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Topological superconductivity in quasi-one-dimensional systems
is a novel phase of matter with possible implications for quan-
tum computation. Despite years of effort, a definitive signature
of this phase in experiments is still debated. A major cause of
this ambiguity is the side effects of applying a magnetic field:
induced in-gap states, vortices, and alignment issues. Here we
propose a planar semiconductor–superconductor heterostructure
as a platform for realizing topological superconductivity without
applying a magnetic field to the two-dimensional electron gas
hosting the topological state. Time-reversal symmetry is broken
only by phase biasing the proximitizing superconductors, which
can be achieved using extremely small fluxes or bias currents far
from the quasi-one-dimensional channel. Our platform is based
on interference between this phase biasing and the phase aris-
ing from strong spin–orbit coupling in closed electron trajectories.
The principle is demonstrated analytically using a simple model,
and then shown numerically for realistic devices. We show a
robust topological phase diagram, as well as explicit wavefunc-
tions of Majorana zero modes. We discuss experimental issues
regarding the practical implementation of our proposal, establish-
ing it as an accessible scheme with contemporary experimental
techniques.

topological phases of matter | Majorana zero modes |
topological superconductivity

The quest for discovering novel phases of matter has seen
rapid development in the past few decades, with the advent of

topological quantum matter (1–5). Phases that would be equiva-
lent under Landau’s order parameter paradigm were found to be
distinguished by topological properties. The earliest and perhaps
most salient phase characterized by its topology is the quantum
Hall effect (6), where the chiral edge modes signal the nontrivial
bulk topology (7, 8). It was later realized that a similar phe-
nomenon can take place with a zero net magnetic flux (9), which
opened the door to the field of Chern insulators.

Shortly after these important discoveries, the connection to
superconductivity (SC) was made, by the concept of topolog-
ical SC. This novel phase of matter supports Majorana zero
modes (MZMs), which are predicted to have non-Abelian
exchange statistics (10, 11). It has been vigorously studied in
recent years, following early ideas in one (12) and two (13)
spatial dimensions. Further theoretical studies advanced the
field from toy models to practical implementations (14), fueled
by the potential application of the exotic MZMs in quantum
computation (11, 15, 16).

A prominent Majorana platform is hybrid superconductor–
semiconductor nanowires (17, 18), where a Zeeman field
combined with strong spin–orbit coupling (SOC) drives a prox-
imitized nanowire into a topologically nontrivial phase. Fol-
lowing the theoretical proposals, several tunneling experiments
(19, 20) observed zero-bias conductance peaks as possible sig-
natures of MZMs. The early results triggered many subse-
quent studies, including on current-biased (21) and disordered
(22, 23) nanowires and carbon nanotubes (24–26) as the one-
dimensional (1D) platform. Other important Majorana realiza-

tion platforms include quantum wells subjected to an in-plane
magnetic field (27), topological insulator–superconductor het-
erostructures (13), semiconductor–ferromagnet heterostructures
(28, 29), chains of magnetic adatoms on spin–orbit-coupled
superconductors (30, 31), iron-based superconductors (32, 33),
and, most recently, full-shell proximitized nanowires (34, 35).

A different route, first taken in two important theoret-
ical works (36, 37), is based on planar semiconductor–
superconductor heterostructures. These studies proposed using
a phase-biased Josephson junction, forming a quasi-1D geome-
try, with an applied in-plane magnetic field. Such a planar device
is a highly attractive platform for the experimental realization
of topological SC, as it is less delicate than nanowires, does not
require strict magnetic field alignment, and is easier to fabricate.
The theoretical proposals triggered two recent experiments that
indeed reported zero-bias conductance peaks which may indicate
the existence of MZMs (38, 39). However, a drawback of this
platform is the need to apply an appreciable magnetic field to
the device. The applied magnetic field diminishes SC and could
give rise to magnetic impurity states, hindering the detection
of MZMs.

