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Imaging electrostatically confined Dirac fermions
in graphene quantum dots
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and Michael F. Crommie1,5,6*

Electrostatic confinement of charge carriers in graphene is
governed by Klein tunnelling, a relativistic quantum process in
which particle–hole transmutation leads to unusual anisotropic
transmission at p–n junction boundaries1–5. Reflection and
transmission at these boundaries a�ect the quantum in-
terference of electronic waves, enabling the formation of
novel quasi-bound states6–12. Here we report the use of
scanning tunnellingmicroscopy tomap the electronic structure
of Dirac fermions confined in quantum dots defined by
circular graphene p–n junctions. The quantum dots were
fabricated using a technique involving local manipulation
of defect charge within the insulating substrate beneath a
graphene monolayer13. Inside such graphene quantum dots we
observe resonances due to quasi-bound states and directly
visualize the quantum interference patterns arising from these
states. Outside the quantum dots Dirac fermions exhibit
Friedel oscillation-like behaviour. Bolstered by a theoretical
model describing relativistic particles in a harmonic oscillator
potential, our findings yield insights into the spatial behaviour
of electrostatically confined Dirac fermions.

Quantum confinement in graphene has previously been
accomplished through lithographically patterned structures14–17,
graphene edges18, and chemically synthesized graphene islands19–22.
These systems, however, are either too contaminated for direct
wavefunction visualization or use metallic substrates that prevent
electrostatic gating. Electron confinement in graphene has
also been induced through high magnetic fields23 and supercritical
impurities24, but thesemethods are unwieldy formany technological
applications. An alternative approach for confining electrons
in graphene relies on using electrostatic potentials. However,
this is notoriously difficult because Klein tunnelling renders
electric potentials transparent to massless Dirac fermions at
non-oblique incidence1–5. Nevertheless, it has been theoretically
predicted that a circular graphene p–n junction can localize
Dirac electrons and form quasi-bound quantum dot states6–11. A
recent tunnelling spectroscopy experiment12 revealed signatures of
electron confinement induced by the electrostatic potential created
by a charged scanning tunnelling microscope (STM) tip. However,
since the confining potential moves with the STM tip, this method
allows neither spatial imaging of the resulting confined modes nor
patterning control of the confinement potential.

Here we employ a new patterning technique that allows the
creation of stationary circular p–n junctions in a graphene layer
on top of hexagonal boron nitride (hBN). Figure 1a illustrates how
stationary circular graphene p–n junctions are created.We startwith
a graphene/hBN heterostructure resting on a SiO2/Si substrate. The
doped Si substrate acts as a global backgate while the hBN layer
provides a tunable local embedded gate after being treated by a
voltage pulse from an STM tip13. To create this embedded gate the
STM tip is first retracted approximately 2 nm above the graphene
surface and a voltage pulse ofVs=5V is then applied to the STM tip
while simultaneously holding the backgate voltage toVg=40V. The
voltage pulse ionizes defects in the hBN region directly underneath
the tip25 and the released charge migrates through the hBN to the
graphene13. This leads to a local space-charge build-up in the hBN
that effectively screens the backgate and functions as a negatively
charged local embedded gate13 (using the opposite polarity gate
voltage during this process leads to an opposite polarity space
charge). AdjustingVg afterwards allows us to tune the overall doping
level so that the graphene is n-doped globally, but p-doped inside a
circle centred below the location where the tip pulse occurred (it is
also possible to control the charge carrier density profile as well as
create opposite polarity p–n junctions by changing the Vg applied
during the tip pulse). As shown schematically in Fig. 1b, the STM
tip can then be moved to different locations to probe the electronic
structure of the resulting stationary circular p–n junction.

To confirm that this procedure results in a circular p–n junction,
we measured STM differential conductance (dI/dVs) as a function
of sample bias (Vs) on a grid of points covering the graphene
area near a tip pulse. The Dirac point energy, ED, was identified
at every pixel, allowing us to map the charge carrier density,
n, through the relation n(x , y)=−(sgn(ED)E2

D)/(π(h̄vF)2), where
vF=1.1×106ms−1 is the graphene Fermi velocity and h̄ is the
reduced Planck constant. Figure 1c shows the resulting n(x ,y) for a
tip pulse centred in the top right corner (the carrier density n can be
adjusted by changing Vg). The interior blue region exhibits positive
charge density (p-type) whereas the red region outside has negative
charge density (n-type).

