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In Dirac materials linear band dispersion blocks momentum-conserving interband transitions, creating a
bottleneck for electron-hole pair production and carrier multiplication in the photoexcitation cascade. Here
we show that the decays are unblocked and the bottleneck is relieved by subtle many-body effects involving
multiple off-shell e-h pairs. The decays result from a collective behavior due to simultaneous emission of
many soft pairs. We discuss characteristic signatures of the off-shell pathways, in particular the sharp
angular distribution of secondary carriers, resembling relativistic jets in high-energy physics. The jets can
be directly probed using solid-state equivalent of particle detectors. Collinear scattering enhances carrier
multiplication, allowing for emission of as many as ∼10 secondary carriers per single absorbed photon.
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The general question of how an excited electron parti-
tions its energy among lower-energy excitations is central
to our understanding of carrier dynamics in solids. One key
pathway is the emission of particle-hole pairs, a process
that leads to carrier multiplication in a photoexcitation
cascade. Physics becomes particularly interesting in Dirac
materials with linear carrier dispersion [1], where strong
interactions enhance the carrier-carrier scattering whereas
momentum conservation greatly restricts the phase space
available for such processes and (naively) may entirely
block decays [see Fig. 1(a)] [2–4].
In models of photoresponse it is usually taken for granted

that energy is conserved at all times and throughout all
stages of the cascade, with transitions taking place “on
shell” [5–10]. Here we introduce the off-shell processes
involving virtual states that disobey the energy-momentum
relation. We argue that these processes dominate photo-
response, producing large numbers of secondary electron-
hole (e-h) pairs. These processes are conceptually similar
to the off-shell processes in high-energy physics respon-
sible for the formation of relativistic jets.
The dilemma faced by a photoexcited electron in a

Dirac material can be summarized through the quantum-
mechanical uncertainty relation. The latter permits energy
nonconservation for relatively short time intervals not
exceeding the inverse decay time,

Δε≲ ℏ
τ
: ð1Þ

Suppose the dependence τ vs Δε is such that increasing the
“offshellness” Δε opens up a large phase space for decays.
In this case, the off-shell processes with large Δε will win
over the processes with a smaller Δε.
As we will see, the offshell dynamics has striking

consequences for the photoexcitation cascade and, ulti-
mately, the photoresponse. First, it allows a primary

photoexcited e-h pair to generate multiple secondary pairs,
produced through the processes of the type pictured in
Fig. 1(b). These pairs are typically considerably softer than
the primary pair, forming a broadband energy distribution

(a)

(c) (e)

(d)

(b)

FIG. 1. (a),(b) Types of carrier scattering in a Dirac band. The
on-shell processes (a) are subject to energy and momentum
conservation, and, therefore, cannot trigger transitions between
physical states in different linearly dispersing bands [8,11]. This
bottleneck is relieved by the off-shell processes (b) mediated by
virtual states residing off the Dirac cone. This triggers collinear
scattering and emission of multiple soft e-h pairs with a tightly
focused jetlike angular distribution. The jets can be probed as
illustrated in (c),(d). A photon (red dot) creates an e-h jet that is
detected by a group of adjacent contacts (activated contacts are
shown in magenta). A weak B field blocks soft pairs from
reaching contacts (d), allowing for the energy distribution to be
directly probed. (e) Angular distribution of soft pairs in the jets.
The e-e interaction screened by the substrate and gate is
described in [12].
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analyzed below. Second, due to the collinear character of
relevant electron-electron (e-e) collision processes, the
secondary pairs are preferentially emitted along the primary
pair velocity direction, forming a jetlike angular distribu-
tion [see Figs. 1(c), 1(e)]. The latter can be studied
experimentally using a solid-state analog of a particle
detector realized as a circular array of photocurrent detec-
tors [13–15], see Fig. 1(c).
Energy-resolved studies of soft pairs can be performed

using an external magnetic field that deflects the orbits of
soft carriers but has little effect on the more energetic
carriers [see Fig. 1(d)]. A field of strength B prevents
carriers with energies below the threshold ε < eBvR=2
from reaching the detectors at a distance R, providing a
direct probe of the energy distribution of soft pairs.
Our system is described by the Hamiltonian for N

species of massless Dirac particles (N ¼ 4 for graphene):

