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a b s t r a c t

Momentum-conserving quasiparticle collisions in two-
dimensional Fermi gases give rise to a large family of exception-
ally long-lived excitation modes. The lifetimes of these modes
exceed by a factor (TF/T )2 ≫ 1 the conventional Landau Fermi-
liquid lifetimes τ ∼ TF/T 2. The long-lived modes have a distinct
angular structure, taking the form of cosmθ and sinmθ with
odd m values for a circular Fermi surface, with relaxation rate
dependence on m of the form m4 logm, valid at not-too-large m.
In contrast, the even-m harmonics feature conventional lifetimes
with a weak m dependence. The long-time dynamics, governed
by these modes, occurs at ‘‘non-Fermi-liquid" timescales, taking
values as large as τ ∼ T 3

F /T 4. The hierarchy of timescales, short
and long, leads to unusual long-time memory effects, defining an
intriguing transport regime that lies between the conventional
ballistic and hydrodynamic regimes.

© 2019 Published by Elsevier Inc.

1. The long- and short-lived modes: angular structure and dynamics

Describing degenerate two-dimensional (2D) electrons in terms of Fermi surface geometry that
varies in space and time is a powerful approach that links the ideas of one-dimensional bosonization
with Landau quasiparticles and collective modes [1–3]. This approach interprets the low-energy
excitations of the Fermi liquid as fluctuations of the shape of the Fermi surface, treating these
fluctuations as bosonic fields. Recently, these ideas were successfully applied to the problem of
the Fractional Quantum Hall effect [4,5] and to Fermi liquids with spin–orbit coupling [6]. Here we
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Fig. 1. The angular dependence of different perturbations of the Fermi surface. The odd-m modes have odd parity under
inversion symmetry k → −k and are long-lived. The even-m modes have even parity and are short-lived. The modes
with m = 0 and 1 do not relax, since they represent the zero-modes of the collision operator originating from particle
number and momentum conservation, respectively.

show that similar ideas help to gain new insight into the long-standing problem of quasiparticle
lifetimes and angular relaxation in 2D Fermi liquids.

Fermi-liquid theory describes elementary excitations in degenerate Fermi gases as free-fermion
quasiparticles with finite lifetimes governed by two-body collisions [7–9]. In three-dimensional (3D)
systems, the low-temperature collision rate γ ∼ T 2/TF sets the timescale

τ∗ = γ −1 (1)

that separates two fundamentally different transport regimes: ballistic at short times t < τ∗,
and hydrodynamic at longer times t > τ∗. Hydrodynamic transport is governed by the modes
associated with the quantities conserved due to microscopic conservation laws (energy, momentum
and particle number), whereas the memory about all nonconserved quantities is quickly erased at
times t ≳ τ∗.

This picture, well established theoretically and thoroughly tested experimentally in 3D Fermi
liquids, [10,11] must undergo a substantial revision in two dimensions. The new behavior arises
due to the interplay between kinematics of elastic collisions and fermion exclusion, which single out
the head-on collisions as the dominant mechanism of angular relaxation [12–14]. A new family of
emergent conserved quantities, resulting from such dynamics, gives rise to a new hierarchy of time
scales. This hierarchy defines a new ‘‘tomographic" regime that lies in between the conventional
ballistic and hydrodynamic regimes. Dynamics in the tomographic regime feature strong directional
memory and slow angular relaxation, which lead to scale-dependent viscosity and peculiar nonlocal
effects at times t > τ∗ [15,16].

The new hierarchy and the resulting anomalous kinetics can be captured most naturally by repre-
senting excitations as perturbations of the Fermi surface shape with different angular structure. This
representation is particularly useful when different harmonics have widely varying decay rates, as
is the case here. Here we consider a circular Fermi surface, describing perturbations by cylindrical
harmonics cosmθ and sinmθ with integer m values, as illustrated in Fig. 1. As we will see, the
even-m harmonics retain the ‘normal’ decay rates γm even ∼ T 2/TF (T ≪ TF ), whereas the odd-m
harmonics exhibit exceptionally small decay rates

γm odd ∼ (T/TF )2γm even. (2)

The large difference between the even-m and odd-m rates gives rise to a multiscale dynamics,
in which some degrees of freedom undergo fast equilibration, whereas other degrees of freedom
remain excited and dynamically active for a long time after being activated.

Harmonics eimθ form a complete set of functions that can be used to analyze time evolution
of perturbations with any angular structure. For example, a quasiparticle with momentum k =

kF (cos θ0, sin θ0) is represented by a bump on the Fermi surface located at θ = θ0. Approximating
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Fig. 2. Schematics of two distinct collision types: a small-angle process (a) and a ‘‘soft head-on’’ process (b). The small-
angle process leads to conventional diffusion on the Fermi surface, but its contribution is subleading to the soft head-on
process which leads to ‘‘superdiffusion’’. Particle momenta pi, pj are ingoing and pi′ , pj′ are outgoing. In the (a) process,
the collision is nearly forward (with exchange) and particles both hop by small, uncorrelated, angles ∆θ ∼ ∆θ ′

∼
T
TF
. In

the (b) process the particles are additionally nearly head-on and nearly-collinear, leading to enhanced scattering angles
∆θ = ∆θ ′

∼ (T/TF )1/2 which are identical at leading order in T/TF ≪ 1. The soft head-on process dominates the odd-m
rates and leads to the γm ∼ m4 scaling.

the bump by a delta function αδ(θ − θ0), we can write the time evolution as

δf (θ, t) =

∞∑
m=−∞

αeim(θ−θ0)−γmt . (3)

The resulting relaxation dynamics is of a multiscale character, since the even-m harmonics decay
at the conventional γm ∼ T 2/TF rates, whereas the odd-m harmonics with not-too-high m decay
considerably more slowly. This strong m dependence is in contrast with the behavior in 3D Fermi
liquids, where the analysis of lifetimes in the angular harmonics basis [17] gives relaxation at the
conventional rates for all low-order harmonics.

Physically, the reason for abnormally slow decay of the odd-m harmonics lies in that these
harmonics relax throughmany repeated collisions, taking place at times t ≫ τ∗. In contrast, the even-
m harmonics relax at the one-collision timescale, t ∼ τ∗. Different timescales arise despite that all
quasiparticle collisions occur at a rate γ ∼ T 2/TF . Indeed, we will see that kinematic constraints and
fermion exclusion, acting together, restrict possible scattering processes to near head-on collisions;
the near head-on nature of collisions makes them much more effective in relaxing even harmonics
than odd harmonics. Even harmonics therefore relax at the one-collision timescale, whereas odd
harmonics require many collisions to relax.

To clarify the hierarchy of relaxation timescales, we analyze the scaling γm vs. m, which turns
out to be quite interesting. For low-lying excitations, we find

γm even ∼
T 2

TF
logm, γm odd ∼

T 4

T 3
F
m4 logm,

1 < m ≲ mmax =

√
TF/T , (4)

valid up to numerical prefactors that depend on the two-body interaction strength. The odd
harmonics are considerably more long-lived than the even ones, so long as m < mmax. At m
exceeding mmax the even/odd asymmetry disappears and the standard Landau scaling γm ∼ T 2/TF
is recovered.

The m4 scaling of the odd-m rates arises due to a combination of several effects. The collisions
that relax odd harmonics are small-angle processes and near-head-on processes; examples are
shown in Fig. 2a and b. The process of particular importance for us is a special type of near head-on
process shown in Fig. 2b that is also small angle. We will see that both small-angle and near-head-
on processes can be regarded as small angular steps for an odd-parity distribution. Normally, such
dynamics would be described by angular diffusion – Brownian random walk on the Fermi surface
– which would result in the rates γm = Dm2, where D is the angular diffusion coefficient. This is
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indeed the case for typical small angle collisions such as the one in Fig. 2, as well as typical near
head-on collisions.

However, it turns out that in our problem angular relaxation is dominated by collisions with
nontrivial two-particle correlations of angular displacements that do not result in simple angular
diffusion. These are the soft head-on processes in which all four momenta (the two ingoing and the
two outgoing) are near-collinear and opposite to each other as depicted in Fig. 2b. These processes
lead to enhanced angular step sizes as compared to other small-angle or near-head-on processes
(δθ ∼ (T/TF )1/2 vs. δθ ∼ T/TF ), which makes them dominate angular relaxation. At the same time,
as we will see, the angular steps of the two colliding particles are equal to each other at leading
order in T/TF . The enhanced angular stepsize and enhanced correlations, acting together, generate
the unusual m4 scaling. This behavior will be discussed in more detail in Section 8.

