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Electron viscosity, current vortices and negative
nonlocal resistance in graphene
Leonid Levitov1* and Gregory Falkovich2,3*
Quantum-critical strongly correlated electron systems are
predicted to feature universal collision-dominated transport
resembling that of viscous fluids1–4. However, investigation
of these phenomena has been hampered by the lack of
known macroscopic signatures of electron viscosity5–9. Here
we identify vorticity as such a signature and link it with a
readilyverifiablestrikingmacroscopicd.c. transportbehaviour.
Produced by the viscous flow, vorticity can drive electric
current against an applied field, resulting in a negative
nonlocal voltage. We argue that the latter may play the
same role for the viscous regime as zero electrical resistance
does for superconductivity. Besides o�ering a diagnostic
that distinguishes viscous transport from ohmic currents, the
sign-changing electrical response a�ords a robust tool for
directlymeasuring the viscosity-to-resistivity ratio. A strongly
interacting electron–hole plasma in high-mobility graphene10–12
a�ords a unique link between quantum-critical electron
transport and the wealth of fluid mechanics phenomena.

Symmetries and respective conservation laws play a central
role in developing our understanding of strongly interacting states
of matter. This is the case, in particular, for many systems of
current interest, ranging from quantum-critical states in solids
and ultracold atomic gases to quark–gluon plasmas1–4, which
share common long-wavelength behaviour originating from the
fundamental symmetries of spacetime. The ensuing energy and
momentum conservation laws take the centre stage in these
developments, defining hydrodynamics that reveals the universal
collective behaviour. Powerful approaches based on conformal field
theory and anti-de Sitter/conformal field theory (AdS/CFT) duality
grant the well-established notions of fluid mechanics, such as
viscosity and vorticity, an entirely new dimension13,14.

Despite their prominence and new paradigmatic role, viscous
flows in strongly correlated systems have so far lacked directly
verifiable macroscopic transport signatures. Surprisingly, this has
been the case even for condensed matter systems where a wide
variety of experimental techniques is available to probe collective
behaviours. Identifying a signature that would do to viscous
flows what zero electrical resistance did to superconductivity has
remained an outstanding problem. The goal of this article is
to point out that vorticity generated in viscous flows leads to
a unique macroscopic transport behaviour that can serve as an
unambiguous diagnostic of the viscous regime. Namely, we predict
that vorticity of the shear flows generated by viscosity can result
in a backflow of electrical current that can run against the applied
field (see Fig. 1). The resulting negative nonlocal voltage therefore
provides a clear signature of the collective viscous behaviour.
Associated with it are characteristic sign-changing spatial patterns
of electric potential (see Figs 1 and 2) which can be used to directly

image vorticity and shear flows with modern scanning capacitance
microscopy techniques15.

The negative electrical response, which is illustrated in Fig. 1,
originates from the basic properties of shear flows. We recall that
the collective behaviour of viscous systems results from momenta
rapidly exchanged in carrier collisions while maintaining the net
momentum conserved. Because momentum remains a conserved
quantity collectively, it gives rise to a hydrodynamic momentum
transport mode. Namely, momentum flows in space, diffusing
transversely to the source–drain current flow and away from the
nominal current path. A shear flow established as a result of this
process generates vorticity and (for an incompressible fluid) a
backflow in the direction reverse to the applied field. Such a complex
andmanifestly non-potential flow pattern has a direct impact on the
electrical response, producing a reverse electric field acting opposite
to the field driving the source–drain current (see Fig. 2). This results
in a negative nonlocal resistance which persists even in the presence
of fairly significant ohmic currents (see Fig. 2).

Attempts to connect electron theory with fluid mechanics have a
long and interesting history, partially summarized in refs 8,16,17.
Early work on the viscosity of Fermi liquids made a connection
with ultrasound damping18. Subsequently, Gurzhi introduced an
electronic analogue of Poiseuille flow19. Related temperature-
dependent phenomena in nonlinear transport were observed by
deJong and Molenkamp16. Recent developments started with the
theory of a hydrodynamic, collision-dominated quantum-critical
regime advanced byDamle and Sachdev1. Andreev et al. argued that
hydrodynamic contributions can dominate resistivity in systems
with a large disorder correlation length7. Forcella et al. predicted
that electron viscosity can impact electromagnetic field penetration
in a striking way8. Davison et al. linked electron viscosity to linear
resistivity of the normal state of the copper oxides20.