In this manuscript, we propose a route to realizing topological
SC in a planar geometry without applying a magnetic field in the
Josephson junction. Previous proposals achieved this by using
supercurrents to break time-reversal symmetry; however, the
large currents required and fringing fields in the junction com-
plicate implementation (40). Our proposal relies solely on phase
biasing the proximitizing superconductor, a possibility that was
recently pointed out (41). The approach is based on engineering
the geometry such that the topological Aharonov–Casher phase

Significance

The practical realization of Majorana zero modes in quasi-one-
dimensional topological superconductors is greatly hindered
by the need to apply strong magnetic fields. This study
proposes a way to engineer these exotic states using only
superconducting phase bias, which requires negligible mag-
netic fields or currents. The proposed device is experimentally
accessible and robust, as we show by comprehensive theoret-
ical modeling. Furthermore, it has the potential of providing
substantially cleaner experimental signatures of Majorana
zero modes than the currently available platforms, paving the
way to building a topological qubit.

Author contributions: A.Y. and Y.O. designed research; O.L., A.S., M.W., A.Y., and Y.O.
performed research; O.L., A.S., M.W., A.Y., and Y.O. analyzed data; and O.L., A.S., M.W.,
A.Y., and Y.O. wrote the paper.y

Reviewers: J.A., California Institute of Technology; and P.A.L., Massachusetts Institute of
Technology.y

The authors declare no competing interest.y

Published under the PNAS license.y
1 To whom correspondence may be addressed. Email: yacoby@physics.harvard.edu or
yuval.oreg@weizmann.ac.il.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2107377118/-/DCSupplemental.y

Published June 28, 2021.

PNAS 2021 Vol. 118 No. 27 e2107377118 https://doi.org/10.1073/pnas.2107377118 | 1 of 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

H
ar

va
rd

 L
ib

ra
ry

 o
n 

M
ar

ch
 2

, 2
02

2 
fr

om
 IP

 a
dd

re
ss

 1
28

.1
03

.1
47

.1
49

.

http://orcid.org/0000-0002-8616-6284
http://orcid.org/0000-0002-6561-9002
http://orcid.org/0000-0001-8753-8468
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:yacoby@physics.harvard.edu
mailto:yuval.oreg@weizmann.ac.il
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2107377118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2107377118/-/DCSupplemental
https://doi.org/10.1073/pnas.2107377118
https://doi.org/10.1073/pnas.2107377118
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2107377118&domain=pdf


(42), induced by the SOC, constructively interferes with the SC
phase winding (13, 41, 43), giving rise to a zero-energy state.
We would like to emphasize that the role of the phase bias in
our proposal and in Fu and Kane’s (13) proposal is different. In
Fu and Kane’s proposal, the topological phase results from the
interplay between the surface of a 3D topological insulator and
a superconductor, even in the absence of phase bias. The role of
the phase bias is to form a discrete vortex supporting an MZM.
Here the phases themselves drive the system into a topological
phase in a conventional material platform with strong SOC. Our
geometry also benefits from eliminating unbound trajectories as
in the case of zigzag junctions (44). Not only does this proposal
eliminate the complications of magnetic fields in the junction
coexisting with the MZMs, but it is also accessible with current
materials and fabrication techniques.

Minimal Model and “Sweet Spot”

We shall now demonstrate the possibility of realizing MZMs in
a magnetic field-free planar geometry. To this end, we develop
a toy model that supports a “sweet spot” with perfectly local-
ized MZMs (45). This is analogous to tuning the Kitaev chain to
zero chemical potential and equal hopping and pairing ampli-
tudes, which makes the edge modes perfectly localized in a
single site (12).

The basic building block of our model is a ring composed of
N � 3 sites; see Fig. 1A. Electrons can hop from each site to
its nearest neighbors through a spin–orbit-coupled medium, and
each site n is proximitized by an SC with a different phase �n .
The ring is described by the tight-binding Bogoliubov–de Gennes
(BdG) Hamiltonian

H =
NX

n=1

⇣
te

i��z
c
†
ncn+1 �

µ
2
c
†
ncn +H.c.