The long-time dynamics at t > τ∗ can be viewed as an angular diffusion process through which
the excitation gradually spreads over the entire Fermi surface. The form of the diffusion operator is
mandated by the m dependence of the rates in Eq. (4), giving (with logarithmic accuracy)

(∂t + D∂
p
θ )δf (θ, t) = 0, p = 4, (5)

where the distribution obeys the odd-parity condition δf (π + θ, t) = −δf (θ, t). The dynamics is
distinct from a normal diffusive Brownian walk in angles associated with the rates γm = Dm2, with
D the angular diffusion coefficient. The anomalous angular diffusion, described by Eq. (5), originates
frommultiple repeated head-on collisions, arising due to enhanced angular stepsize and correlations
of angular steps in the soft head-on collisions as discussed above. We will refer to this behavior as
superdiffusion, described by a square of the Laplacian ∂4

θ , Eq. (5).
As a side remark, ‘‘superdiffusion’’ is often used in the literature as a name for anomalous

diffusion described by (∂t − D∇
p)n(x, t) = 0 with the exponent p < 2, whereas the case

p > 2 goes under the name ‘‘subdiffusion’’. Our choice for the name ‘‘superdiffusion’’, while not
entirely conventional, is meant to reflect the ‘‘anomalously fast’’ relaxation rates as compared to
the ‘‘normal’’ angular diffusion rates γm = Dm2. As we will see, these enhanced rates come as a
direct consequence of enhanced stepsizes for soft head-on processes discussed above.

It is interesting to mention that angular superdiffusion of the form reminiscent of our Eq. (5)
has appeared, a long time ago, in an entirely different context. In 1970s, Gurevich and Laikht-
man analyzed energy and momentum transport in fluids, which at low enough temperatures is
dominated by near-collinear scattering between acoustic phonons [18–20]. Such processes lead to
fast thermalization for each given direction, establishing, on a relatively short time scale, an angle-
dependent temperature. The latter evolves on a longer time scale through angular superdiffusion
with p = 4, described by an equation similar to Eq. (5) on a 2D sphere in 3D momentum space.

Perhaps the most direct manifestation of angular diffusion can be seen through spreading
of a collimated beam of particles injected into the system. Eq. (5), combined with the tomo-
graphic space–time evolution [16], predicts gradual decollimation of the injected beam, spreading
as

δθ ∼ t1/p, δθ ∼ x2/p (6)

where t is time and x is the distance measured along the beam line, related through the scaling
x ∼ t1/2 originating from tomographic dynamics [16]. This and other related effects will be discussed
in more detail in Section 11.

A quick note on notations before we proceed to the technical discussion. Throughout the paper,
unless specified otherwise, we adopt units kB = h̄ = 1, restoring correct dimensions in the final
results. In these units, we have εF = TF for Fermi energy and pF = kF for Fermi momentum. The
notation TF will be used most of the time; kF and pF will be used interchangeably. In discussing
two-body scattering we will sometimes refer, for brevity, to different particle momentum states as
‘‘particles’’.

The outline of the paper is as follows. In Section 2, we will introduce the Boltzmann kinetic
equation formalism for fermion collisions. In Section 3, we will represent the problem of finding the
decay rates γm as a linear eigenvalue problem of the linearized collision operator. We will construct
a Hilbert space of excitations, and show that the collision operator is Hermitian with a suitable inner
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product. In Section 4, we introduce a parameterization of the configuration space that accounts for
the kinematic constraints in a way convenient for subsequent analysis. In Sections 3 and 4, we
will compute the low-lying eigenvalues to zeroth order in T/TF , recovering the conventional Fermi-
liquid result for even-m harmonics, but finding a vanishing scattering rate for odd-m harmonics. In
Section 5 we discuss the strategy for developing perturbation theory in T/TF in order to compute
the odd-m relaxation rates. In Section 6, which is central for this work, we will set up a Rayleigh–
Schroedinger-like perturbation theory formalism, using T/TF ≪ 1 as a small parameter. In Section 7
we will evaluate the matrix elements that appear in the perturbation analysis, for simplicity ignoring
collisions with small momentum transfer q ≈ 0 and half of the terms in the integrand. We will
see that the matrix elements exhibit log divergences at q ∼ 2kF that are naturally cut off by a
finite energy transfer ω ∼ T . This analysis predicts scaling of relaxation rates with T and m, as
given in Eq. (4), up to numerical factors that are established in subsequent sections. In Section 8 we
pause to discuss the physical picture, in particular the correlations between angular displacements
of scattering particles that underpin the m4 and T 4 scaling, as well as implications of the latter for
angular relaxation (superdiffusive behavior). Next, in Sections 9 and 10 we patch the analysis of
Section 7 to account for the contributions of forward scattering q ≈ 0 and the other half of the
integrand. In Section 9, we will invoke a geometric duality and reflection symmetry to show that
the final result does not change except for a factor of two. In Section 10, we redo the calculation
with the collisions with q ≈ 0 and the entire integrand included from the start. In Section 11, we
will summarize the results and discuss possible experimental implications.

2. The kinetic equation approach. Why collision operator?

In order to examine the long-lived states, we will develop an approach based on the kinetic
equation

(∂t + v · ∇)f (p) = I[f (p)], (7)

where the collision operator I[f (p)] describes two-body collisions of quasiparticles with energies
near the Fermi level. We will focus, exclusively, on perturbations about the low-temperature state,
0 < T ≪ TF . The quantity of primary interest for us will be the collision operator I[f (p)] linearized
in weak perturbations from the equilibrium state. The eigenmodes and eigenvalues of this operator
describe different excitations and their decay rates, respectively.

We note in passing that higher-body collisions give rise to a smaller collision rate. For example,
the standard phase-space counting argument shows that three-body collisions have a base rate of
T 4/T 3

F (arising from five energy integrals subject to one constraint) which is smaller than the odd-
parity and even-parity rates, Eq. (4), found from the two-body collision processes. We also note that
the kinetic equation for quasiparticles in a Fermi liquid includes the Landau mean-field interaction
term that modifies the v · ∇ term in Eq. (7).

For two-body collisions, I[f (p)] is expressed as a difference of rates of the ‘‘gain" and ‘‘loss"
processes that populate and depopulate a state with momentum pi,

I[f (pi)] =

∫
d2pjd2pi′d2pj′

(2π )6
(Wi′j′→ij − Wij→i′j′ ), (8)

where j, i′ and j′ label the other particle states involved in the collision. The transition rates are
given by Fermi’s golden rule as

Wij→i′j′ =
2π
h̄

|V |
2fifj(1 − fi′ )(1 − fj′ ) δ

(∑′

α

εα

)
(2π )2δ(2)

(∑′

α

pα

)
, (9)

where V is a shorthand notation for the interaction matrix element which will be defined and
discussed below. The primed summations in Eq. (9) denote a difference between ingoing and
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outgoing quantities,∑′

α

Aα = Ai + Aj − Ai′ − Aj′ , (10)

so that the delta functions implement energy and momentum conservation.
In subsequent sections, we present a detailed analysis of the quantity I[f (p)] linearized in the

deviations from equilibrium, and use it to describe different types of excitations and their decay
rates. However, there are several aspects of the collision operator approach that must be discussed
first.

One has to do with the properties of the interaction matrix element V in Eq. (9). For spinless
particles, the matrix element V is given by the (in general, screened) two-body interaction

U(r − r ′) =

∫
d2p
(2π )2

Upeip(r−r ′) (11)

antisymmetrized under fermion exchange:

V =
⟨
pi, pj|U |pi′ , pj′

⟩
= Upi−pi′ − Upi−pj′ . (12)

For spin-1/2 particles and spin-independent interaction Up, we have

|V |
2

= |Upi−pi′ |
2
+ |Upi−pj′ |

2
+ |Upi−pi′ − Upi−pj′ |

2 (13)

where the first two terms describe scattering of two particles with opposite spins σi = σi′ ̸= σj = σj′

and σi = σj′ ̸= σj = σi′ , whereas the last term describes scattering of particles with equal spins. We
assume spin-unpolarized distributions, described by probability 1/2 for each spin component.

