Highly Stable, Dual-Gated MoS$_2$ Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage

Gwan-Hyoung Lee,*† Xu Cui,*‡ Young Duck Kim,§ Ghidewon Arefe,§ Xian Zhang,§ Chul-Ho Lee,§ Fan Ye,§ Kenji Watanabe,† Takashi Taniguchi,‡ Philip Kim,* and James Hone*‡

†Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea, ‡Department of Mechanical Engineering and Department of Material Science and Engineering, Columbia University, New York, New York 10027, United States, §KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Korea, ^National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, and #Department of Physics and Applied Physics, Harvard University, Cambridge, Massachusetts 02139, United States.

‡G.-H. Lee and X. Cui contributed equally.

ABSTRACT

Emerging two-dimensional (2D) semiconductors such as molybdenum disulfide (MoS$_2$) have been intensively studied because of their novel properties for advanced electronics and optoelectronics. However, 2D materials are by nature sensitive to environmental influences, such as temperature, humidity, adsorbates, and trapped charges in neighboring dielectrics. Therefore, it is crucial to develop device architectures that provide both high performance and long-term stability. Here we report high performance of dual-gated van der Waals (vdW) heterostructure devices in which MoS$_2$ layers are fully encapsulated by hexagonal boron nitride (hBN) and contacts are formed using graphene. The hBN-encapsulation provides excellent protection from environmental factors, resulting in highly stable device performance, even at elevated temperatures. Our measurements also reveal high-quality electrical contacts and reduced hysteresis, leading to high two-terminal carrier mobility (33−151 cm2 V$^{-1}$ s$^{-1}$) and low subthreshold swing (80 mV/dec) at room temperature. Furthermore, adjustment of graphene Fermi level and use of dual gates enable us to separately control contact resistance and threshold voltage. This novel vdW heterostructure device opens up a new way toward fabrication of stable, high-performance devices based on 2D materials.

KEYWORDS: two-dimensional materials · MoS$_2$ · hexagonal boron nitride · graphene · van der Waals heterostructure · contact resistance · threshold voltage

Advances in graphene research have led to extensive interest in the unique electrical and optical properties of other 2D materials, in particular transition metal dichalcogenides (TMDCs).$^{1−5}$ Of these, semiconducting MoS$_2$ has been the most widely studied, showing a thickness-dependent electronic band structure6,7 and high carrier mobility,$^{4,8−11}$ with applications in transistors,4,8,12 memories,13 logic circuits,14 light-emitters,2 and photodetectors15 with flexibility and transparency.13,5,16 However, as for any atomically thin material, the performance of MoS$_2$ devices can be strongly altered by environmental effects such as adsorbates, charges in neighboring dielectrics, and variability of contact quality.5,17,18 For example, the measured mobilities of

* Address correspondence to gwanlee@yonsei.ac.kr, jh2228@columbia.edu.

Received for review March 2, 2015 and accepted June 17, 2015.

Published online June 17, 2015 10.1021/acsnano.5b01341

© 2015 American Chemical Society
MoS$_2$ at both room and low temperatures have been found to be substantially below theoretically predicted intrinsic values, which have been attributed to scattering of carriers by substrate roughness, charged impurities, substrate phonons, adsorbates on the surface, and electron–phonon coupling. In addition, large contact resistance induced by the Schottky barrier at the metal–MoS$_2$ interface leads to low values of two-terminal field-effect mobility in MoS$_2$ devices. More importantly, performance of MoS$_2$ field-effect transistors (FETs), whether exposed to air or passivated by conventional dielectrics such as HfO$_2$, is seen to substantially degrade over time and create substantial sulfur vacancies during aggressive annealing, leading to heavily doped MoS$_2$ devices. Therefore, the structural stability of MoS$_2$ cannot be neglected for maintaining performance of MoS$_2$ devices, and improvements in devices are required to eliminate environmental influences. For practical application of MoS$_2$ transistors, controllability of threshold voltage and low subthreshold swing are also desired.

Here we demonstrate vdW heterostructure MoS$_2$ devices with graphene contacts and dual gates, where the MoS$_2$ layer is entirely encapsulated by two hBN layers. We find that MoS$_2$ exposed to air or moisture experiences gradual degradation in electrical and optical properties, while the hBN-encapsulated MoS$_2$ is highly stable even at high temperature and shows no degradation for at least 8 months in ambient conditions. As a result, MoS$_2$ devices fabricated in this way show good two-terminal transport behavior indicative of high-quality contacts and high device stability, leading to high field-effect mobilities of 33–151 cm2 V$^{-1}$ s$^{-1}$ at room temperature depending on MoS$_2$ thickness. By employing a dual-gate structure, we can achieve low operating voltage and independently modulate the graphene–MoS$_2$ contact resistance, the MoS$_2$ channel, and the threshold voltage. Our novel device scheme and fabrication technique show a new way toward investigation of the intrinsic properties of all other environmentally sensitive 2D materials and high-performance 2D material devices with long-term environmental stability.