As a parallel development, recently there has been a surge of
interest in the electron viscosity of graphene5,6,9,21,22. Quantum-
critical behaviour is predicted to be particularly prominent in
graphene10–12. Electron interactions in graphene are strengthened
near charge neutrality owing to the lack of screening at low carrier
densities12,23. As a result, carrier collisions are expected to dominate
transport in pristine graphene for a wide range of temperatures and
dopings24. Furthermore, estimates of electronic viscosity near charge
neutrality yield one of the lowest known viscosity-to-entropy ratios,
which approaches the universal AdS/CFT bound5.

Despite the general agreement that graphene holds the key to
electron viscosity, experimental progress has been hampered by
the lack of easily discernible signatures in macroscopic transport.
Several striking effects have been predicted, such as vortex shedding
in the pre-turbulent regime induced by a strong current6, as well
as nonstationary flow in a ‘viscometer’ comprised of an a.c.-driven
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Figure 1 | Current streamlines and potential map for viscous and ohmic
flows. White lines show current streamlines, colours show electrical
potential, arrows show the direction of current. a, Mechanism of a negative
electrical response: viscous shear flow generates vorticity and a backflow
on the side of the main current path, which leads to charge buildup of the
sign opposing the flow and results in a negative nonlocal voltage.
Streamlines and electrical potential are obtained from equation (5) and
equation (6). The resulting potential profile exhibits multiple sign changes
and±45◦ nodal lines, see equation (7). This provides directly measurable
signatures of shear flows and vorticity. b, In contrast, ohmic currents flow
down the potential gradient, producing a nonlocal voltage in the
flow direction.

Corbino disc9. These proposals, however, rely on fairly complex
a.c. phenomena originating from high-frequency dynamics in the
electron system. In each of these cases, as well as in those of
refs 8,20, a model-dependent analysis was required to delineate the
effects of viscosity from ‘extraneous’ contributions. In contrast, the
nonlocal d.c. response considered here is a direct manifestation
of the collective momentum transport mode which underpins
viscous flow, therefore providing an unambiguous, almost textbook,
diagnostic of the viscous regime.

A nonlocal electrical response mediated by chargeless modes
was found recently to be uniquely sensitive to quantities which
are not directly accessible in electrical transport measurements, in
particular spin currents and valley currents25–27. In a similarmanner,
the nonlocal response discussed here gives a diagnostic of viscous
transport, which is more direct and powerful than any approaches
based on local transport.

There are several aspects of the electron system in graphene that
are particularly well suited for studying electronic viscosity. First,
the momentum-nonconserving Umklapp processes are forbidden
in two-body collisions because of graphene’s crystal structure and
symmetry. This ensures the prominence of momentum conserva-
tion and associated collective transport. Second, although carrier
scattering is weak away from charge neutrality, it can be enhanced
by several orders of magnitude by tuning the carrier density to the
neutrality point. This allows one to cover the regimes of high and low
viscosity, respectively, in a single sample. Last, the two-dimensional
structure and atomic thickness makes the electronic states in
graphene fully exposed and amenable to sensitive electric probes.

To show that the timescales are favourable for the
hydrodynamical regime, we will use parameter values estimated
for pristine graphene samples which are almost defect free, such
as freestanding graphene28. Kinematic viscosity can be estimated
as the momentum diffusion coefficient ν ≈ (1/2)v2

Fγ
−1
ee , where

γee is the carrier–carrier scattering rate, and vF = 106 m s−1 for
graphene. According to Fermi-liquid theory, this rate behaves as
γee∼ (kBT )2/EF in the degenerate limit (that is, away from charge
neutrality), which leads to large ν values. Near charge neutrality,
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Figure 2 | Nonlocal response for di�erent resistivity-to-viscosity ratios
ρ/η. Voltage V(x) is plotted at a distance x from current leads obtained
from equation (12) for the set-up shown in the inset. The voltage is positive
in the ohmic-dominated region at large |x| and negative in the
viscosity-dominated region closer to the leads (positive values at even
smaller |x| reflect the finite contact size a≈0.05w used in simulation).
Viscous flow dominates up to fairly large resistivity values, resulting in the
negative response persisting up to values as large as ρ(enw)2/η≈ 120.
Positive and negative voltage regions are marked by blue and pink,
respectively. Nodal points, marked by arrows, are sensitive to the ρ/η value,
which provides a way to directly measure viscosity (see text).