To spatially map the local electronic properties of such circular
p–n junctions, we examined a rectangular sector near a p–n
junction, as indicated in Fig. 2a. Figure 2b shows a topographic
image of the clean graphene surface in this region. A 2.8 nm moiré
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pattern (corresponding to a 5◦ rotation angle between graphene and
hBN) is visible26,27 and the region is seen to be free of adsorbates.
A dI/dVs map of the same region (Fig. 2c) reflects changes in the
local density of states (LDOS) caused by the spatially varying charge
density distribution. Since the p–n junction centre is stationary,
we are able to move the STM tip to different locations inside and
outside the p–n junction to spatially resolve the resulting electronic
states. Figure 2d–g shows d2I/dV 2

s (Vg,Vs) plots at four different
locations, as denoted in Fig. 2c. We plot the derivative of dI/dVs
with respect to Vs to accentuate the most salient features, which
are quasi-periodic resonances that disperse to lower energies with
increasing Vg (see Supplementary Section 2 for dI/dVs sweeps
before differentiation). The energies of the observed resonances are
seen to evolve as ε∝

√
|Vg−VCNP| + constant, where VCNP is the

local charge neutrality point, as expected for graphene’s relativistic
band structure. We see that the energy spacing between observed
resonances (1ε) decreases as we move away from the p–n junction
centre until the resonances disappear outside. For example, 1ε is
29 ± 2mV at the centre, 16 ± 2mV at 50 nm from the centre, and
13± 2mVat 100 nm from the centre (forVg=32V).A similar trend
is also observed for p–n junctions that are n-doped in the centre and
p-doped outside (Supplementary Section 3).

We have imaged these electronic states both inside and outside
of circular p–n junctions. The dI/dVs maps in Fig. 3a,b show
eigenstate distributions mapped at two different energies within
the same section of a circular p–n junction (similar to the boxed
region of Fig. 2a, but with opposite heterojunction polarity).
Circular quantum interference patterns resulting from confined
Dirac fermions are clearly observed within the junction boundary,
as well as scattering states exterior to the boundary. The junction
boundary is demarcated by a dark band (low dI/dVs) in the
middle of each dI/dVs map (and further marked by a dashed line).
Comparing the overall spatial locations of the nodes and anti-nodes,
the two eigenstate distributions in Fig. 3a,b are clearly different (for
example, one has a node at the origin, whereas the other exhibits
a central anti-node). Figure 4a shows a more complete mapping
of the energy-dependent eigenstates (within a p–n junction of the
same polarity as Fig. 2a) along a line extending from the centre (left
edge) to a point outside of the p–n junction (right edge) at a gate
voltage of Vg=32V. The data are plotted as d2I/dV 2

s (r ,Vs) (where
r is the radial distance from the centre) to accentuate the striking
oscillatory features (see Supplementary Section 2 for dI/dVs(r ,Vs)

before differentiation). The energy level structure and interior nodal
patterns are clearly evident.