H ¼
X

i¼1.::N

X
k

ψ†
k;iðℏvσ · kÞψk;i þHe-e: ð2Þ

Here the optical field is included through minimal coupling
k → k − ðe=ℏcÞA and He-e describes e-e interactions [12].
We focus on the processes in a pristine material (undoped
and disorder-free), assuming high mobility, long mean free
paths and, for simplicity, ignoring the effects of electron-
phonon scattering. While in real materials these effects may
be significant, reducing the net response, they do not alter
the outcome of competition between the on-shell and off-
shell e-e processes.
There are several ways to develop perturbation theory for

e-e scattering: the weak-coupling approach uses small fine
structure constant α ¼ ðe2=κℏvÞ ≪ 1, the large-N approach
uses as a small dimensionless coupling 1=N ≪ 1 with an
RPA-screened interaction [16–19]. The latter approach
(which we use below) is, in principle, capable of dealing
with systems at strong coupling α > 1 as long as the number
of species N is large enough. The resulting diagrammatics
resembles that ofQED,modulo replacing photon propagator
by the dynamically screened Coulomb interaction [16].
A salient feature of Feynman diagrams describing the

processes of secondary pair creation (see Fig. 2) is the
double-log divergences similar to those familiar in QED and

QCD [20–22]. Below we analyze excitation of e-h pairs
described by log2-divergent diagrams, which reflect pro-
duction of infinitely many soft e-h pairs.We show that in the
large-N framework the rate for producing p pairs behaves
as N−p log2p. Multiple log2 divergences can be tackled by
resumming the contributionswith the highest powers of log2

[22], or by more refined approaches [20,21]. This approach
allows us to obtain a detailed picture of the cascade,
including the angular distribution and energy spectrum
of secondary pairs. We stress that the behavior of log
divergences in graphene field theory is close to that in
(3þ 1)-dimensional QED [16], whereas the behavior in
(2þ 1)-dimensionalQED is quite different [23,24] but is not
directly relevant here.
We note that in a realistic setting the linear dispersion

of Dirac bands, which is crucial for our analysis, is an
asymptotic behavior valid at low enough energies. This
makes the properties of soft pairs universal and largely
insensitive to the details of band dispersion. For example,
the trigonal warping of Dirac cones is significant at high
energies but vanishes near the Dirac point [1]. Another,
potentially more critical, deformation of the Dirac cones
arises due to interaction-induced velocity renormalization.
The latter leads to dispersion “steepening” close to the
Dirac point. This has two effects: one is further suppression
of the on-shell relaxation rate, the other is a decrease in the
phase space available for particles with small offshellness.
However, since these effects occur at a first-log order, they
are subleading to the log2 effects analyzed below.
Photon absorption is represented diagrammatically as a

sum of contributions with one incoming photon leg and
many outgoing particle legs, with the screened e-e inter-
action replacing photon propagator in the corresponding
QED diagrams. The lowest order tree-level diagrams are
shown in Fig. 2. The diagram with two particle legs
describes creation of a primary e-h pair, an on-shell process
with no virtual states. Such virtual states, present in the
diagrams of higher order, are described by internal fermion
lines without open ends. These states reside off shell, as
indicated in Eq. (1). The higher-order diagrams describe
creation of multiple secondary pairs, with summation over
virtual states generating double-log divergences as discussed
below. The wavy lines in Fig. 2 represent the dynamically
screened interaction expressed through an exact polarization
function as

~Vq;ω ¼ Vq

1 − VqΠðq;ωÞ
; Vq ¼

2πe2

κjqj ; ð3Þ

with q and ω denoting the transferred momentum and
frequency, and κ is the dielectric constant. The values of
κ for different substrates are discussed in [12] along with the
model used to generate Fig. 1 and a modification of Vq
describing screening by the gate. Divergence in the polari-
zation function Πðq;ωÞ softens the small-q divergence of
Vq. We use a simple expression [11,25],