⌘

+
NX

n=1

⇣
�e

i�n
c
†
n,"c

†
n,# +H.c.

⌘
,

[1]

where � labels the spin degree of freedom, t is the hopping
amplitude, � is the SOC angle, µ is the chemical potential, H.c.

is the Hermitian conjugate, and � is the SC pairing poten-
tial. The gauge transformation cn ! cne

i�n/2 eliminates the
phases from the SC terms, in exchange for adding the complex
amplitude e

i(�n+1��n)/2 to the hopping term from site n +1 to
site n .

It is known that SC phase winding is necessary in
order to obtain a zero-energy state in such a model
(43). For simplicity, we assume that �n =n', where '=
2⇡m/N with m 2Z, that is, an integer number of vor-
tices. With this choice, �n+1 ��n =' is constant, so the
model becomes translationally invariant and can therefore
be analyzed in momentum space. The Bloch Hamiltonian
reads

H =
X
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⇣
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†
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+
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⇣
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†
k"c

†
�k# +H.c.

⌘
,

[2]

where k =2⇡/Nq , q =0, 1, . . . ,N � 1. As we show in SI
Appendix, section I, it is possible to tune the model’s param-
eters such that two zero-energy states appear: a pair of
MZMs, delocalized around the ring. The key ingredient of
the model is the interplay between the gauge-invariant topo-
logical Aharonov–Casher phase, 3� (arising due to electron
and hole trajectories circulating the ring), and the SC phase
winding.

Having established the possibility of realizing MZMs in a ring,
the next step is coupling two such rings, as shown in Fig. 1B. Each
ring hosts two MZMs, and our goal is to couple the rings such
that one MZM in each ring remains uncoupled, and the other
two MZMs are gapped out, as illustrated at the bottom of Fig.
1B. Since the bare MZMs are delocalized throughout their rings,
the only way to achieve this goal is by interference of trajectories
(46), and therefore the two rings must be coupled via more than
one link. In the coupling form suggested in Fig. 1B, the rings are

A

B

C

D

Fig. 1. Toy model for realizing a “sweet spot” relying on SC phase bias only. (A) Illustration of the ring described by Eq. 1 for N = 3 sites, each connected
to its nearest neighbors by a hopping amplitude t through a spin–orbit-coupled medium characterized by the angle �. Each site is proximitized by a
superconductor with pair potential � and a different phase �n. The parameters controlling the ring’s behavior are tuned such that each ring contains two
overlapping MZMs, ↵ and �. (B) Two rings are coupled at two points (top). If only �1 and ↵2 are coupled, those states are gapped out, leaving the zero-
energy states ↵1, �2 intact and localized at the left and right rings, respectively (bottom). (C) Energies of the lowest-lying (blue) and second-lowest-lying
(orange) states in the system composed of two coupled rings. For certain values of �0, a zero-energy state appears, with a finite gap to the second-lowest
state. At �0 = 0, ±⇡, we observe spin degeneracy. (D) Zero-energy Majorana wavefunctions at one of the special values of �0, each state localized in a
different ring.
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connected at two points via spin–orbit-coupled links of amplitude
t
0
e
i�0�x .⇤

By choosing the SC phases at the two rings and controlling
the inter-ring SOC angle �0, it is possible to tune into a “sweet
spot” where one MZM in each ring remains intact. We show
this explicitly in SI Appendix, section I by projecting the cou-
pling Hamiltonian to the low-energy subspace and making sure
that one MZM in each ring is left uncoupled. This situation is
demonstrated in Fig. 1C, where we plot the energies of the low-
est and second-lowest states as a function of �0. At special values
of �0, the lowest energy is zero, and the second-lowest energy is
finite, implying the existence of two MZMs, each localized in a
different ring, with a gap to excitations. If we now concatenate
these double-ring building blocks on the plane, the localization
length of the Majorana edge modes will be one ring independent
of the overall length of the chain. We have therefore achieved
a topological superconducting phase by tuning the three super-
conducting phases, without the Zeeman effect. The sweet spot is
obtained by setting µ,�, �, and �0 to proper values.