Our observations can be explained by considering the behaviour
of massless Dirac fermions in response to a circular electrostatic
potential. Due to Klein tunnelling, a graphene p–n junction per-
fectly transmits quasiparticles at normal incidence to the boundary,
but reflects them at larger angles of incidence1,4,5. In a potential
well with circular symmetry, electrons with high angular momenta
are obliquely incident on the barrier and are internally reflected,
thus leading to particle confinement and the formation of quasi-
bound quantum dot states7–12. As angular momentum is increased,
electrons are repelled from the centre of the potential by the cen-
trifugal barrier, leading to an increase in the number of dI/dVs
resonances that should be observable in spectroscopy measured
away from the centre28. This is consistent with our observation that
the apparent energy spacing between resonances (1ε) at the centre
(Fig. 2d) is approximately double the apparent energy spacing at a
point 100 nm away from the centre (Fig. 2f). Scattered quasiparticles
(with nonzero angularmomenta) external to the potential boundary
contribute to Friedel oscillations that radiate outwards, as seen in
Fig. 3. A circular graphene p–n junction with an n-doped interior
thus acts as a quantum dot for electron-like carriers and a quantum
antidot for hole-like carriers (as in Fig. 3), whereas the reverse is true
for p–n junctions of opposite polarity (as in Figs 2 and 4).
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Figure 1 | Creating and imaging a circular graphene p–n junction.
a, Schematic diagram showing the fabrication of a local embedded gate in a
graphene/hBN heterostructure. A square voltage pulse is applied to the
STM tip (held a few nanometres from the graphene surface) while the
backgate voltage Vg is fixed at a nonzero value. Vs is defined as the
negative of the tip bias. This technique creates a circular p–n junction in the
graphene in response to trapped space charge in the insulating hBN. b, The
STM tip spatially probes Dirac fermion wavefunctions in the presence of
the p–n junction. c, A representative experimental charge density map for
one quadrant of a circular graphene p–n junction. A dI/dVs spectrum is
measured at each pixel to determine the Dirac point energy ED(x,y), which
is then converted to a local charge carrier density n(x,y). The black dashed
line marks the approximate location of the p–n junction boundary at
Vg=40 V.

This qualitative picture can be confirmed by comparing the
experimental results to a model based on the two-dimensional
massless Dirac Hamiltonian, H =−ih̄vFσ ·∇r+U (r), where U (r)
is a scalar potential and σ = (σx , σy) are the pseudospin Pauli
matrices. Since we are interested in the low-energy eigenstates of the
confinement potential, we use a parabolic model U (r)=−κr 2 (that
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Figure 2 | Gate-tunable electronic structure of a circular graphene p–n junction. a, Schematic diagram of a circular p–n junction formed in graphene. The
white rectangle indicates the measurement region. b, STM topographic image of the region sketched in a. c, dI/dVs map of the same region as shown in b.
Dashed lines are placed near the p–n junction boundary in b and c to serve as guides to the eye. (Vs=−0.25 V, I=0.5 nA, Vg=30 V, 6 mV root-mean
squared a.c. modulation added to Vs.) d–g, d2I/dV2

s (Vg,Vs) plots measured at di�erent distances from the centre, as indicated in c (initial tunnelling
parameters: Vs=−0.1 V, I= 1.5 nA, 1 mV a.c. modulation). The grey scale bar in d also applies to e–g. The observed resonances vary in energy roughly
according to the expected graphene dispersion ε∝

√
|Vg−VCNP|. The energy spacing between resonances is larger at the centre (d) than is seen further

out (e,f), and the resonances disappear altogether beyond the p–n junction boundary (g).
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Figure 3 | dI/dVs images of quantum interference throughout a circular
graphene p–n junction. a, dI/dVs map measured for a p–n junction sector
similar to Fig. 2a, but having opposite heterojunction polarity (Vs=25 mV,
I=0.5 nA, Vg=−23 V, 1 mV a.c. modulation). b, dI/dVs map at the same
location as a, but for a di�erent energy, shows a di�erent spatial pattern
(Vs=22 mV, I=0.4 nA, Vg=−22 V, 1 mV a.c. modulation). The dark bands
(low dI/dVs) marked by the dashed lines in the middle of a and b represent
the classical turning points of the potential.

is, the lowest order approximation). The curvature of the potential,
κ = 6× 10−3 meVnm−2, was extracted from measurements of the
spatially dependent Dirac point energy (Supplementary Section 1).

We solved the Dirac equation to obtain the eigenstates for Dirac
fermions in this confinement potential (see Methods).