The details of the dependence of V on particle momenta, summarized here for completeness, will
not matter in our analysis. Instead, there is one specific value of |V |

2 that will appear, corresponding
to soft head-on processes in which momenta are near-collinear and opposite to each other, such as
the one depicted in Fig. 2b. This gives

|V∗|
2

= |U0 − U2kF |
2 (14)

for spinless particles, and

|V∗|
2

= |U0|
2
+ |U2kF |

2
+ |U0 − U2kF |

2 (15)

for spin-1/2 particles.
Another question of interest has to do with the choice of theoretical framework to analyze

excitation lifetimes. Indeed, at this point, the educated reader might be wondering about the
relation between the present approach and the conventional analysis of excitation lifetimes in Fermi
liquids based on the Green’s function selfenergy calculations [21–23]. The latter approach, as is
well known, predicts decay rates scaling with temperature as γ ∼ T 2/TF in both 3D and 2D Fermi
liquids. Furthermore, in 2D systems the rates exhibit additional enhancement by a log factor log TF

T .
[24–30] The selfenergy approach is therefore conspicuously unaware of the existence of the
long-lived odd-parity excitations.

The resolution of this conundrum lies in the peculiar multiscale character of relaxation dynamics
in our system. Indeed, it is usually taken for granted that there is a single timescale that charac-
terizes decay for all low-energy excitations. However, this is very much untrue for 2D, since the
odd-parity modes have lifetimes that are considerably longer than those of the even-parity modes.
The conventional selfenergy approach is not well suited for such a situation, since selfenergy is the
quantity which is most sensitive to the fastest decay pathways.

As discussed above, the new behavior arises because the predominantly head-on collisions give
rise to slow angular relaxation. The corresponding characteristic times are those of many repeated
collisions rather than one-collision. Because the selfenergy is dominated by the fast-decaying
modes, it does not capture the contribution of slow-decaying modes, which remain ‘hidden’ in the
selfenergy calculation.
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3. The eigenvalue problem for the linearized collision operator

Our first step will be to linearize the collision operator I[f (p)] in a small deviation from the
equilibrium distribution, f (p) = f (0)(εp) + δf (p). We will use the standard ansatz

δf (p) = F (ε)η(p),

F (ε) = −
∂ f (0)

∂ε
= βf (0)(1 − f (0)), (16)

where f (0)(ε) = (eβε
+1)−1 is the Fermi distribution function at temperature T = β−1 with energy ε

measured relative to the Fermi energy εF . The quantity η(p) can be viewed as a small momentum-
dependent perturbation to chemical potential. Linearizing the gain and loss terms in Eq. (8) in δf (p)
parameterized through η(p), and simplifying the result, brings the collision operator to a compact
form

I[η(pi)] = − β

∫
d2pjd2pi′d2pj′

(2π )6
2π
h̄

|V |
2f (0)i f (0)j (1 − f (0)i′ )(1 − f (0)j′ )

× δ

(∑′

α

εα

)
(2π )2δ(2)

(∑′

α

pα

) ∑′

α

ηα.

(17)

Here the primed sums denote the difference of the ingoing and outgoing quantities as in Eq. (10).
For instance,∑′

α

ηα = ηi + ηj − ηi′ − ηj′ . (18)

From now on we will drop the superscript (0) on equilibrium Fermi functions and will adopt a
shorthand notation ηα = η(pα). To simplify notation, we will be using a single integral symbol, as
in Eq. (17), to denote multiple integration.

We wish to examine eigenmodes δf (p) such that

I[η(p)] = −γ δf (p) = −γ F (ϵ)η(p). (19)

In what follows it will be convenient to rescale the collision operator and define a new operator

L[η(p)] = F−1I[η(p)], (20)

which transforms the eigenvalue problem to the form

L[η(p)] = −γmη(p) (21)

that we will analyze below. By rotational invariance, we can look for solutions of the form δf (p) =

g(p)eimθp for integer m, as depicted in Fig. 1, and label the eigenvalues −γm.
We first note that there is a small set of eigenmodes with zero eigenvalues, two for m = 0 and

two more for m = 1:

η(p) = 1, η(p) = ε, η(p) = px, η(p) = py. (22)

These are nothing but the zero modes of the collision operator originating from conservation of the
particle number, energy and momentum in two-body collisions.

To motivate the analysis of other eigenmodes on which we embark below, it is instructive to
consider a leading-order behavior at low temperatures T ≪ TF . At such temperatures, the quantities
F in Eq. (16) and f (0)i f (0)j (1− f (0)i′ )(1− f (0)j′ ) in Eq. (17) behave as delta functions centered at the Fermi
level, pinning all four energies εα , α = i, j, i′, j′ to ε = εF . Combining these restrictions with the
kinematic constraints due to momentum conservation, pi + pj = pi′ + pj′ , we find that the only
allowed scattering processes leading to angular relaxation over the Fermi surface are the head-on
collisions for which the momenta pα satisfy [15]

pi = −pj, pi′ = −pj′ , (23)
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Fig. 3. Schematic of the possible two-body collisions of quasiparticles at a sharp Fermi surface. Shown are two possible
scattering processes, arising due to the kinematic and fermion exclusion restrictions: (a) The incident particle momenta pi
and pj are head-on, the outgoing momenta pi′ and pj′ are head-out. In this case the scattering angles are unconstrained.
(b) The incident particle momenta are at a generic angle, and the scattering is forward (up to possible exchange). In this
case the outgoing particle momenta are constrained to be at the same angles as the incident momenta.

as pictured in Fig. 3(a). In this case the odd-m angular harmonics obey

eimθi + eimθj = 0, eimθi′ + eimθj′ = 0. (24)

These relations ensure that the quantity in Eq. (18) vanishes, giving zero eigenvalues at leading
order in T ≪ TF for all the modes with odd m. At the same time, as discussed in more detail below,
the even-m modes have nonzero eigenvalues of the ‘‘normal" scale γ ∼ T 2/TF . This conclusion is
unaffected by the presence of two other solutions of the kinematic constraints, pi = pi′ , pj = pj′

and pi = pj′ , pj = pi′ . These solutions describe forward particle scattering with possible exchange,
as illustrated in Fig. 3(b), a process that does not contribute to angular relaxation.

We will see that, while the odd-m eigenvalues do vanish at leading order in small T/TF ≪ 1,
they are nonzero at a higher order. To determine these eigenvalues, we therefore need to go beyond
the conventional Sommerfeld approximation that treats the thermally broadened Fermi surface as
a delta-function energy shell. Below we bring the expression for collision integral to the form that
will facilitate this analysis, and then proceed to develop a systematic perturbation theory in the
T/TF parameter.

4. Resolving kinematic constraints

We start with writing the integrals over energies and momenta in a way that makes the
temperature dependence in L[η(p)] more apparent. We split the energy and momentum delta
functions by introducing integrals over the energy and momentum transferred between colliding
particles i and j:

δ

(∑′

α

εα

)
=

∫
dω δ(εi − εi′ − ω)δ(εj − εj′ + ω). (25)

δ(2)

(∑′

α

pα

)
=

∫
d2q δ(2)(pi − pi′ − q)δ(2)(pj − pj′ + q), (26)

and integrate over the outgoing momenta pi′ , pj′ so that we are just left with an integral over the
momentum transfer q.

Throughout the paper we will use a parabolic band dispersion

ε =
p2

2m∗

− εF , (27)

where, following our convention, the energy is measured from εF . The parabolic model will be
convenient because it simplifies algebra without affecting the general applicability of our conclu-
sions, so long as temperature is small compared to Fermi energy, T ≪ εF . Indeed, for any band
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dispersion with cylindrical symmetry, the only relevant parameter that controls the behavior of
states sufficiently close to the Fermi level is the effective mass m∗ = pF/vF .

We therefore decompose∫
d2pj = m∗

∫
∞

−∞

dεj

∮
dθj,∫

d2q =

∫
∞

0
qdq

∮
dθq, (28)

noting that because the equilibrium Fermi functions are exponentially decaying away from the
Fermi level, they restrict energies to |εα| ∼ T ≪ εF . The integral over energy difference from
the Fermi level can therefore be continued to −∞. Integrating the energy delta functions over the
angles θq and θj gives:∫

dθq δ(εi − εi′ − ω) =

∫
dθq δ

(
viq cos(θi − θq) − q2/2m∗ − ω

)
=

∑
s1=±1

1
viq|sin(θi − θq)|

,∫
dθj δ(εj − εj′ + ω) =

∫
dθj δ

(
−vjq cos(θj − θq) − q2/2m∗ + ω

)
=

∑
s2=±1

1
vjq|sin(θj − θq)|

.

(29)

The asymmetry between these expressions, with dθq appearing in place of dθi, is due to the fact
that we are not integrating over θi.