however, the rate γee grows and ν approaches the AdS/CFT limit—
namely s~/4πkB, where s is entropy density. Refs 12,23 estimate
this rate as γee ≈Aα2kBT/~, where α is the interaction strength.
For T = 100K, assuming EF= 0 and approximating the prefactor
as A≈ 1 (refs 12,23), this predicts characteristic times as short as
γ −1ee ≈80fs. Disorder scattering can be estimated from themeasured
mean free path values, which reach a few microns at large doping29.
Using the momentum relaxation rate square-root dependence
on doping, γp ∝ n−1/2, and estimating it near charge neutrality,
n. 1010 cm−2, gives times γ −1p ∼ 0.5 ps which are longer than the
values γ −1ee estimated above. The inequality γp� γee justifies our
hydrodynamical description of transport.

Momentum transport in the hydrodynamic regime is described
by the continuity equation for momentum density,

∂tpi+∂jTij=−γppi, Tij=Pδij+µvivj+T (v)
ij (1)

where Tij is the momentum flux tensor, P and µ are pressure and
mass density, and v is the carrier drift velocity. The quantity γp,
introduced above, describes electron-lattice momentum relaxation
due to disorder or phonons, which we will assume to be small
compared to the carrier scattering rate. We can relate pressure to
the electrochemical potential Φ through P=e

∫ n
n0
Φ(n′)dn′. Here

we work at degeneracy, EF� kBT , ignoring the entropic/thermal
contributions, and approximating P ≈ e(n − n0)Φ , with n the
particle number density. While carrier scattering is suppressed at
degeneracy as compared to its value at EF = 0, here we assume
that the carrier-carrier scattering remains faster than the disorder
scattering, as required for the validity of hydrodynamics. Viscosity
contributes to the momentum flux tensor through

T (v)
ij =η(∂ivj+∂jvi)+(ζ −η)∂kvkδij (2)

where η and ζ are the first and second viscosity coefficients.
For drift velocities smaller than plasmonic velocities, transport in
charged systems is described by an incompressible flow with a
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divergenceless velocity field, ∂ivi=0. In this work, we consider the
limit of low Reynolds number, µvivj�η(∂ivj+ ∂jvi), such that the
role of viscosity is most prominent. At linear order in v, we obtain
an electronic Navier–Stokes equation

∂tpi−η∇2vi+γppi=−∂iP (3)

This equation describes momentum transport: imparted by the
external field f=−∇P , momentum flows to the system boundary
where dissipation takes place. It is therefore important to endow
equation (3) with suitable boundary conditions. In fluid mechanics
this is described by the no-slip boundary condition v=0. We use a
slightly more general boundary condition

v⊥=0, v‖=−α∂‖P (4)

where the subscripts ⊥ and ‖ indicate the velocity and derivative
components normal and tangential to the boundary. The second
relation in equation (4) generalizes the no-slip condition to account
for non-hydrodynamical effects in the boundary layer on the scales
& l=v/γee. Themodel (4), equipped with the parameter α, provides
a convenient way to assess the robustness of our predictions.

It is instructive to consider a current flowing down a long strip
of a finite width. A steady viscous flow features a non-uniform
profile in the strip cross-section governed by the momentum flow
to the boundary. Equation (3), applied to a strip 0< y<w, yields
(−η∂2y +γpmn)v(y)= enE, where v(y) and E are the drift velocity
and electric field directed along the strip (andm is an effective mass
defined through the relation p=mnv). Setting α and γp to zero
for simplicity, we find a parabolic profile v(y)=Ay(w− y), where
A = neE/2η and η = mnν. The nonzero shear ∂yv=A(w−2y)
describes momentum flow to the boundary. The net current
I=
∫ w
0 nev(y ′)dy ′=(n2e2/12η)w3E , scaling as a cube of the strip

width, is the electronic analogue of the Poiseuille law. Being
distinct from the linear scaling I ∝wE in the ohmic regime, the
cubic scaling can in principle be used to identify the viscous
regime. It is interesting to put the current–field relation in a
‘Drude’ form using kinematic viscosity: I = (ne2τw/m)wE, with
τw=w2/12ν being an effective scattering time. Evaluating the latter
as τw ≈ (1/6)(w/vF)2γee, we find values that, for realistic system
parameters, can greatly exceed the naive estimate γ −1p =w/vF based
on the ballistic transport picture. This remarkable observation was
first made by Gurzhi, see ref. 19.