FIG. 2. Diagrammatic representation of single-photon absorp-
tion. Dashed lines describe interaction with a photon source,
straight lines with arrows denote electron and hole propagators,
wavy lines denote the dynamically screened Coulomb interac-
tion, Eq. (3).
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Πðq;ωÞ ¼ −
iNq2

16ℏ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − v2q2
p ; ð4Þ

describing the interband e-h pair excitations, ω > vq.
Crucially, even a single secondary pair creation is a

strongly off-shell process. Indeed, linearity of band
dispersion εðkÞ renders the e-e scattering processes obey-
ing energy and momentum conservation to be of a strictly
collinear character [2]. However, collinear scattering is
subject to a phase space constraint that makes the transition
rate vanish [see Fig. 1(a)] [11]. In contrast, no phase space
constraints arise for the off-shell processes [see Fig. 1(b)],
and, in fact, the large phase space generates the double log-
divergent contributions to the transition rate. This behavior
extends to all higher-order muliple pair creation processes.
Turning to the quantitative analysis, we consider the

second and third diagrams pictured in Fig. 2, which describe
an initial photoexcited e-h pair with energy and momentum
positioned off-shell that excites a secondary e-h pair via an
interband transition.At the end, all participating particles are
found in the on-shell states at the Dirac cone. The transition
rate for this process, within the standard golden rule
approach, takes the form

W0→1 ¼
2π

ℏ
N2

X
k0
1
þk0

2
¼k1þk2

fk0
1
ð1 − fk1Þfk02ð1 − fk2ÞjAj2δε:

ð5Þ
Here fk is the Fermi function, hν is the absorbed photon
energy (we set photon momentum equal zero), and
δε ¼ δðεk1 þ εk2 − εk0

1
− εk0

2
− hνÞ. The transition matrix

element A is given by a sum of two second-order contri-
butions, which differ by the order of the operators describing
photon absorption and secondary pair creation

A ¼ h1; 2jMq;ωGðεp; pÞσAþ σAGðε~p; ~pÞMq;ωj10; 20i;
jMq;ωj2 ¼ j ~Vq;ωj2 ~Fk2;k02

Fk1;k01
; ð6Þ

where Gðε; kÞ is the noninteracting fermion propagator,
and we introduced a shorthand notation j1; 2i ¼ jk1; k2i,
j10; 20i ¼ jk01; k02i, using unprimed and primed symbols for
the states of electrons and holes (see Fig. 2). For brevity, we
suppress theDirac spinor structure and incorporate the factor
ve=c in the definition of the optical field A (to be restored
below). The quantities Fk;k0 and ~Fk;k0 represent the coher-
ence factors hk0s0jksi with s ¼ s0 and s ≠ s0, describing the
intraband and interband transitions, respectively [26]. The
two terms in Eq. (6) describe the processes in which photon
absorption is followed by a pair creation, and vice versa. The
virtual states in the two contributions, Eq. (6), are charac-
terized by the off-shell energy values εp ¼ hνþ εk0

1
, p ¼ k01

and ε~p ¼ εk1 − hν, ~p ¼ k1 (we use notations from Fig. 2).
As will become clear shortly, the typical energy of

secondary pairs ω is much smaller than the photon energy
hν. Anticipating this result it is convenient to factorize the
transition rate, expressing it through the spectral function of

pair excitations. Following the standard route [27], we first
split the energy delta function in Eq. (5),

δε ¼
Z

∞

−∞
dωδðεk1 − εk0

1
− hνþ ωÞδðεk2 − εk0

2
− ωÞ:

Next, we use the identity fk0 ð1−fkÞ¼ðfk0−fkÞ×
ðNεk−εk0 þ1Þ, whereNω ¼ 1=ðeβω − 1Þ is the Bose function
taken at the electron temperature, and rewrite the sum of
ðfk0

2
− fk2Þδðεk2 − εk0

2
− ωÞ with the help of the relation

Im Πðq;ωÞ ¼ −Nπ
X
k2

~Fk2;k02
ðfk0

2
− fk2Þδðεk2 − εk0

2
− ωÞ;

q ¼ k2 − k02, that follows from the definition of the polari-
zation function [25,28]. This yields a more compact
expression for the transition rate:

W0→1 ¼−
2N
ℏ

X
k1;k01;q;ω

fk0
1
ð1−fk1ÞðNωþ 1ÞjA0j2Im Πðq;ωÞ

×Fk1;k01
j ~Vq;ωj2δk0

1
;k1þqδðεk1 − εk0

1
−hνþωÞ; ð7Þ

where ω and q are the energy and momentum of the soft
pair. Here we introduced the quantity

A0 ¼ h1jGðεp; pÞσAþ σAGðε~p; ~pÞj10i; ð8Þ
which represents the transition matrix element for the
primary (“hard”) pair, factoring out the contribution of
the soft pair as described above [we again use a shorthand
notation for the electron and hole states jk1i and jk01i in
Fig. 1(c), for brevity suppressing the spin structure].
At this stage it is convenient to approximate the Green’s

functions of fermions in the virtual states [Gðεp; pÞ and
Gðε~p; ~pÞ in Eq. (8)] by expanding in the small frequency ω
and momentum q transferred to the soft pair. This is done
by writing εp ¼ εk1 þ ω, p ¼ k1 þ q and ε~p ¼ εk0

1
− ω,

~p ¼ k01 − q and expanding in ω and q. The approximation
that uses the softness of the secondary pair as a small
parameter is known as the “eikonal approximation,” since
at small ω and q only the phase of the fermion wave
function varies but not the spinor part. Suppressing the
spinor part, we obtain simple expressions

Gðεp; pÞ ≈
−1

ωþ vq∥
; Gðε~p; ~pÞ ≈

1

ω − vq∥
; ð9Þ

where q∥ is the component of q parallel to k1. The two
terms in (9) originate from the corresponding electron and
hole contributions in (8). We note parenthetically that the
denominators in Eq. (9) do not vanish since the soft pairs
obey jωj > vjqj. The matrix element A0 is then reduced to

A0 ≈
2vq∥h1jσAj10i
ω2 − v2q2∥

: ð10Þ

After plugging it in Eq. (7), the quantity W0→1 becomes

W0→1¼−
8N
ℏ

X
k1;q

j ~Vq;ωj2ImΠðq;ωÞ
����vq∥h1jσAj1

0i
ω2−v2q2∥

����
2

; ð11Þ
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where ω ¼ hν − 2vjk1j − vq∥. To arrive at Eq. (11) we
approximated the intraband coherence factor by unity, since
Fk1;k1þq ≈ 1 in the soft-pair limit q ≪ k1. The interband
coherence factor F has been included in the soft pair
spectral function through the factorization procedure out-
lined above. The factor Nω þ 1, which we suppressed for
brevity, limits summation in Eq. (11) to ω > 0 for T ¼ 0.
At T > 0, somewhat counterintuitively, this factor does
not impact or regulate the IR divergence (see [12,29] for
detailed discussion).
The transition rateW0→1 features a double-log divergence

originating from the collinear e-e scattering. The divergence
arises due singular behavior of the quantities in Eq. (11)
upon integration upon the soft-pair momentum q. In that,
one log divergence arises from the integral over the length
jqj, the other log comes from integration over the angle
between q and k1. For a quantitative estimatewe evaluate the
double-log contribution at leading order in 1=N, which can
be done by approximating ~Vq;ω ≈ −1=Πðq;ωÞ. After inte-
grating over q and k1, and factoring out Won-shell, the
transition rate for the on-shell diagram in Fig. 1(e), the rate
W0→1 becomes