In what follows it will be convenient to measure all the angles relative to the q direction, making
use of the rotational invariance of the problem. We will use θα − θq as new angular variables and,
unless stated otherwise, will use θα as a shorthand notation for θα −θq. E.g. in Eq. (29), we will have

1
sin θi

and 1
sin θj

instead of 1
sin(θi−θq)

and 1
sin(θj−θq)

.
The sign factors s1,2 = ± appearing in Eq. (29), which are defined by

s1 = sgn(sin θi) = sgn(sin θi′ ),
s2 = sgn(sin θj) = sgn(sin θj′ ),

(30)

label the roots of the arguments of the delta functions. The angles θα , found by resolving the delta
function constraints in Eq. (29), are given by the closed-form expressions:

cos θi = +
q
2pi

+
ω

viq
, cos θj = −

q
2pj

+
ω

vjq
,

cos θi′ = −
q

2pi′
+

ω

vi′q
, cos θj′ = +

q
2pj′

+
ω

vj′q
.

(31)

Possible collision processes, described by different combinations of s1 and s2, are shown in Fig. 4.
For illustration, all the states are taken on the T = 0 Fermi surface such that |pα| = pF and ω = 0.
In contrast, the angles given in Eq. (31) are exact.

The relations in Eq. (29) can now be used to simplify the collision operator, Eq. (17). Using the
quantity L[η(p)] = F−1I[η(p)] introduced above, and rescaling energies as

uα = εα/T , w = ω/T , (32)

we obtain

L[η(pi)] =
−2m∗T 2

h̄(2π )3fi(1 − fi)

∑
s1,s2

∫
dujdwfifj(1 − fi′ )(1 − fj′ )

∫
dq

qvivj|sin θi sin θj|
|V |

2
∑′

α

η(pα),

(33)

an expression that exhibits the ‘‘natural scale’’ T 2/TF of L. The rescaled energies uj and w are
integrated from −∞ to ∞ as in (28). The bounds on the q integration in Eq. (33) are fixed by
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Fig. 4. Schematic of possible collision processes allowed by kinematic constraints, with momentum transfer q, which
is chosen to be horizontal. The four cases shown correspond to different values of s1,2 = ±1. The sign s1 determines
whether particles i and i′ have momenta above (+) or below (−) the q axis. The sign s2 controls, in a similar manner, the
momenta of particles j and j′ . If s1 = −s2 particles scatter through a head-on process, relaxing the even-m harmonics; if
s1 = s2 the collision is of an exchange type and the distribution remains unchanged.

the requirement that the angles in (31) satisfy |cos θα| ≤ 1. The bounds are therefore set by the q
values where |sin θi sin θj| = 0. To zeroth order in T/TF these are q = 0 and q = 2kF . These bounds
will be analyzed more explicitly in later sections.

The form of Eq. (33) is convenient for the purpose of our analysis, since energy integration
is separated from the q integration. The latter, in our choice of variables, serves as proxy for
angular integration. However, since the angles θα do depend on the energies εα (through ω and
vα), the collision operator exhibits a nontrivial interplay between the angular and energy dynamics.
Accounting for this interplay is key for understanding the kinetics due to head-on collisions and,
eventually, obtaining a correct estimate for the odd-m rates. This will be the main subject of our
interest below.

We now estimate the rates γm to lowest order (T 2). This will provide a simple application of (33)
and will help to clarify the unique role of the head-on processes. At low temperature, T ≪ TF , the
expression is dominated by processes where all four energies are on the Fermi level. In this limit,
neglecting in Eqs. (31) the energy transfer ω ∼ T compared to q2/2m∗, we find that the angles obey

cos θi = − cos θj = − cos θi′ = cos θj′ . (34)

This condition means that the collisions are head-on (si = −s2, Fig. 4a,d) or forward with possible
exchange (s1 = s2, Fig. 4b,c). The latter possibility leads to ηi + ηj = ηi′ + ηj′ implying L[η(pi)] = 0.
We therefore only need to consider the head-on collisions pi = −pj, pi′ = −pj′ . For η(p) = eimθp we
find ∑

s1,s2

∑′

α

η(pα) = eimθi

{
4(1 − cos 2mθ ) m even,

0 m odd,
(35)

where we defined the angle θ which equals π minus the scattering angle:

cos θ = x =
q

2kF
. (36)

The dimensionless quantities θ and x will also be convenient for our subsequent analysis of the
odd-m rates. Eq. (35) indicates that, unlike the even-m rates, the odd-m rates vanish at leading
order. We will see below that these rates are nonzero at higher orders in T/TF ≪ 1.

Deferring the discussion of the behavior of odd-m rates beyond leading order till later, now we
focus on the even-m rates. For even m, we can write the integration over q in (33) as∫

dq
4(1 − cos 2mθ )
qvivj|sin θi sin θj|

|V |
2

≈
4
v2

∫ π/2

0

dθ
cos θ sin θ

|V |
2(1 − cos 2mθ ). (37)
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The apparent divergence in the denominator at θ = 0, π/2 is cut off logarithmically at θ ∼ 1/m
and π/2− θ ∼ 1/m by the (1− cos 2mθ ) factor. We can use this result to argue that L[η(pi)] takes
the form of Eq. (21) with an eigenvalue

γm even ∼
T 2

TF
|V∗|

2 logm. (38)

Indeed, while η(p) = eimθp is not an exact eigenvector of L, the angular portion of it must be, and this
is what leads to the logm enhancement. The radial part of the eigenvector, which forms a narrow
peak at the Fermi level of width δϵ ∼ T , does not affect the log enhancement at not-too-large m.

The special value of matrix element |V∗|
2, defined in Eqs. (14), (15), arises at leading log order.

Indeed, even though the full angular dependence of V contributes to the angular integral in (37),
at the log order the answer depends only on the |V∗|

2 value. This happens because for θ → 0 we
have (pi − pi′ ) → 2kF and (pi − pj′ ) → 0 and vice-versa for θ → π/2. Thus both limits reproduce
the expressions for V∗ in Eqs. (14), (15). This result indicates that relaxation dynamics is dominated,
at leading log order, by soft head-on processes such as the one in Fig. 2b. Interestingly, the special
matrix element value |V∗|

2 will also emerge in our analysis of the odd-m rates. While for even-m
harmonics the soft head-on processes dominate due to log-enhancement, for the odd-harmonics
they will also be favored due to an enhancement m2

→ m4.
The log enhancement of the even-m rates saturates at large m. If m is greater than TF/T , the

integrand is cut off by energy transfer rather than by an angular step, and we obtain

γm>TF /T ∼
T 2

TF
log

TF
T

, (39)

a result familiar in 2D Fermi liquids [24–30].
The above estimate is good for the eigenmodes with an even-m angular dependence. However,

if the perturbation η(p) is an odd-m harmonic that is slowly varying in momentum magnitude,
e.g. η(p) = eimθp for odd m, then the contributions of head-on collisions vanish. In this case, the
only collisions that can lead to a nonzero value of γm are collisions with momenta slightly off the
Fermi level, which are suppressed at low temperature by some power of T/TF . As we discuss in
great detail in subsequent sections, it is this behavior that results in abnormally small relaxation
rates for odd-m harmonics.

We therefore conclude that the spectrum of the collision integral has multiple timescales. One
is the conventional timescale due to T 2/TF collision rate for even harmonics. The other, longer,
timescale is due to the odd-harmonics relaxation rates that we expect to scale with a higher power
of temperature. We will find a scaling T 4/T 3

F with a prefactor that behaves asm4 lnm at not-too-high
m values. The rest of this paper will focus on determining the odd-m relaxation rates, and thus from
now on m will always represent some odd integer.

5. Strategy for odd-m rates

Here we pause for a moment to reflect upon the results so far and to discuss subsequent steps.
We start with identifying the hurdles that are encountered in developing perturbation theory, and
then discuss how those are resolved.

• One unusual aspect of the problem at hand is the complex structure of the configuration
space, parameterized by momenta of the three particle states j, i′ and j′, which are subject
to the kinematic constraints due to energy and momentum conservation. Six momentum
components and three delta functions translate into a three-dimensional integration in the
collision integral, Eq. (17).

• Besides being three-dimensional, the configuration space for two-body scattering has a fairly
complicated structure: For each of the four participating particle states i, j, i′, j′, all the action
is happening in a thin shell centered on the 2D Fermi sphere broadened by δp = T/vF ≪ kF ,
whereas the inner states are blocked by fermion exclusion. The kinematic constraints due to
momentum conservation are encoded through the angles defined in Eq. (31).
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• Energy and momentum transferred between the particles in the collisions result in energy
steps and angular steps that are coupled in a nontrivial way. Indeed, because of the ω/q
dependence in Eq. (31), small values ω ∼ T may not always translate into small values for
the angular steps. As a result, our analysis, in which we treat ω as a small perturbation, will
take a very different route away from q = 0 and near q = 0.