Realistic Model

How can one realize a phase similar to the “sweet spot” in a
realistic experiment? The key point is using a geometry that
supports closed orbits with a nonzero Aharonov–Casher phase
(42) and SC phase winding (41). Here we demonstrate this
idea using a planar semiconductor–superconductor heterostruc-
ture and analyze the topological phase diagram as a function of
easily controlled parameters—the SC phases and the chemical
potential.

We consider the unit cell geometry depicted in Fig. 2. The sys-
tem is made of a 2D electron gas (2DEG) with Rashba SOC,
partially covered by SCs with fixed phases. The main difference
between this configuration and the original proposals that rely on
a Zeeman field (36, 37) is the addition of a third SC with phase
control. The nonstraight features, characterized by the lengths
(WB,LB), will help stabilize the topological phase by increasing
the energy gap (along the lines of ref. 44). In what follows, we will
show that, when the SC phases wind, the system can be driven
into a topological SC phase akin to the one realized in the toy
model, even at zero applied Zeeman field.

The heterostructure is described by the Hamiltonian

H=


~2
2m⇤

�
k
2

x + k
2

y

�
+ ~↵ (�ykx ��xky)�µ

�
⌧z

+Re�(x , y)⌧x +Im�(x , y)⌧y ,

[3]

where kx , ky are the momenta along the x , y directions, m⇤ is
the effective electron mass, ↵ is the Rashba SOC parameter, µ
is the chemical potential, � is the local superconducting pair-
ing potential, and ⌧ and � Pauli matrices act in particle-hole and
spin spaces, respectively. The magnitude of �(x , y) is taken to
be a constant� in the proximitized regions, and zero in the non-
proximitized regions. The SC phases are zero at the middle SC,
�1 at the bottom SC, and �2 at the top SC, as indicated in Fig.
2. The corresponding Nambu spinor is ~ =

⇣
 ", #, 

†
#,� 

†
"

⌘
T,

where  s annihilates an electron of spin s along the z axis.
The system is assumed be finite along the y direction, and

the unit cell is repeated along the x direction. For the numeri-
cal simulations, the Hamiltonian Eq. 3 is discretized on a square
lattice (unless specified otherwise, the lattice spacing is a =
10nm). Further details on the tight-binding model are given in
SI Appendix, section II. We note that, while the geometry pro-

*The �x Pauli matrix appears in the inter-ring SOC because of the choice made in the
original Hamiltonian Eq. 1 of taking all intra-ring SOC terms proportional to �z , which
is a local rotation of the spin.

Fig. 2. Unit cell of the proposed geometry for realizing topological SC in
a planar heterostructure using phase bias only. Blue regions are covered by
SCs, whereas the green region is an uncovered 2DEG. The SC phases are zero
at the middle SC, �1 at the bottom SC, and �2 at the top SC. The geometric
parameters are indicated on the schematic. When WB > WN, straight tra-
jectories that do not encounter SCs at all are eliminated, thus facilitating a
large topological gap (44). The unit cell is repeated along the x direction.

posed in Fig. 2 is the focus of this study, it is merely an example
of the general concept. As long as the geometry supports trajec-
tories with a discrete vortex and a spin–orbit phase, it is expected
to work as well. We have numerically demonstrated a topological
phase transition in several similar geometries.

Topological Phase Diagram

In this section, we present the full topological phase diagram of
the proposed system. The Hamiltonian Eq. 3 belongs to sym-
metry class D (47–49), with the particle-hole operator being
P = ⌧y�yK (K is complex conjugation). Enhancement to the
BDI class, as in the case of a single planar Josephson junction
(50), is generically prevented by the existence of two distinct
phase differences, and only occurs at fine-tuned conditions. In
(quasi) one dimension, systems in symmetry class D possess a
Z2 topological invariant that we label Q, which takes the val-
ues +1,�1 for the trivial and topological phases, respectively.
We calculate the invariant by attaching two leads to a finite-size
system and invoking the scattering formula Q= detr , where r

is the reflection matrix from one of the leads to itself (51). The
scattering calculations are performed using the Kwant software
package (52).