RESULTS AND DISCUSSION

To fabricate the vdW heterostructures, we employed two polymer-free assembly techniques described in our previous reports. In the first method, the top hBN flake is used to pick up other thin flakes by van der Waals adhesion to create a single stack that is then shaped into a device. In the second method, a stamp of PDMS (polydimethylsiloxane) elastomer is used to stack flakes one at a time to build the stack from the bottom up. Both techniques enable fabrication of ultraclean vdW interfaces without contamination of interfaces by polymer or solvent, which can leave residue and trapped bubbles (see Methods and Supporting Information for more details, Figure S1). Figure 1a shows a schematic of device structure of MoS$_2$ FETs fabricated in this work. Graphene is placed slightly overlapping the MoS$_2$ over a few micrometers to form an electrical contact. For encapsulation of MoS$_2$, two hBN flakes are positioned on top and bottom. The entire stack of 2D materials is then shaped to expose the edges of graphene by e-beam lithography and plasma etching, and metal leads are formed by metal deposition to contact the exposed graphene. For dual-gating, we fabricated a metal top gate covering only the MoS$_2$ channel area. Figure 1b shows an optical micrograph of a representative two-terminal
device, which is a stack of hBN (8 nm)/graphene (5 layers)/MoS2 (3 layers)/hBN (19 nm).

Environmental conditions, such as temperature, moisture, polymer residue, and physisorbed gases, critically affect the electrical and optical properties of 2D materials and their heterostructures.4,17,24 Raman spectroscopy and photoluminescence (PL) measurement were employed to study the environmental stability of monolayer MoS2 samples stored in various conditions, such as ambient air, high humidity, and vacuum at room temperature as shown in Figure 2. (See Supporting Information for detailed storage conditions and Figure S2 for humidity and vacuum samples.) As shown in Figure 2a and c, unencapsulated samples stored in air and under vacuum showed small decreases in peak intensities over a period of 8 months, with even larger changes seen in a humid environment. Samples encapsulated in HfO2 showed similar decreases, in addition to large changes upon deposition of the HfO2 by atomic layer deposition. In contrast, the Raman spectrum of hBN-encapsulated MoS2 stored in air remained unchanged for 8 months. The mechanisms for this degradation are not precisely known, but can result from doping by adsorbed molecules in air, while long-term storage in a vacuum can result in sulfur vacancies.3,18,29 The abrupt change in the Raman spectrum right after deposition of HfO2 indicates the possibility of chemical reaction between MoS2 and chemicals used for atomic layer deposition (ALD). Figure 2b shows PL spectra of the same samples. The hBN-encapsulated MoS2 shows brighter PL, with intensity over 3 times that of the unencapsulated samples on SiO2, due to the absence of charged impurities. The sharp PL peak with a full width at half-maximum (fwhm) of 70 meV also indicates that hBN-encapsulated MoS2 is in a cleaner electrostatic environment (Figure S2c).23 The spectrum

Figure 2. (a) Raman and (b) photoluminescence (PL) spectra of monolayer MoS2 stored in different conditions. Among them, two MoS2 flakes are encapsulated by HfO2 and hBN, respectively, and then stored under ambient conditions. Compared to other samples, hBN-encapsulated MoS2 shows no recognizable change in Raman and PL spectra. It should be noted that hBN-encapsulated MoS2 also shows higher PL intensity due to the reduced effect of charged impurities from the substrate. (c) Raman peak position differences between E2g and A1g and Raman peak intensities of E2g and (d) normalized PL peak intensities and PL peak positions in the monolayer MoS2 samples stored in different conditions. The green arrows in (c) and (d) indicate the changes in the Raman spectrum and PL peak of the HfO2-encapsulated sample right after deposition of HfO2.
shows virtually no change after 8 months of storage in air, as shown in Figure 2b and d. While the unencapsulated sample stored in air also shows little change in PL, HfO2 encapsulation causes a complicated evolution of PL, indicative of strong interaction with the encapsulating layer. Changes of PL in the sample stored in humidity conditions and HfO2-encapsulated conditions need more extensive experiments for interpretation even though it was reported that defect formation induces PL characteristics.34,35