• Last but not least, we encounter unexpected cancellations in perturbation theory not just
at leading order but also beyond leading order. To understand the general structure of
perturbation theory, and to handle these cancellations, we introduce a Hilbert space that
describes various perturbations η(p) in a unified way. We develop perturbation theory using
the linear operator framework and the quantum-mechanical Dirac notation, which is a not a
common approach in statistical mechanics problems but is indispensable in this case due to
the complex nature of the problem.

To resolve these issues we proceed as follows. We use the parameterization of the configuration
space through the angles and nondimensionalized energies, defined in Eqs. (31) and (32). In the
next section we define the Hilbert space of perturbations η(p) and use it to set up perturbation
theory separately for each harmonic order m value. Then we perform perturbation analysis away
from the region q ≈ 0, discuss cancellations and determine the leading-order dependence of the
eigenvalues. Then we show that the behavior near q ≈ 0 is related to that away from q ≈ 0 by a
suitably defined duality transformation. We use the duality argument to refine the analysis and to
show that, up to a combinatorial factor, the results found away from q ≈ 0 remain unaltered and
have a completely general validity.

6. Eigenvalue perturbation theory at low temperatures

We need to go beyond lowest order in temperature in order to compute the odd-m relaxation
rates. To do this, we develop eigenvalue perturbation theory with the small parameter

δT = T/TF ≪ 1. (40)

We will start with a general discussion of how this expansion works in practice, postponing the
details to the next section. The odd-m rate must come from processes slightly off the Fermi level so
that the combination ηi + ηj − ηi′ − ηj′ does not vanish. We can expand ηα ’s around zero deviation
from the Fermi level, and obtain a power series in εα/εF = δTuα , for α = i, j, i′, j′.

The power series in δTuα is integrated against the Fermi functions. The integration produces
no further temperature dependence other than that of δT , as all quantities are appropriately
nondimensionalized. We therefore obtain I[η] as a power series in δT . We translate this expansion
to an expansion of γm using eigenvalue perturbation theory, and compute the corrections to the
lowest order zero mode η(p) = eimθp .

To make the arguments in this section more transparent we introduce a compact notation for
the angular and radial parts of the measure

dνiji′j′ =
m∗

(2π )3h̄
dq

qvivj|sin θi sin θj|
|V |

2,

dµji′j′ =
1

fi(1 − fi)
dujdwfifj(1 − fi′ )(1 − fj′ )

=
1

fi(1 − fi)
dujdui′duj′δ(ui + uj − ui′ − uj′ )fifj(1 − fi′ )(1 − fj′ ).

(41)

The angular measure dνiji′j′ is (manifestly) symmetric under exchanging i and j; it is also symmetric
under ‘‘reversing the time arrow" by swapping ingoing and outgoing states due to momentum
conservation in the direction perpendicular to q. We can write L as

L[η(pi)] = −T 2
∫

dµji′j′
∑
s1,s2

∫
dνiji′j′

∑′

α

η(pα). (42)
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Below we consider the space of perturbations η(p), taken separately for each harmonic order m.
It is natural to endow this space of functions with a Hilbert space structure, by defining the inner
product as

⟨η′
|η⟩ =

1
2πm∗

∫
d2pη′(p)F (p)η(p). (43)

Importantly, L is Hermitian with respect to this inner product. To show this, we consider the
matrix element ⟨η′

|L|η⟩. The energy dependence in the factor of F in the inner product is canceled
out by the 1/fi(1 − fi) in dµji′j′ , leaving a residual factor of β . We write

∫
d2pi = 2πm∗T

∫
dui,

where the integral over θi only gives a factor of 2π due to rotation symmetry. This factor cancels
the remaining part of the inner product normalization. We then obtain

⟨η′
|L|η⟩ = −T 2

∫
dµiji′j′

∑
s1,s2

∫
dνiji′j′η′

i

∑′

α

ηα, (44)

where the energy integration measure is now given by

dµiji′j′ = duidujdwfifj(1 − fi′ )(1 − fj′ ) = duidujdui′duj′δ(ui + uj − ui′ − uj′ ) fifj(1 − fi′ )(1 − fj′ ).

(45)

Crucially, this measure is invariant under exchanging i and j as well as under swapping ingoing
and outgoing states because the equilibrium Fermi functions satisfy 1 − f (−u) = f (u). Since this
is true for dνiji′j′ as well, we can symmetrize η′

i with respect to exchanging the ingoing states i
and j and antisymmetrize it with respect to swapping ingoing and outgoing states. This symmetry
property holds because the quantity

∑
′

α η(pα) is even and odd under these exchanges and swaps.
After symmetrization, the matrix element in Eq. (44) is brought to a manifestly symmetric form

⟨η′
|L|η⟩ = −

1
4
T 2
∫

dµiji′j′
∑
s1,s2

∫
dνiji′j′

∑′

α

η′
α

∑′

α

ηα = ⟨η|L|η′⟩, (46)

and so L is Hermitian. Additionally, if we plug in η′
= η, we obtain a non-positive expression and

so L is negative semidefinite, as expected on general grounds given that we want γm to be real and
non-negative.

Before we proceed further, we comment on how the expansion in δT is formally accomplished.
In Eqs. (23) we replace ω/viq with δTwpi/2q, write momenta and velocities as

pi = pF + εi/vF + · · · , vi = vF + εi/pF , (47)

and rescale εi as in Eq. (32). The part of L that needs to be expanded, as usual in perturbation
theory, must be expressed through matrix elements with certain fixed |η⟩ and |η′

⟩. The part of L
which involves the integration measure∫

dµiji′j′ ... =

∫
duidujdwfifj(1 − fi′ )(1 − fj′ )..., (48)

only includes properly rescaled quantities, and thus does not generate any factors of δT . Expansion in
L[η(p)] mainly comes from perturbing p values at which ηα (α = i, j, i′, j′) is evaluated. Technically,
the Jacobian part vivj|sin θi sin θj| also needs to be expanded, however, we will see that this
expansion will generate terms subleading in δT . This is so because the combination

∑
′

α ηα vanishes
at zeroth order, and therefore, unless it is expanded to higher order, the resulting expression will
vanish as well.

We write the eigenvector and the generalized eigenvalue as power-law series expansion in our
small parameter δT , Eq. (40),

|η⟩ = |η(0)
⟩ + |η(1)

⟩ + |η(2)
⟩ + · · ·

γm = γ (0)
m + γ (1)

m + γ (2)
m + · · · ,

(49)



14 P.J. Ledwith, H. Guo and L. Levitov / Annals of Physics 411 (2019) 167913

with temperature dependence |η(n)
⟩ ∝ δnT and γ (n)

∝ δnTT
2/TF . Similarly, we expand the collision

operator

L = L(0) + L(1) + L(2) + · · · . (50)

This is done by accounting for energy-dependent changes in momenta, velocities and angles in
Eqs. (47) and (31), as well as for the changes in ηα = η(pα) due to pα dependence on ω and pα in
Eq. (31) (as we will see, the latter contributions will be the most important in our analysis). Similar
to γ (n), the quantities L(n) are order n + 2 in T/TF because of the base rate of T 2/TF .

The lowest order eigenvector is

|η(0)
⟩ = |1⟩ := 1eimθ , (51)

and it is a zero mode to lowest order, γ (0)
m = 0. We also define a vector

|u⟩ :=
u
2
eimθ , (52)

where u/2 = u(p)/2 = ε(p)/2T represents momentum magnitude variation near Fermi level. The
vector |1⟩ is normalized, ⟨1|1⟩ = 1. The vector |u⟩, which is not normalized, includes a prefactor
1/2 introduced to avoid numerical factors 2 and 4 in various expressions below. Here the notation
‘‘:=’’ is used, in analogy with Dirac quantum mechanics, to identify the ‘‘quantum states" and the
corresponding ‘‘wavefunctions".

The quantity |u⟩ represents a small odd-m harmonic temperature fluctuation and has a central
role in our analysis. In particular, we will show that |η(1)

⟩ ∝ |u⟩. The importance of this mode reflects
the complications of odd parity angular relaxation in that it is no longer possible to disentangle
angular and radial relaxation. In particular, momentum conservation forces every angular step to
be paired with a radial step as long as the collisions are not perfectly head-on. Since we will have
to tackle collisions that are not head-on in order to allow odd parity modes to relax, we also need
to worry about coupling to radial modes.