Figure 4b shows the results of our calculations in a plot of
∂LDOS/∂ε, the energy derivative of the LDOS, which corresponds
to the experimental quantity d2I/dV 2

s . The resulting eigenstate
distribution (Fig. 4b) closely resembles the experimental eigen-
state distribution (Fig. 4a). Both have a characteristic parabolic
envelope due to the confinement potential, as well as a com-
plex set of interior nodal patterns. The characteristic energy spac-
ing seen experimentally is in good agreement with the charac-
teristic energy scale ε∗=(h̄2v2

Fκ)
1/3
≈15meV that arises from the

theoretical model.
Further insight into the nature of the observed resonances can be

gained by directly comparing constant-energy experimental dI/dVs
line-cuts (Fig. 4c) to the modulus square of the simulated quantum
dot wavefunctions (Fig. 4d). Here it is useful to label the confined
states by a radial quantum number n=0, 1, 2, . . . and an azimuthal
quantum numberm=±(1/2),±(3/2), . . ., that is,HΨn,m=εn,mΨn,m.
To understand the experimentally observed behaviour, we note two
important properties of the eigenstates Ψn,m. First, although each
probability distribution |Ψn,m|

2 features n+1 maxima, most of the
weight is concentrated in the first maximum. The position of this
maximum is pushed further from the centre for larger values of
|m| (Fig. 4d). Second, for massless Dirac fermions confined by a
quadratic potential, we observe a near-perfect energy alignment of
the states εn,m, εn−1,m+2, . . . at low quantum numbers, indicating an
approximate degeneracy. This degeneracy explains why different
resonances originating fromdifferentΨn,m states form the horizontal
rows seen in Fig. 4a,b (which are not perfectly horizontal because
the degeneracy is not perfect). Combining these two observations,
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Figure 4 | Spatially resolving energy levels inside a circular graphene p–n junction. a, d2I/dV2
s measured as a function of Vs and the radial distance r from

the centre of a circular p–n junction having the same polarity as Fig. 2a. The measurement was performed at a fixed gate voltage (initial tunnelling
parameters: Vg=32 V, Vs=−0.1 V, I= 1.5 nA, 1 mV a.c. modulation). b, Theoretically simulated ∂LDOS/∂ε as a function of energy and radial distance for a
potential U(r)=−κr2 (potential shown as dashed line). c, Experimental dI/dVs radial line scans at di�erent Vs values for fixed Vg=32 V. d, Radial
dependence of the theoretical probability density |Ψn,m|

2 for quantum dot eigenstates. Each curve is labelled by radial and azimuthal quantum numbers
(n,m). Each set of theoretical curves has been vertically displaced by a quantity proportional to Vs for the correspondingly coloured experimental curve in c
to ensure that the black dashed line denotes the classical turning points.

we are able to attribute each experimental dI/dVs peak in Fig. 4c to
a differentΨn,m state, wherein each eigenstate contributes most of its
spectral weight to a single energy and radial position.

In addition to providing insight into the spatial and spectral
distribution of the Ψn,m states, our simulations also explain other
key aspects of the experimental data. In particular, the resonances in
our simulation have finite widths, originating fromKlein tunnelling
of confined states into the Dirac continuum. The widths of these
resonances lie within the range 4meV to 10meV for both the
experimental data and the theoretical simulation (Supplementary
Section 6). Furthermore, our simulation also explains the striking
observation that the apparent energy spacing for the resonances
close to the centre is nearly twice as large as the spacing away
from the centre (see Fig. 2d). This occurs because only the
lowest angular momentum states, m = ±1/2, have appreciable
wavefunction density at the origin, whereas for all otherm values the
Ψn,m states contribute predominantly to off-centred measurements.

In conclusion, we have spatially mapped the electronic structure
inside and outside of highly tunable quantum dots formed by
circular graphene p–n junctions. In contrast to conventional
semiconductor quantum dots, these new graphene quantum dots
are fully exposed and directly accessible to real-space imaging
tools. The techniques presented here might be extended to more
complicated systems such as multiple quantum dots29,30 with
variable coupling and arbitrary geometries.