Next, we proceed to analyse the nonlocal response in a strip
with transverse current injected and drained through a pair of
contacts, as pictured in Fig. 1. Unlike the above case of longitudinal
current, here the potential profile is not set externally but must be
obtained fromequation (3). The analysis is facilitated by introducing
a stream function via v=z×∇ψ , which solves the incompressibility
condition. At first we will completely ignore the ohmic effects,
setting α and γp to zero as above, which leads to a biharmonic
equation

(
∂2x + ∂

2
y

)2
ψ = 0 with the boundary conditions vx = 0,

nevy= Iδ(x) for y=0,w. Using a Fourier transform in x , we write
ψ(x ,y)=(2π)−1

∫
dkeikxψk(y) and then determineψk(y) separately

for each k (see Supplementary Information). Inverting the Fourier
transform gives the stream function

ψ(x ,y) =
I
ne

∫ dkeikx

2πik

[
eky+ek(w−y)

ekw+1

+ak[y sinhk(w−y)+(w−y) sinhky]
]

(5)

where we defined ak = k tanh(kw/2)/(kw + sinh kw). Contours
(isolines) of ψ give the streamlines for the flow shown in Fig. 1.
Although most of them are open lines connecting source and

drain, some streamlines form loops. The latter define vortices
occurring on both sides of the current path. Numerically, we
find that vortex centres are positioned very close to x =±w (see
Supplementary Information).

We can now explore the electrical potential of the viscous flow.
The latter can be found directly from ψ(x ,y), giving

φ(x ,y)=
βI
2

∫
dkeikxak[sinhk(y−w)+ sinhky] (6)

where we definedβ=2η/(πn2e2) (see Supplementary Information).
As illustrated in Fig. 1, equation (6) predicts a peculiar
sign-changing spatial dependence, with two pairs of nodal
lines crossing at contacts. To understand this behaviour,
we evaluate φ(x , y) explicitly in the regions near contacts
(x , y) = (0, 0), (0, w). Near the first contact, approximating
tanh(kw/2)≈ sgnk, sinhky≈(1/2)e|k|ysgnk, and so on, we find

φ(x ,y)≈
βI
2

∫
dkeikx |k|e−|k|y=

βI(y2
−x2)

(y2+x2)2
(7)

(|x|, |y|�w). Equation (7) predicts an inverse-square dependence
versus distance from contacts and also the presence of two
nodal lines running at ±45◦ angles relative to the nominal
current path. Similar behaviour is found near the other contact,
φ(x ,y)≈−(β((w−y)2−x2)/((w−y)2+x2)2)I . We note that the
r−2 power law dependence is much stronger than the ln r
dependence expected in the ohmic regime. This, as well as multiple
sign changes, provides a clear signature of a viscous flow.

The nonlocal voltage measured at a finite distance from the
current leads (see schematic in Fig. 2 inset) can be evaluated as
V (x)=φ(x ,w)−φ(x , 0). From equation (7) we predict a voltage
that is falling off as x−2 and is of a negative sign:

V (x)≈−
2β
x2

I (8)

(|x| . w). Microscopically, negative voltage originates from a
viscous shear flow which creates vorticity and backflow on both
sides of the current path (see Fig. 1).

Numerically, we see that the negative response persists to arbi-
trarily large distances, see the ρ=0 curve in Fig. 2. The sign change
at very short x , evident in Fig. 2, arises owing to a finite contact size.
We model it by replacing the delta function in the boundary condi-
tion for the current source by a Lorentzian, nevy= Ia/π(x2

+a2) at
y=0,w. After making appropriate changes in the above derivation
(namely, plugging e−a|k| under the integral) we find

V (x)≈−
βI

(x− ia)2
+c.c.=−

2βI(x2
−a2)

(x2+a2)2
(9)

This expression exhibits a sign change at x = a (representing
‘the contact edge’) and is negative for all |x| > a, that is,
everywhere outside contacts (this is further discussed in
Supplementary Information).