Properly accounting for the interplay between radial and angular displacements is important
also because, as we will find below, ignoring this coupling leads to the m = ±1 modes not
being conserved, while reinstating it repairs momentum conservation. Furthermore, moving beyond
lowest order allows for violations of the approximate particle–hole symmetry at the Fermi level,
u → −u, and as a result the state |u⟩ will appear in the series in the powers of δT , describing
perturbation correction to |1⟩, despite the two states having different parity under u → −u.

We first discuss the structure of L(1)|1⟩. As discussed above, expanding the combination ηi +ηj −

ηi′ − ηj′ to linear order in δT gives a linear combination of δTuα for α = i, j, i′, j′. These factors pass
through the q integral and are integrated over energies as∫

dµji′j′uα.

Importantly, there is a simple relation between these quantities taken for different α = i, j, i′, j′.
Namely, all uα factors generate an identical dependence on ui up to an overall prefactor. This can
be verified by using the permutation symmetry of the second expression for dµji′j′ . Specifically, a
direct evaluation of the integral (for details, see Appendix) shows that∫

dµji′j′ui′ =

∫
dµji′j′uj′ = −

∫
dµji′j′uj =

1
3
ui

∫
dµji′j′ =

1
6
ui
(
π2

+ u2
i

)
. (53)

Hence, L(1)|1⟩ is proportional to ui
∫
dµji′j′ with a prefactor that depends on temperature as δT times

the base rate T 2/TF .
Crucially, same situation occurs if we compute L(0)|u⟩, wherein L(0) is the part of L zero order in

δT , i.e. taken without accounting for the radial and angular displacements in pα proportional to δT .
The factors of uα arise in this case just from ηα = uαeimθ rather than a linear expansion within L.
We therefore have

L(1)|1⟩ = λL(0)|u⟩ (54)
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with a numerical factor λ that depends on temperature as δT . The precise value of λ will not matter
for our discussion. This relationship will simplify the perturbation theory we develop in the rest of
the section such that in the end we will only need to compute matrix elements of L involving |1⟩
and |u⟩. We also note that the expressions L(1)|1⟩ and L0|u⟩ actually have matching combinations of
uα even prior to integration, however this property is not required to deduce (54).

We note parenthetically that the above ui dependence ui(π2
+ u2

i ) is not precisely correct due
to log-divergences in the integration over q for q → 0 and q → 2kF . These divergences are cut off
in an energy dependent way leading to terms like log(εF/ω). These additional contributions to the
integrand in (53) generate additional ui dependence that may differ between L(1)|1⟩ and L(0)|u⟩. The
final result holds, however, if we note that the relevant energy differences are of order T . Indeed,
writing log(εF/ω) = log(εF/T ) + log(T/ω) ≈ log(εF/T ) shows that the actual energy dependence
of the logarithm does not matter very much as long as T ≪ εF . We will therefore ignore these
contributions.

Having done this groundwork we are well equipped to discuss the perturbation calculation of the
odd-m eigenvalues. Naively, at the lowest nonvanishing order in δT the answer for the eigenvalue γm
is given by the diagonal matrix element ⟨1|L(1)|1⟩. However, since L(1)|1⟩ is odd under u → −u (see
Eq. (53)), we have γ

(1)
m = ⟨1|L(1)|1⟩ = 0 in addition to γ

(0)
m = 0. A second-order calculation is then

necessary, at which point one must consider the influence of first-order eigenvector corrections in
addition to the diagonal contribution ⟨1|L(2)|1⟩.

This second-order calculation, in general quite tedious, can be simplified considerably by taking
into account that the lowest eigenvalue is much smaller than all other eigenvalues. The latter is true
because the unperturbed lowest eigenvalue is zero, whereas other eigenvalues are on the order of
the base rate T 2/TF . The relative smallness of the lowest eigenvalue can be exploited to estimate it
at lowest nonvanishing order in δT as

−γ (2)
m = ⟨1|L(2)|1⟩ − ⟨1|L(1)

1

L̃(0)
L(1)|1⟩, (55)

where the tilde over L(0) indicates that the operator L̃(0) is restricted to the subspace of vectors
orthogonal to |1⟩. We note in passing that, since we just showed that L(1)|1⟩ is orthogonal to |1⟩,
the expression above can be simplified by dropping the tilde. The interplay between the two terms
in Eq. (55), which are of the same order in powers of temperature but have opposite signs, is going
to be important in our discussion below.

In terms of the Rayleigh–Schroedinger perturbation theory the expression in Eq. (55) represents a
sum of the diagonal and off-diagonal contributions arising at second-order perturbation theory. The
second contribution can be written as −⟨η(1)

|L(0)|η(1)
⟩, where |η(1)

⟩ = (L(0))−1L(1)|1⟩ is a correction
to eigenvector |1⟩ first-order in δT . Comparing to Eq. (54), we see that the vector |η(1)

⟩ is nothing
but |u⟩:

|η(1)
⟩ = −λ|u⟩, λ ∼ δT . (56)

In the Rayleigh–Schroedinger perturbation theory, the lowest eigenvalue shift due to eigenvector
change is of a negative sign, which can be interpreted as the effect of level repulsion in a quantum
system. The negative sign of this contribution will be important in our discussion below, as it will
cancel (partially or fully) the positive contribution due to the first, diagonal term. This cancellation
will help to maintain zero values for the m = ±1 eigenvalues as required by momentum
conservation.

In order to derive these results, we write L in a block form by decomposing the Hilbert space as
V = |1⟩ ⊕ Ṽ , where Ṽ is the subspace orthogonal to |1⟩:

L =

(
z0 µ†

µ L̃

)
(57)

where L̃ is L restricted to the subspace Ṽ , z0 = ⟨1|L|1⟩, the vector µ is given by L|1⟩ and † indicates
Hermitian transpose (where complex conjugation is needed only for eimθ factors). We consider
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the resolvent R(z) = 1/(z − L), computing it with the help of the standard recipe for inverting
(n + 1) × (n + 1) block matrices of the form [31]

M =

(
c b†

b A

)
, (58)

where A is an n × n matrix and b is an n-component vector. The inverse M−1 equals

M−1
=

(
k−1

−k−1b†A−1

−k−1A−1b A−1
+ k−1A−1bb†A−1

)
(59)

where k = c − b†A−1b. This result can be used to write the resolvent of L in a closed form. We will
be interested, in particular, in the matrix element R11(z) = ⟨1| 1

z−L |1⟩ which is given by

R11(z) =
1
k

=
1

z − z0 − µ′ 1
z−L̃

µ
. (60)

The poles of the resolvent coincide with the eigenvalue spectrum. The equation for the poles, after
plugging in z0 = ⟨1|L|1⟩ and µ = L|1⟩, becomes

z = ⟨1|L|1⟩ + ⟨1|L′
1

z − L̃
L|1⟩. (61)

The eigenvalue of interest, γm, is positioned near zero and far away, in a relative sense, from other
eigenvalues, whereas the corresponding eigenvector is close to |1⟩. Therefore, γm can be estimated
by setting z = 0 in the denominator of 1

z−L̃
and taking ⟨1|L|1⟩ and L|1⟩ at second and first order in

δT , respectively, which gives the result in Eq. (55). Since L(1)|1⟩ is orthogonal to |1⟩, we can ignore
the distinction between L̃ and L in the denominator of the second term to simplify the operator
calculus below.

We note parenthetically a direct analogy between the above analysis and the procedure used
to compute Green’s function of a quantum particle G(ε) = 1/(ε − H) in terms of its self energy.
The latter satisfies Dyson equation, which is an exact relation derived by resumming perturbation
series that has the same structure as the above formula for the resolvent R11(z). Similar to Dyson
equation, which provides a useful tool for developing perturbation theory for a particle which is
weakly coupled to other quantum states in the system, we can use the exact form of the resolvent
to account for the terms second-order in the off-diagonal part of L.