To investigate the quality and stability of BN-encapsulated electronic devices, MoS2 FETs were fabricated with no passivation or with HfO2 or hBN encapsulation. Transfer curves ($I_d - V_{bg}$) for the vdW heterostructure device are shown in Figure 3a, with a back-gate voltage (V_{bg}) applied to the conductive Si back-gate with a 295 nm SiO2 dielectric. The top-gate was grounded to avoid spurious dual-gate coupling.36 The room-temperature field-effect mobility (μ_{FE}) of the two-terminal device was extracted by $\mu_{FE} = (L/WC_{iV_d}) \left(\frac{dI_d}{dV_{bg}}\right)$, where L, W, V_d, and V_{bg} are channel length, channel width, drain voltage, and back-gate voltage, respectively, and the capacitance per unit area (C_{i}) is ε_0 / d, with relative permittivities of 3.9 and 3.5 for SiO2 and hBN, respectively.5 For the trilayer MoS2 device of Figure 3a, the n-type two-terminal field-effect mobility is 69 cm2/V s$^{-1}$. The 12 hBN-encapsulated multilayer MoS2 devices we tested in this work showed field-effect mobilities of 33–151 cm2/V s$^{-1}$, which are higher than previous reported values of 0.1–10 cm2/V s$^{-1}$ in devices with metal contacts on oxide dielectrics4,24,36 and comparable to the mobility recently reported with phase-engineered contacts (Table S1).39

In addition, virtually no hysteresis is observed in hBN-encapsulated MoS2 devices because of the charge-trap-free hBN dielectric and clean channel/dielectric interface.5,13,22,40 By comparison, unencapsulated and HfO2-encapsulated trilayer MoS2 devices on SiO2
with metal contacts showed lower mobilities of 7 and 18 cm² V⁻¹ s⁻¹, respectively, and large hysteresis due to trapped charges and adsorbed impurities (Figure 3a, inset).

As shown in the inset of Figure 3b, the linear output curves (I_d/V_d) of the hBN-encapsulated MoS₂ device reveal that Ohmic contacts are formed at graphene–MoS₂ interfaces. These high-quality contacts between graphene and MoS₂ have been attributed to the gate tunability of the graphene work function and the spatially narrow Schottky barrier in the ultrathin junction. Gate modulation and current saturation are more clearly observed in Figure 3b. It should be noted that, even though it has been reported that Ohmic contacts have also been achieved in metal–MoS₂ contacts by deposition of small-work-function metal, vacuum annealing, and electrostatic gating, conventional metal electrodes deposited on top of MoS₂ are not appropriate for these encapsulated devices, because of their finite thickness and the need for additional lithographic patterning, which leaves behind polymer residue on MoS₂ surface. Moreover, we did not observe any degradation or breakdown of the hBN-encapsulated MoS₂ devices up to high drain current of ~500 μA (6 × 10⁷ A/cm²), meaning that hBN-encapsulated MoS₂ devices can stably operate at higher current density than HfO₂-encapsulated MoS₂ devices with a breakdown current of 4.9 × 10⁷ A/cm².

Device stability is a critical issue for practical applications of 2D materials: moisture, atmospheric oxygen, physisorbed gases, and process-related polymer residue can strongly alter the electrical and optical properties of 2D materials and lead to degradation in performance over time. For example, in unencapsulated trilayer MoS₂ FETs, the mobility degrades and the threshold voltage shifts after 2 months, as shown in the inset of Figure 3c, in good agreement with previous reports. In contrast, Figure 3c shows that the hBN-encapsulated trilayer MoS₂ device experienced no electrical degradation after being stored in air for 4 months. To explore the limits of this passivation, we investigated device stability at elevated temperatures. The hBN-encapsulated devices showed almost no change in performance after cycling to 200 °C and back to room temperature, as shown in Figure 3d and e. In contrast, unencapsulated mono- and bilayer devices were destroyed near 50 °C, while trilayer devices survived to 200 °C but showed large shifts in threshold voltage after cooling (Figures 3e and S6a and b). The HfO₂-encapsulated trilayer devices were able to withstand heating to 200 °C but showed a continuous decrease in mobility and large shift in threshold voltage with increasing temperature (Figures 3e and S6c). It is worth noting that there are kinks around zero gate voltage, called memory steps, in the transfer curve of the HfO₂-encapsulated MoS₂ device measured at 200 °C.
while none are observed in the hBN-encapsulated device (Figure S6c). The memory step results from the slow relaxation from capture/release of carriers by deep levels that are probably due to charged impurities in the substrate.44,45 Therefore, the absence of memory steps in the hBN-encapsulated MoS\textsubscript{2} device strongly supports the cleanliness of MoS\textsubscript{2}—hBN heterointerfaces.

