependence on the e2/κq ratio, therefore, cancels between the
A(q) and B(q) functions, resulting in the value of the plasmon
dispersion ~ωp≈

√
B(q)/A(q)∼

√
W∆≈ 6.6 meV being dic-

tated only by the continuum model’s band structure parameters.
This lack of explicit dependence onα suggests that, after the dop-
ing is such that α� 1, the large-q value of ~ωp≈

√
W∆ becomes

insensitive to doping (and hence, Fermi velocity). This behavior
is different from that in the toy model, where ωp∼

√
αW at large

q . The relatively more weak dependence on α in the TBG case
is due to interband polarization involving higher bands, which
significantly alters the effective dielectric constant. The weak q
dependence at large q is in agreement with the properties of
interband plasmons described in ref. 19.

We also note that, although plasmons above the p-h con-
tinuum are kinematically protected from p-h excitation, which
makes them undamped at the RPA level, there exist relax-
ation pathways through higher-order pair production in which
several electron–hole pairs are emitted with total energy exceed-
ing W̃ , as well as phonon-assisted processes. For conventional
plasmons these processes were analyzed in ref. 35. The role of
these effects for plasmon lifetimes in TBG will be a subject of
future work.

Before closing, we note that suppressing damping has always
been central to the quest for tightly confined low-loss surface
plasmon excitations. An early approach utilized surface electro-
magnetic modes traveling at the edge of an air/metal boundary
(36), in which dissipation is low because most of the mode
field resides outside the metal; however, the field confinement
scale, set by optical wavelength, was fairly large. Next came sur-
face plasmons propagating in high-mobility 2D electron gases
in semiconductor quantum wells and monolayer graphene (14),
which can provide deep-subwavelength confinement (3). How-
ever, plasmons in these systems are prone to a variety of dissi-
pation mechanisms, with Landau damping usually regarded as
the one that sets the fundamental limit on possible plasmon
wavelengths and corresponding lifetimes. The possibility to
overcome this fundamental limitation in narrow-band systems,
such as moire graphene, creates a unique opportunity for
graphene plasmonics. Damping-free plasmons can enable inter-
ference phenomena, dissipationless photon–matter coupling,
and other interesting behaviors. It is also widely expected that
low-dissipation plasmons can lead to unique applications for
photon-based quantum information processing (15). Further-
more, reduced damping has more immediate consequences,
as it translates into enhanced optical coherence that can be
directly probed by scanning near-field microscopy, as discussed
above, providing a clear signature of the undamped collec-
tive modes.
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