Next, the second-order perturbation result for the eigenvalue γm, given by the operator expres-
sion in Eq. (55), needs to be simplified by bringing it to a form that will facilitate the calculations
below. This can be done by making use of the relation in (54). A convenient way to do it is to
multiply and divide the second term by itself and transform it in such a way that the unknown
factor λ drops out:

⟨1|L(1)
1

L̃(0)
L(1)|1⟩ =

⟨1|L(1) 1
L̃(0)

L(1)|1⟩2

⟨1|L(1) 1
L̃(0)

L(1)|1⟩
=

λ2
⟨1|L(1)|u⟩2

λ2⟨u|L(0)|u⟩
=

⟨1|L(1)|u⟩2

⟨u|L(0)|u⟩
. (62)

In the numerator, we used L(1)|1⟩ = λL(0)|u⟩ only when acting on the right whereas in the
denominator we used it on the right and left; we also dropped tilde sign on the account of
orthogonality of |1⟩ and L|1⟩. The cancellation of the proportionality constant λ between the
numerator and denominator can also be verified by noting that the final expression is invariant

under rescaling |u⟩. We can write the result above as
(
L(1)1u

)2
/L(0)uu where we introduced the notation

Oη′η = ⟨η′
|O|η⟩. We therefore have

−γ (2)
m = L(2)11 −

(
L(1)1u

)2
Luu

. (63)

We note that each of the matrix elements in the above is evaluated at lowest non-vanishing order.
In the next section we are going to evaluate these matrix elements. We find that the combination
does not vanish in general, and that γm ∝ m4 logmT 4/T 3

F for TF/T ≫ m2
≫ 1.
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It is interesting to note that the two terms in Eq. (63) can be interpreted in terms of the
coupling between radial/angular relaxation noted above, wherein the first term accounts for angular
relaxation and the second term describes the effects due to radial/angular coupling that partially
compensate that of the angular relaxation. We will see this in more detail below. Here we highlight
one useful byproduct (and a consistency check) of this analysis: for m = ±1 the two terms cancel
exactly, giving γ

(2)
m = 0, as expected by momentum conservation.

7. Matrix element evaluation away from q ≈ 0

The goal of this section will be to compute the matrix elements Luu, L1u, and L11 in (63), obtaining
γm ∼

T4

T3F
m4 logm. This is done by expanding the combinations

∑
′

α η(pα) in the dimensionless

energy deviations from the Fermi energy, δTuα for η(p) = 1eimθp . These combinations are expanded
to first order, so that the quantities Luu, L1u, and L11 are expanded to zeroth, first, and second order
in temperature respectively, as in (63).

We start with reproducing, for reader’s convenience, the expression (46), with the angular part
of the measure dνiji′j′ expanded:

Lη′η =
−m∗T 2

32π3h̄

∑
s1,s2

∫
dµiji′j′

∫
dq

qvivj|sin θi sin θj|
|V |

2
∑′

α

η′
α

∑′

β

ηβ . (64)

where the integration limits are specified below Eq. (33). Anticipating that the dominant contribu-
tion arises from the near-head-on collision processes, we begin with a natural starting point: take
the above expression and expand around head-on values via the expressions in (31).

The approach to carry out this expansion, developed in this section, will only work sufficiently
far away from q ≈ 0 (namely, for q ≫ 2kF δT ). In future sections we will show that this gives a
correct answer for scaling with T and m up to an overall constant factor. The analysis of this section
will also motivate many of the manipulations we do in subsequent sections, where the final, more
precise, analysis is presented.

In order to carry out the expansion of the combination
∑

′

α η′
α

∑
′

β ηβ in δTuα , it is useful to break
it down in terms of cosines and sines. In doing so, we will continue to use the convention introduced
in Section 4, measuring all angles θα with respect to q. We decompose η(pα) = g(pα)eimθα =

g(pα)(cosmθα + i sinmθα) where g(pα) for our purposes will be 1 or uα . The sum over s1 and s2
means that any terms odd in θ yield zero and so we only have to consider the terms with two
cosine factors or two sine factors:∑

s1,s2

∑′

α

η′

α

∑′

β

ηβ=

∑
s1,s2

( ∑′

α

g ′

α cosmθα

∑′

β

gβ cosmθβ +

∑′

α

g ′

α sinmθα

∑′

β

gβ sinmθβ

)
.

(65)

We now proceed to expand the cosine terms, for the time being ignoring the sine terms. The
contribution of these terms is dominated by the small-q processes, for which the approach used in
this section is not valid. The sine terms will be analyzed below in two different ways, by mapping
on the cosine terms in Section 9 and then in a more direct way in Section 10.

To carry out the expansion we define a frequency parameter which is ‘‘dual’’ to w:

w̃ =
ω̃

T
=

εi − εj′

T
=

εi′ − εj

T
(66)

(the duality nature of the relation between the quantities w and w̃ will become clear in Section 9).
We can now expand the right hand sides of the relations given in Eq. (31) to first order in w and
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w̃ as

cos θi ≈ +x +
δT

4
(yw − xw̃) ,

cos θj ≈ −x +
δT

4
(yw − xw̃) ,

cos θi′ ≈ −x +
δT

4
(yw + xw̃) ,

cos θj′ ≈ +x +
δT

4
(yw + xw̃)

(67)

where we defined y =
1
x − x and x is defined in (36). Using the Chebyshev polynomials of the first

kind, cosmθα = Tm(cos θα), we have

cosmθi ≈ +Tm(x) +
δT

4
T ′

m(x) (yw − xw̃) ,

cosmθj ≈ −Tm(x) +
δT

4
T ′

m(x) (yw − xw̃) ,

cosmθi′ ≈ −Tm(x) +
δT

4
T ′

m(x) (yw + xw̃) ,

cosmθj′ ≈ +Tm(x) +
δT

4
T ′

m(x) (yw + xw̃) .

(68)

It is important to note that this expansion is only valid for m2δT ≪ 1 since otherwise higher
derivatives of Tm(x) would become equally important close to x = 1.

Carrying out the expansion for the state |u⟩ :=
u
2 e

imθ , yields a nonvanishing zeroth order value∑′

α

uα

2
cosmθα ≈

1
2
(ui − uj + ui′ − uj′ )Tm(x) = w̃Tm(x). (69)

For the state |1⟩ := eimθ , in contrast, we have cancellation to zeroth order, as expected. We are
therefore left with the first-order contribution∑′

α

cosmθα ≈ −δT w̃xT ′

m(x). (70)

To obtain the quantities Luu, L1u, and L11, these expressions must be substituted in Eq. (64) and
integrated over momentum transfer (

∫
dq...), and then over energies (

∫
dµiji′j′ ...).

We first discuss the strategy for q integration, arguing that the result is dominated by q ≈ 2kF .
Focusing on x =

q
2kF

≈ 1, and simplifying the measure accordingly, will help us to carry out the
integration in a closed form with logarithmic accuracy. We first note that the naive simplification
of the denominator in the q integration in (64) gives

dq
qvivj|sin θi sin θj|

≈
dx

v2
F x(1 − x2)

, (71)

featuring divergences as x → 0 and x → 1. The former divergence is not a problem since both (69)
and (70) vanish as x → 0. The limit x → 1 must be treated with some more care, however. We
note parenthetically that the convergence at x = 0 is a convenient feature of the cosmθα terms, on
which we focus in this section. The sinmθα terms, to the contrary, lead to quantities that are finite
as x → 0 and go to zero as x → 1. The x → 0 limit is problematic as the terms δTw

( 1
x − x

)
are

no longer small for sufficiently small x, and the perturbation theory breaks down. We will remedy
this problem in subsequent sections.

To perform the q integration in (64) we must cure the log divergence from x → 1. To do this, we
include terms first-order in δT for sin θi and sin θj. The δTw

( 1
x − x

)
terms vanish as x → 1 and so can

be ignored. We note that the bounds in the q integration in Eq. (64) are such that we integrate until
|sin θi sin θj| = 0, with the splitting of θi and θj generating an IR cutoff. Using the small parameter
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δT ≪ 1, Eq. (40), we can express the angular integral in (64) as∫
dx

vivjx|sin θi sin θj|
· · · ≈

∫ 1−a2/2

0

dx

v2
F x

√
1 −

(
x −

a2x
2

)2√
1 −

(
x +

a2x
2

)2 · · ·

≈

∫ 1−a2/2

0

dx
v2
F x(1 − x2)

· · · .

(72)

Here

a =

√
δT |w̃|/2 (73)

is the minimum value of θ = arccos x, the quantity defined in (36). The bounds in (72) are obtained
to first order in a2 which is sufficient to cure the divergence with logarithmic accuracy and ensure
that further corrections would only give higher order corrections to the entire integral. The resulting
integrand does not follow pointwise from the first or second integrands but gives the same answer
at log order after integration because the rest of the integrand is approximately constant in the
region where 1 − x ∼ a2/2.