To control contact resistance and threshold voltage of dual-gated MoS\textsubscript{2} devices, we employed top- and bottom-gates simultaneously. Figure 4a shows transfer curves of a dual-gated four-layer MoS\textsubscript{2} device with sweeping top-gate voltage at fixed bottom-gate voltage. At V\textsubscript{bg} = 0 V, the top-gated device exhibited a field-effect mobility of 37 cm2 V−1 s−1, similar to 33 cm2 V−1 s−1 measured in the same device tuned by the bottom-gate. With increasing V\textsubscript{bg} from −40 V to +60 V, the mobility increases from 26 to 45 cm2 V−1 s−1, and the threshold voltage shifts to more positive values. This threshold voltage shift was not seen in HfO\textsubscript{2}-encapsulated MoS\textsubscript{2} devices with metal contacts.4 As shown in Figure 4b, the dual-gated MoS\textsubscript{2} device shows a high on/off current ratio of 10^3 and a small subthreshold swing of 78−85 mV/dec, which means these devices can work at a small operation gate voltage of <1 V. The linear shift of the top-gate threshold voltage as a function of back-gate voltage is shown in the inset of Figure 4b. The slope of 0.0372 is in good agreement with the value predicted by the ratio of back-gate to top-gate capacitance. Schematic band diagrams of Figure 4c show bending of band structure in graphene-contacted MoS\textsubscript{2} at different back-gate voltages. When V\textsubscript{bg} < 0, the graphene Fermi level shifts downward, creating a higher barrier, leading to a larger contact resistance and more negative top-gate threshold voltage. Conversely, when V\textsubscript{bg} > 0, the Fermi level of graphene approaches the conduction band of MoS\textsubscript{2}, creating a lower contact barrier, leading to lower contact resistance and more positive top-gate threshold voltage. The decreasing contact resistance causes an increase in the two-terminal field-effect mobility. Therefore, we can conclude that the vdW heterostructure device proposed in this study, hBN-encapsulated MoS\textsubscript{2} FETs with graphene electrodes, enables us to fabricate high-performance devices of environmentally sensitive 2D materials with high stability.

CONCLUSIONS

We demonstrate fabrication of hBN-encapsulated MoS\textsubscript{2} FETs contacted by graphene electrodes. These vdW heterostructure devices fulfill requirements for current electronics, such as low contact resistance, low operating gate voltage, tunable threshold voltage, high-temperature operation, lack of hysteresis, and stability over many months in ambient conditions. Similar heterostructure approaches have recently shown promise for providing environmental stability for more environmentally sensitive 2D materials such as phosphorene.46,47 The results presented here indicate that hBN encapsulation can provide such stability over long time periods and at high temperatures required for practical device operation in applications.

METHODS

All the 2D materials are mechanically exfoliated by Scotch tape and then transferred by “van der Waals transfer” or “PDMS transfer” technique as described before.5,33 The transfer techniques are described in detail in the Supporting Information. The hBN/Gr/MoS\textsubscript{2}/hBN stacks were fabricated by transferring each flake on the SiO\textsubscript{2} substrate. After stacking 2D materials, metal leads were patterned by e-beam lithography, and graphene edges were exposed by etching the whole stack with inductively coupled plasma with a mixture of CHF\textsubscript{3} and O\textsubscript{2} gases. After exposure of graphene edges, metals of Cr 1 nm/Pd 20 nm/Au 50 nm were deposited by an e-beam evaporator. For the top-gate, an additional e-beam lithography process was performed. Raman spectroscopy (inVia, Renishaw) was employed to measure the Raman spectra and photoluminescence of single-layer MoS\textsubscript{2} flakes using a 532 nm laser. The different samples are stored in three conditions. The storing conditions are described in detail in the Supporting Information. The HfO\textsubscript{2} and hBN-encapsulated MoS\textsubscript{2} samples were stored in air. Here 30 nm thick HfO\textsubscript{2} was deposited by ALD. All the electrical measurements are performed in air at room temperature using a parameter analyzer (Agilent, 4155C).

Conflict of Interest: The authors declare no competing financial interest.

Acknowledgment. This research was supported by the U.S. National Science Foundation (DMR-1122594) and the NSF MRSEC program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). G.H.L. acknowledges support from the Basic Science Research Program (NRF-2014R1A1A1004632) through the National Research Foundation (NRF) funded by the Korean government Ministry of Science, ICT and Future, and in part by the Yonsei University Future-Leading Research Initiative of 2014. C.H.L. acknowledges support from the Basic Science Research Program (NRF-2014R1A1A2053112) through the National Research Foundation (NRF) funded by the Korean government Ministry of Education, and in part from the Grant of KU-KIST Graduate School of Converging Science and Technology.

Supporting Information Available: The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b01341.

REFERENCES AND NOTES