W0→1

Won-shell
≈

8

Nπ2

�
ln
ε>
ε<

�
2

; Won-shell¼
e2A2hν

c2
N
8
; ð12Þ

where ≈ indicates that contributions subleading to double
log were suppressed [12,29]. Here the UV cutoff ε> is of
order hν=2 (energy of an excited electron immediately after
photon absorption). The IR cutoff ε< is set by theDirac point
width, controlled by carrier collisions or disorder. The log2

divergence in Eq. (12) is a direct consequence of linear
dispersion, arising from soft secondary pairs that are near-
collinear with respect to the primary pair direction and form
two counterpropagating jets.
The double-log divergence in the transition rate is

reminiscent of the double-log divergences familiar from
QCD or QED calculations. This can be seen, e.g., by
comparing to soft bremsstrahlung in QED [22], and noting
that the double logs arise in an identical manner in both
cases, with one log originating from an integral over
momentum magnitude and the other from angular integra-
tion. As in QED, the IR double-log divergence means that
the secondary pairs are much softer than the primary pair,
vindicating our eikonal approximation.
The jets formed by soft pairs have random spatial

orientation, aligned with the e and h velocities of parent
hard pairs (see Figs. 1(c)–1(e)). The mean number of pairs
in a jet is estimated below. Each jet features a sharp angular
distribution that peaks at θ ¼ 0, π relative to the parent pair
direction. The corresponding counting distribution, nor-
malized to the total number of secondary pairs (see [12]), is
shown in Fig. 1(e). Energy distribution of soft pairs has a
power-law tail at low energies [29].
We parenthetically note that dynamical screening, Eq. (3),

is crucial for our analysis. Had an unscreened Coulomb

interactionVq been used, the transition ratewould have been
IR divergent as a power law rather than as log2. This is in line
with the argument that the perturbation series for Dirac
semimetals should be carried out in powers of a screened
interaction rather than the bare one [19]. This behavior is in
contrast to QED, where double-log divergences arise from
perturbation theory in bare coupling.
Motivated by the resemblance to QED, the higher-order

contributions of the form N−n log2n can be analyzed by a
Sudakov-like resummation scheme of leading double-log
divergent diagrams. These diagrams describe primary pair
creation followed by emission of multiple secondary pairs in
analogy to hard scattering processes in QED accompanied
by emission of soft photons. There are soft e-h pairs of two
distinct types emitted, respectively, by the hard electron and
the hard hole. These soft pairs form two counterpropagating
jets [see Figs. 1(c)–1(e)]. For each of the two jets, in the limit
of the emitted pairs being independent of one another and
assuming no mutual phase-space blocking, the probability
distribution is Poissonian [22],

pn ¼
~λn

n!
e−~λ; ~λ ¼ 4

Nπ2

�
ln
ε>
ε<

�
2

: ð13Þ

The value ~λ is a half of the total single-pair emission rate
given in Eq. (12). Combining two identical Poisson dis-
tributions gives a Poisson counting distribution with a double
rate accounting for both jets [12]:

W0→n

Won-shell
¼ λne−λ

n!
; λ ¼ 2~λ ¼ 8

Nπ2

�
ln
ε>
ε<

�
2

: ð14Þ

The mean number of secondary pairs hNseci ¼ λ goes as
log2 and hence can be much greater than unity. As an
illustration, a hν ¼ 1 eV photon creates between 4 and 10
pairs for ratios ε>=ε< ¼ 102 − 103, which corresponds to
realistic Dirac point widths.
Interestingly, the process in which no soft pairs are

emitted has a vanishing rate. Indeed, W0→0 vanishes in the
limit ε< → 0. To interpret this result we note that the sum
of all partial rates equals the bare on-shell rate:P∞

n¼0W0→n ¼ Won-shell. This means that massive emission
of soft pairs does not alter the net photon absorption
probability. Instead, the absorbed photon energy is redis-
tributed among a large number of secondary e-h pairs,
providing mechanism for carrier multiplication.
In summary, the off-shell pathways unblock kinematic

constraints for collinear scattering in a Dirac band, allowing
a large number of secondary pairs to be produced as the
photogenerated carriers cascade down in energy. The
angular distribution of secondary pairs is sharply peaked
along the primary pair velocity, representing a condensed-
matter analog of relativistic jets familiar from high-energy
physics. As discussed above, the jets can be directly
probed using a solid-state equivalent of particle detectors
[Figs. 1(c), 1(d)]. Formation of jets is corroborated by
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recent experimental studies of Auger scattering processes
[30,31], which indicate that at weak electron-phonon
coupling the collinear scattering processes dominate the
relaxation pathways of photoexcited carriers.
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