Apart from the topological invariant, the key property of the
system is the energy gap. To find the gap, we impose periodic
boundary conditions along x , such that the momentum kx is a
good quantum number. We then densely scan the Brillouin zone
and calculate the lowest energy at each value of kx .

Fig. 3 shows the resulting phase diagram as a function of the
phase differences ✓=(�1 ��2)/2 and �=(�1 +�2)/2. The sys-
tem only supports a topological phase when the SC phases wind,
which is evident from the phase diagram: Q =�1 only in certain
regions inside the triangle ⇡� ✓<�<⇡+ ✓ (for 0 ✓⇡/2).
This triangle sets the optimal phase boundaries we can expect in
such a system (41, 43), and the topological region we obtain here
is not far from that. Furthermore, we get a substantial topologi-
cal gap of over 10% of the induced SC gap�. Such a large energy
gap has important implications for making the MZM localization
length short, and for enabling reliable experimental detection.
The maximal value of the gap is obtained near the center of the
topological region.

Lesser et al.
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In this structure, closed trajectories in which the electron
scatters off all three SCs seem vital for the existence of the
topological phase (41). They are present also when the dis-
continuous rectangles of the middle SC are connected by a
thin SC, thus becoming continuous. Then, normal tunneling
or crossed Andreev tunneling through the thin segment will
enable such trajectories. We have verified numerically that this
is indeed possible, but, in our checks, this came at the price
of lowering the topological gap. Notice, however, that, in a
completely straight geometry, that is, WB =0, it is impossible
to obtain a topological phase—the required closed orbits do
not exist.

To demonstrate the robustness of the topological phase, we
examine its stability to variations in the chemical potential
and phase bias. In Fig. 4, we show the topological phase dia-
gram as a function of µ and ✓, fixing �=⇡. We find that the
topological phase persists for an appreciable range of param-
eters, indicating that no delicate fine-tuning is necessary for
the system to support MZMs. Stability to such variations is of
paramount practical importance, as elaborated in Experimental
Considerations.

The geometric parameters are chosen here according to the
rule of thumb L�⇡↵ (41), where L is a typical length in
the uncovered 2DEG region. Given different 2DEG and SC
material, one should tune the lengths to approximately match
this condition [see SI Appendix, section III and the interactive
figure (53)].

Real-Space Analysis and Majorana Wavefunctions

In the previous section, we established the existence of a topolog-
ical phase by calculating the Z2 invariant. We now turn our focus
to the real-space hallmark of the topological phase, which is the
existence of localized zero-energy Majorana end states. These
states are the truly tangible manifestation of the topological
nature of the phase, and, experimentally, they reveal themselves
as zero-bias conductance peaks in tunneling measurements (19,
20, 27, 38, 39).

A typical MZM wavefunction is shown in Fig. 5, both as a 2D
heat map and as a 1D curve (integrated along the transverse
direction y). The parameters are chosen well within the topo-

Fig. 3. Topological phase diagram of the model Eq. 3, showing the topo-
logical invariant Q which is �1 (+1) in the topological (trivial) phase,
multiplied by the energy gap. The phase diagram is shown as a func-
tion of ✓=(�1 ��2)/2 and �=(�1 +�2)/2. The physical parameters are
µ= 0.26 meV, ↵= 23 meV · nm, and the geometric parameters are LSC =
320 nm, WSC = 50 nm, LB = 50 nm, WB = 80 nm, LM = 240 nm, WM = 120 nm,
WN = 40 nm. See ref. 53 for an interactive version of this figure.