It is interesting to probe to what extent the negative response
is sensitive to boundary conditions—in particular to the no-
slip assumption. Extending the above analysis to the boundary
conditions with nonzero α in equation (4), we find the nonlocal
response of the form

V (x)=βI
∫

dkeikx
k tanh(kw/2) sinhkw
kw+(1+ α̃k2) sinhkw

(10)

where α̃= 2ηα/ne. The expression under the integral represents
an even function of k with a zero at k = 0 and a symmetric
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Figure 3 | Heating patterns for viscous and ohmic flows. a, Viscous flow
results in a highly complex heating pattern with intense hot spots near
contacts and cold arc-shaped patches at vortices surrounded by warmer
regions. (Also note a cold spot at the centre where the flow is locally
uniform and thus W=0, see equation (13).) White arrows show current
direction. b, Ohmic flow shows an essentially featureless heat production
rate decaying monotonously away from contacts.

double-peak structure. The peaks roll off at |k|∼ α̃−1/2, which sets
an ultraviolet cutoff for the integral similar to that above for a finite-
size contact model. Our numerical analysis shows that this is indeed
the case, with a finite α translating into an effective contact size
a≈ α̃1/2. In other words, the modified boundary conditions can
alter the response in the proximity of the contact while rendering
it unaffected at larger distances.

So far we have ignored the bulk momentum relaxation, setting
γp=0 in equation (3). We now proceed to show that the signatures
of viscous flow identified above are robust in the presence of a
background ohmic resistivity ρ=mγp/ne2 so long as it is not too
strong. The dimensionless parameter which governs the respective
roles of resistivity versus viscosity is

ε=ρ(enw)2/η≈2γeeγp(w/vF)2 (11)

For the values γee and γp quoted above, and taking w= 1µm, one
obtains ε∼ 10. Incorporating finite resistivity in the calculation is
uneventful, yielding a response

V (x)= I
∫ dk
πk

ρeikx(eqw−1)(ekw−1)q
q+(eqw−ekw)+q−(eqwekw−1)

(12)

where q2=k2+εw−2, q±=q±k (see Supplementary Information).
For ε = 0 we recover the pure viscous result, which is negative,
whereas for ε→∞ equation (12) gives the well-known ohmic
result V (x) = (ρ/π) ln [coth(πx/2w)], which is positive. With
both η and ρ nonzero, the resistance given by equation (12)
is positive at large x but remains negative close to the contact.
The dimensionless threshold that determines the possibility
of negative electric response depends on the actual contact
size. For the values used in Fig. 2 the negative response
occurs even at fairly high resistivity values corresponding
to ε.100.

The robustness of the negative response can be understood by
noting that viscosity is the coefficient of the highest derivative
term in equation (3) and thus dominates at short distances
x.x∗=

√
η/ρ(en)2. The pervasive character of the negative

response, manifest in Fig. 2, will facilitate experimental detection
of viscous transport. The positions of the nodes, marked by arrows
in Fig. 2, vary with the ratio ρ/η, which provides a convenient way
to directly measure the electronic viscosity.

The hydrodynamic transport regime also features interesting
thermal effects. At leading order in the flow velocity those
are dominated by convective heat transfer, described by a
proportionality relation between entropy flux and flow velocity v
(to be discussed elsewhere). At higher order in v, besides the
conventional Joule heating, vorticity of a viscous flow manifests
itself in heat production

W=η
(
∂ivj+∂jvi

)2
=2η|(∂x+ i∂y)2ψ(x ,y)|2 (13)

The vorticity-induced heating pattern, shown in Fig. 3, features hot
spots near contacts and cold arc-shaped elongated patches
in vorticity regions. In contrast, for an ohmic flow the
pattern is essentially featureless. This makes viscous flows an
interesting system to explore with the nanoscale temperature
scanning techniques30.

We finally note that there are tantalizing parallels—both
conceptual and quantitative—between electronic viscous flows and
current microfluidics systems. Namely, a model essentially identical
to equation (3) describes the low-Reynolds (microfluidic) flow
between two plates separated by a distance h, where γpmn =
12η/h2 (it also describes viscous electron flow in a 3D slab, see
Supplementary Information). A new research area at the frontier of
nanoscience and fluid mechanics, microfluidics aims to manipulate
and control fluids at a nanoscale with the ultimate goal of developing
new lab-on-a-chip microtechnologies. Graphene, which can be
easily patterned into any shapes without compromising its excellent
qualities, can become a basis of electronic microfluidics, with
multiple applications in information processing and nanoscale
charge and energy transport that remain to be explored.

Note added in proof: After submitting our work, it came to our
attention that negative resistance has recently been observed in
graphene (see refs 31,32).
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