Note added in proof:After acceptance of this paper, we became aware
of a relatedmanuscript (ref. 31) showing similar results to this work.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Sample fabrication.We fabricated our samples using a transfer technique32 that
uses 60–100-nm-thick hexagonal boron nitride (hBN) crystals (synthesized by
Taniguchi and Watanabe33) and 300-nm-thick SiO2 as the dielectric for
electrostatic gating. Single-layer graphene was mechanically exfoliated from
graphite and deposited onto methyl methacrylate (MMA) before being
transferred onto hBN previously exfoliated onto a heavily doped SiO2/Si wafer.
The graphene was electrically grounded through a Ti (10 nm)/Au (100 nm)
electrode deposited via electron beam evaporation using a shadow mask.
Devices were annealed in Ar/H2 gas at 350 ◦C before being transferred into our
Omicron ultrahigh vacuum (UHV) low-temperature scanning tunnelling
microscope (STM). A second anneal was performed overnight at 250–400 ◦C
and 10−11 torr.

STM and spectroscopy measurements. STMmeasurements were performed at
T=4.8 K with a platinum iridium STM tip calibrated against the Au(111)
Shockley surface state. STM topographic and dI/dVs images were obtained at
constant current with sample bias Vs, defined as the negative of the voltage
applied to the STM tip with respect to the grounded graphene sample. A
voltage Vg is applied to Si to electrostatically gate graphene. Scanning
tunnelling spectroscopy (STS) measurements were performed by lock-in
detection of the a.c. tunnel current induced by a modulated voltage (1–6mV at
613.7Hz) added to Vs, while dI/dVs(Vg,Vs) and dI/dVs(r ,Vs)measurements
were acquired by sweeping Vs (starting from a fixed set of initial tunnelling
parameters) and then incrementing Vg for dI/dVs(Vg,Vs) and r for dI/dVs(r ,Vs).
Measurements were restricted to−0.1eV<Vs<0.1 eV to avoid energy
broadening induced by phonon-assisted inelastic tunnelling34. All d2I/dV 2

s
figures are numerical derivatives of dI/dVs with respect to Vs. These results
were reproduced with numerous STM tips on more than 30 p–n junction
structures.

Creation of graphene p–n junction. The STM tunnelling bias and current are set
to Vs=−0.5V and I=0.5 nA, respectively. To create a circular graphene p–n
junction that is p-doped (n-doped) at the centre, we set Vg=40V (Vg=−40V).
The STM feedback loop is opened, and the STM tip is withdrawn by
1z∼1.5–2 nm. The sample bias is increased to Vs=5V for 1min. The sample bias
is then decreased to Vs=−0.5V.

Theoretical modelling. The eigenstates of the Dirac equation are obtained by
solving [vFσ ·p+U (r)]Ψ (r)=εΨ (r), where U (r) is the electrostatic potential and

p=−ih̄∇r. Because U (r) is radially symmetric, we use the polar decomposition
ansatz

Ψm(r ,θ)=
eimθ
√
r

(
u1(r)e−iθ/2
iu2(r)eiθ/2

)
wherem is a half-integer. By inserting the ansatz into the eigenvalue equation
we obtain (

[U (r)−ε]/h̄vF ∂r+m/r
−∂r+m/r [U (r)−ε]/h̄vF

)
u(r)=0

To make direct connection with the STS measurements we calculate the local
density of states LDOS(ε) as a function of r . The LDOS can be written as the sum
ofm-state contributions, LDOS(ε)=

∑
m LDOSm(ε), with

LDOSm(ε)=
∑
ν

〈|uv(r)|2〉λδ(ε−εν)

where ν labels the radial eigenstates for fixedm and 〈|uv(r)|2〉λ=
∫
∞

0 dr ′|uν(r ′)|2
e−(r−r ′)2/2λ represents a spatial average of the wavefunction centred at r with a
Gaussian weight λ/r∗=0.01. To solve the radial Dirac equation, we use the finite
difference method discretized in 1,200 lattice sites in the interval 0< r<L, with a
large repulsive potential at r=L=12r∗. Spurious states arising from the finite
potential jumps at the boundaries, localized within a few lattice sites of r=0 and
r=L, are excluded. We sum over eigenstates with azimuthal quantum numbers
−401/2≤m≤401/2, which is sufficient to accurately represent the states in the
energy range of interest. The delta function is approximated as a Lorentzian with
width 0.3ε∗, which is sufficiently small that the intrinsic linewidths of the quantum
dot eigenstates are preserved.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author on
reasonable request.
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