Fig. 4. Topological phase diagram of the model Eq. 3, as a function of the
chemical potential µ and the phase difference ✓, for �=⇡. The parameters
are the same as in Fig. 3.

logical phase, as inferred from Fig. 3. As we expect, two states
of near-zero energy appear in this regime, localized at opposite
edges of the device. The MZM wavefunctions are concentrated
a bit more on the normal 2DEG regions than on the SC regions,
although their noticeable leakage into the SC region indicates a
strong proximity effect.

Remarkably, the Majorana states are localized over one unit
cell, which is about 0.5µm long. A smaller unit cell for the
same spin–orbit energy would deviate from the optimal geome-
try, leading to a smaller topological gap. This localization length
also agrees with the continuum approximation ⇠⇡ ~vF/Egap,
where vF is the Fermi velocity. The relation between the local-
ization length and the energy gap is further demonstrated in Fig.
6A, by calculating both of them as a function of ✓ inside the
topological phase.

We close this section with another explicit demonstration of
the topological phase transition. Fig. 6B shows the evolution of
the lowest-lying energies as a function of ✓ in a finite system
of six units cells.† The energy gap closes and reopens, leaving
a pair of MZMs bound to zero energy. This signals the transi-
tion from the trivial to the topological phase. The topological gap
is maximized near ✓=⇡/4, and then closes and reopens again
near ✓=3⇡/8, this time leaving no in-gap states, indicating that
the system returns to the topologically trivial phase. Notice the
agreement between this real-space calculation and the �=⇡ cut
of the phase diagram shown in Fig. 3.

Experimental Considerations

This proposal for phase-only topological SC can apply to a gen-
eral class of material platforms: large spin–orbit semiconducting
quantum wells such as HgTe, InAs, and InSb which have well-
developed fabrication procedures (54–56). While induced SC has
been demonstrated in all three platforms, we focus on HgTe
below due to its high mobility (µ = 100 ⇥103 cm2·V�1·s�1 to
800 ⇥103 cm2·V�1·s�1) and lack of surface states.

The minimum feature sizes of the proposed geometry (Fig.
2) can be achieved by standard electron beam lithography
(�30 nm). See the legend of Fig. 7 for a brief outline of the
proposed fabrication procedure. Practical geometry constraints
are also placed by the material. The width W between super-
conducting contacts must be smaller than the coherence length

†Notice that ✓ is chosen for convenience, and a similar plot as a function of µ or � may
also be obtained.
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Fig. 5. Real-space simulation of the Hamiltonian Eq. 3 with the geome-
try proposed in Fig. 2, in the topological phase. (Top) Wavefunction of the
zero-energy Majorana state localized at the left edge. The wavefunction
is almost completely localized at the first unit cell. The black borders indi-
cate the boundary between the SC and the 2DEG. Notice that the MZM
wavefunction has significant support beneath the SCs; we find that such
behavior occurs for a wide range of parameters, but not always. (Bottom)
The above wavefunction integrated over y shows exponential decay along
x. An exponential fit yields a localization length of ⇠M ⇡ 0.5 µm. The simu-
lation included 10 unit cells, and, for clarity, only the 4 left-most ones are
shown. The other MZM is localized at the right edge of the device. The
parameters used are the same as in Fig. 3, with �=⇡, ✓=⇡/4.

of the induced SC in the Josephson junction which is limited to
⇣T ⇡ ~vF/2⇡kBT . While the induced coherence length provides
a loose bound on the junction width to 50 µm at 20 mK, this
bound quickly becomes strict at higher temperatures. Further, in
order to work in the quasi-ballistic regime, the mean free path
le must be at least on the order of W . For HgTe, we have le ⇡
1.6µm for µ⇡ 100⇥ 103 cm2·V�1·s�1 and n ⇡ 1⇥ 1012 cm�2.
Since there is no competing drive for larger junction widths, as in
the case of the in-plane field proposal (36, 37), this upper bound
need not be saturated, thus suggesting our proposal will be more
robust to lower-quality semiconducting materials.

With these upper and lower bounds from the material in mind,
we still have to determine the optimal operational dimensions of
the device. Dimensional analysis suggests that a typical coher-
ence length set by ↵/� should be of the order of the typical
lengths of the device L. Ref. 41 analyzed a simplified tight-
binding model of a related (nonplanar) system, and showed that
this rule of thumb indeed leads to an optimal situation, with a
maximal topological region in the ✓–� plane of Fig. 3. For fixed
�, this rule of thumb, L�⇡↵, implies that, for larger SOC,
larger unit cells are required to achieve the largest topological
gap. In contrast to fully 1D proposals, here the confinement of
the MZM is set by the size of the unit cell, rather than just
the topological gap as is expected in a continuum setting. For
moderate ↵=23 meV·nm with the superconducting gap of alu-
minum, this condition fixes L⇡ 1 µm. For fixed ↵, increasing
the superconducting gap shortens this length scale. Advanta-
geously, HgTe growth can be tuned from negligible toward the
very large spin–orbit splitting up to 30 meV (57, 58), with ↵ as
large as 120 meV·nm, which can be matched to the supercon-
ductor used to balance fabrication limitations on dimension and
optimize confinement. Notice that, even for the case of Al, we
saturate lithographic precision at ↵⇡ 10 meV·nm, where ESO ⇡
1.5meV��, suggesting extraordinary confinement is possible.

The most difficult aspect of implementing the phase-only pro-
posal is tuning stably into the topological phase. Our parameter
space consists of geometrical lengths, 2DEG density, spin–orbit
strength, and superconducting phases. Geometrical lengths are
set during the fabrication and can only be made uniform to
within 10 nm. Thus, for a fixed geometry, we require our tun-

able parameters to bring us to a topological regime. In addition,
the existence of a topological phase cannot be sensitive to small
variations in lengths from unit cell to unit cell, or even within a
unit cell. We have demonstrated this insensitivity in ref. 53.

While back-gates on semiconductor quantum wells are pos-
sible (59), none of the platforms discussed above have imple-
mented this technology while maintaining high mobility. As a
result, control over the 2DEG density and spin–orbit strength
are both coupled to the potential of the top gate. Gated, the
mean density of HgTe can be tuned from 4 ⇥1011 cm�2 to
1 ⇥1012 cm�2 while the spin–orbit splitting can be tuned up to
30 meV (57, 60). In Figs. 4 and 6, the simulated density is approx-
imately 1⇥ 109 to 6⇥ 109 and 0.6⇥ 1010 cm�2 to 4⇥ 1010 cm�2

respectively, with stable regions corresponding to approximately
1⇥ 109 and 1.4⇥ 1010 cm�2. Since these densities are much less
than typical semiconductor densities, and the stable regions are
on the order of the fluctuations of the gate potential, we simulate
more realistic conditions in SI Appendix, Fig. S3, with a density
of 5⇥ 1011cm�2 showing stable regions of width 5⇥ 1010 cm�2

which should be achievable with current experimental platforms.
The superconducting phases are easily tuned during operation

of this device. The size of the phase-biasing loops and the current
limits set the phase resolution and stability. A 10- to 20-µm2 loop
can be fabricated with ease, is robust to sub-Gauss offsets in the
ambient magnetic field, and can be biased with currents of 150
µA without causing significant Joule heating. With these parame-
ters, a current resolution of 10 nA corresponds to a flux precision
of 2⇥ 10�4�0. As shown in Fig. 4 and SI Appendix, Figs. S2 and
S3, this precision is more than sufficient to tune stably into the
topological regime.

As shown in Fig. 7, conductance tunnel probes can be used to
detect MZMs at the ends of the junction. In many MZM tun-
neling experiments, the topological gap is close to the energy
resolution of the tunnel probe (10 µeV). The large gaps in our
proposal, 100 µeV for Nb, should mitigate this issue. The type-II
nature of large-gap superconductors often complicates measure-
ments, due to small lower critical magnetic fields Hc1 which allow

A

B

Fig. 6. (A) Localization length (green) and energy gap (blue) in the topo-
logical phase. The localization length is roughly inversely related to the
energy gap, as expected by the continuum approximation ⇠⇡ ~vF/Egap,
where vF is the Fermi velocity. (B) Lowest-lying BdG energies as a function
of the phase difference ✓ in a finite system. The topological phase transition
is signaled by a closing and reopening of the energy gap, while leaving two
Majorana states (red) at zero energy. The parameters used are the same as
in Fig. 3, with �=⇡ and six unit cells.
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Fig. 7. Feasible device fabrication layout. Light blue regions represent
superconductors which are deposited after etching to make contact to the
quantum well (QW). Superconducting connectors between center SC islands
are deposited in the same step using an airbridge technique or a separate
step milling through native oxides which form after the first SC deposition.
The two phase degrees of freedom are set independently by current loops,
which eliminates even fringing fields from the junction region which hosts
the MZMs. The 2DEG is removed outside the junction region. The whole
device is covered in a metal-on-oxide electrostatic gate for tuning the den-
sity/chemical potential (not shown in top view). Conductance tunnel probes,
shown in orange, are included for detecting MZMs at the ends of the device.

flux penetration, motion, and trapping during device operation
in external magnetic fields. However, the lack of critical magnetic
fields should be an ideal use case for large-gap superconductors.‡
The fact that we do not have an external field decreasing the par-
ent gap of the superconductor should further improve the MZM
visibility during tunneling experiments to the end of the junction.

Conclusion

We have shown that MZMs can arise in a phase-controlled
planar semiconductor–superconductor device without applying
a Zeeman field. At the heart of our scheme lies interference
between Aharonov–Casher phase (42), stemming from the spin–
orbit interaction, and SC phase winding. As shown exactly by the
toy model and then numerically with a realistic model, proper
tuning of these two phases drives the system into a topological
superconducting state.

‡Type-II superconductors also have the disadvantage for phase-based proposals of
short coherence lengths. Here the relevant coherence length should be that in the
semiconductor, ⇣T ⇡ ~vF/2⇡kBT , thus avoiding this problem.

Several important advantages of our proposal are worth men-
tioning. It enjoys all of the benefits of planar geometry compared
to nanowires, in particular, easier fabrication and the ability to
generalize to a Majorana network. Moreover, since the proposal
is interference based rather than Zeeman based, various limita-
tions related to magnetic fields are lifted. In the original planar
Josephson junction proposals (36, 37), the Zeeman field required
to make the system topological is of the order of the Thou-
less energy, which scales like the inverse of the junction’s width.
Therefore, making the junction narrower—which is desirable to
achieve more ballistic transport—comes at the price of applying
a stronger magnetic field. Here the magnetic field is not needed,
making the above consideration irrelevant and facilitating the
use of extremely narrow junctions. Furthermore, MZM-related
experiments typically favor the use of Al due to it being a type-
I SC that does not trap flux. Our proposal enables the use of
larger-gap type-II SCs, such as Nb, since flux trapping is no
longer a problem, thus opening the door to robust large-gap
MZMs.

The discussion in the previous section shows that our pro-
posal is realistic under existing experimental technologies. The
entire class of large spin–orbit semiconductors are viable plat-
forms, and, importantly, no topological materials are required.
As we have shown, the MZM can be localized to within a single
unit cell, whose size is set by the device geometry. The small-
est physical dimension is set by fabrication limitations and the
SOC strength (by the L�⇡↵ criterion). Thus, in the limit of
large SOC, the maximal topological gap can coincide with an
extremely short localization length.

In the future, it will be interesting to explore possible exten-
sions of the design principles we suggest and investigate here in
quasi-1D systems to two dimensions, for example, via a coupled-
wire construction. This is expected to lead to the formation of a
2D chiral superconducting state.

Data Availability. All study data are included in the article and SI
Appendix.
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