Putting everything together, we change variables from q to θ and write the quantities Lη′η as

Lη′η =
−m∗T 2

32π3h̄v2
F

∫
dµiji′j′w̃

2
∑
s1,s2

Jηη′ (74)

where we introduced the quantities

Juu =

∫ 1− a2
2

0

dx
x(1 − x2)

|V |
2Tm(x)2 =

∫ π/2

a

dθ
cos θ sin θ

|V |
2 cos2 mθ =

∫ π/4

a

dθ
cos θ sin θ

|V |
2,

(75)

J1u = −δTm
∫ 1− a2

2

0

dx
x(1 − x2)

|V |
2Tm(x)T ′

m(x) = −δTm
∫ π/2

a

dθ
cos θ sin θ

|V |
2 cot θ cosmθ sinmθ

= −δTm
∫ π/4

a

dθ
cos2 θ sin2 θ

|V |
2 cosmθ sinmθ,

(76)

J11 = δ2T

∫ 1− a2
2

0

dx
x(1 − x2)

|V |
2T ′

m(x)
2

= δ2Tm
2
∫ π/2

a

dθ
cos θ sin θ

|V |
2 cot2 θ sin2 mθ

= δ2Tm
2
∫ π/4

a

dθ
cos θ sin θ

|V |
2 (cot2 θ sin2 mθ + tan2 θ cos2 mθ

)
.

(77)

Here we simplified the dependence on θ under the integrals by symmetrizing it with respect to
θ → π/2 − θ .

Now everything is in place to estimate γm values. First, as a quick validity check, we can plug
in m = ±1 and find that J11 = δT J1u = δ2T Juu, and so γ±1 = 0 by (63). For other values of m we
will generically obtain nonzero values for γm. These can be estimated for m ≫ 1 by asymptotically
expanding the above integrals. In particular, for each integral we have a logarithmic divergence that
is cut off at one end by a. For Juu the integrand is order 1 over an order 1 range of θ , whereas for J1u
and Juu the integrands are order m2 and m4 respectively for a range of θ on the order of 1/m. While
the matrix element |V |

2 in general depends on the angles as well as on s1, s2, in the limit x → 1 it



20 P.J. Ledwith, H. Guo and L. Levitov / Annals of Physics 411 (2019) 167913

becomes |V∗|
2. We therefore obtain∑

s1,s2

Juu = 4|V∗|
2 log

1
a

+ · · · ,

∑
s1,s2

J1u = −4δTm2
|V∗|

2 log
1
ma

+ · · · ,

∑
s1,s2

J11 = 4δ2Tm
4
|V∗|

2 log
1
ma

+ · · · .

(78)

Splitting log 1
ma = log a−1

− logm and asymptotically expanding with a−1
≫ m, we obtain from

(63) that the terms proportional to
∫
dµiji′j′w̃

2 log a−1 vanish. The logm terms do not cancel out
however. Noting that∫

dµiji′j′w̃
2

=
8π4

15
, (79)

[see Appendix] we arrive at

γm =
πm2

∗
|V∗|

2kB
15h̄5

T 2

TF
δ2Tm

4 logm =
πm2

∗
|V∗|

2kB
15h̄5

T 4

T 3
F
m4 logm, (80)

where we converted all dimensionful quantities to factors of h̄, kB, mass m∗ and degeneracy
temperature TF . This expression scales with respect to T and m as anticipated above.

Before closing this section we mention two technical issues with the above analysis that still need
to be addressed. One is that we ignored the sinmθα terms. The other is that the analysis appears
to break down when x becomes of order δT . These shortcomings will be resolved as follows. In
Section 9 we will show that the sinmθα terms can be mapped onto the cosmθα terms. We will
also show that the cosmθα terms still receive no contribution from the x ∼ δT processes once the
latter are treated properly. This implies that the only correction to the above result is a factor of 2.
In Section 10 we will also redo the whole calculation in a different, more logical way, with these
complications taken into account from the start.

8. Discussion of superdiffusive result and radial corrections

Before we move onto patching up the technical issues in the above analysis, we take a moment
to discuss the physical picture that emerged from the our discussion. One interesting aspect is the
relation between the m4 dependence and angular diffusion. Another is related to roles of the |1⟩ and
|u⟩ states, which account for radial relaxation and for the interplay between the latter and angular
relaxation.

To understand the relation between the m4 dependence and angular diffusion, we recall that
we found that the odd-m relaxation is dominated by scattering processes representing perturba-
tions of forward collisions and head-on collisions. This is an interesting situation, since neither
strictly-forward nor strictly-head-on processes have any impact on odd-m harmonics, and yet the
near-forward and near-head-on collisions dominate the relaxation dynamics. The perturbations
about forward and head-on collisions are described by small angular steps on a circle resulting
from each scattering event, which calls very naturally for an angular diffusion interpretation. As
discussed below, such a diffusion picture can indeed be constructed, however with two caveats.

One caveat is that, since only the odd-m harmonics of the distribution are involved in the
dynamics, we must identify ingoing (outgoing) particle states with angle θ with an outgoing
(ingoing) particle with angle θ + π , respectively. Namely, the configuration space for this diffusion
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process is a circle with the points θ and θ +π glued together, which is still a circle, albeit of a twice
smaller circumference. This allows us to think about near-head-on collision processes in terms of
small angular steps in configuration space.

Another caveat is related with the angular step size dependence on momentum transfer q =

2kFx. For most values of x we obtain from the above analysis a step size ∆θ ∼ δT and a factor
of m from T ′

m(x). Angular diffusion with the diffusion coefficient Dθ =
T2
εF

δ2T would then predict a

relaxation rate γm ∼ Dθm2
=

T2
εF
m2δ2T for these collisions. However, we find interesting behavior

as x → 1 with the step size becoming anomalously large. Indeed, as x → 1 the step size ∆θ is no
longer of order δT but instead it gets gradually enhanced to

√
δT because of the flatness of cos θα

for x close to 1. It is not enough, however, to simply replace the step size in a one-particle picture.
Instead, we must account for the angular diffusion changing character from one-particle random
walk to a correlated two-particle dynamics.

The origin of this correlated behavior can be seen as follows. We recall that the rate γm in
our analysis was found to be dominated by the contribution of x → 1, where several interesting
things happen. In particular, T ′

m(x) becomes of order m2 which leads to γm ∼
T2
εF
m4δ2T a behavior

distinct from that expected from standard diffusion. This arises because of two effects. One is the
enhancement of the angular step from δT to

√
δT , mentioned above. The value

√
δT is considerably

greater than the width δT of thermally smeared Fermi surface. The large angular step size
√

δT comes
with a second effect — nontrivial two-particle correlations. Indeed, by momentum conservation in
the direction perpendicular to q we must have θi − θj + θi′ − θj′ → 0 as x → 1. In other
words, even though the stepsize is increased from δT to ∆θ =

√
δT , momentum conservation

forces a correlation between the two angular steps such that they cancel each other out to lowest
order,

∆θi′ = −∆θj′ . (81)

Therefore, a ‘‘one-particle diffusion constant", naively estimated as D =
T2
TF
(∆θ )2 ∼

T3

T2F
, and the

associated rates γm = Dm2 do not provide a correct answer. Instead, we have a ‘‘one-particle
diffusion constant" of zero in the x → 1 limit, and the correct procedure must account for the
correlations, Eq. (81). This is precisely what the expansion carried out in Sections 6 and 7 is doing,
arriving at the fourth order term with an enhanced stepsize contributing in the limit x → 1,
such that γm ∼

T2
εF
m4(∆θ )4 ∼

T2
εF
m4δ2T . We call this fourth order but enhanced stepsize diffusion

‘‘superdiffusion’’, since its net effect is to enhance the m2 scaling to m4. The use of Chebyshev
polynomials automatically combines the effects of increasing stepsize and decreasing diffusion
constant such that all we see is a smooth transition from ordinary diffusion to superdiffusion as
x approaches 1.

The above discussion in terms of angular diffusion and superdiffusion explains them dependence
and temperature dependence fairly well, but it is important to emphasize that it is not the full story.
Most obviously, it explains neither the logarithmic factors nor momentum conservation. Another,
perhaps related, point is that a full understanding requires understanding radial relaxation which
accompanies angular relaxation. Radial relaxation is included in the second-order perturbation
theory through transitions between the |1⟩ and the first-order eigenvector correction |u⟩, Eq. (56),
generating the negative term in Eq. (63). The fine balance between the two terms, negative and
positive, is essential in our analysis.

From a qualitative standpoint, one can say that the constraints of momentum and energy
conservation mandate that every angular step comes with a radial step. In this sense, momentum
conservation demands the inclusion of transitions between the |1⟩ and |u⟩ modes. For m = 1 this
inclusion repairs momentum conservation through a perfect cancellation between the negative and
positive terms in Eq. (63). The interplay between angular and radial dynamics is also important for
higher m, as it impacts numerical and logarithmic prefactors for the rates γm. One might worry that
the superdiffusive behavior would be canceled out due to these corrections, as the log 1

a prefactor
of it is, but instead we find that it survives with a residual coefficient of logm.
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9. Extending the analysis to small q: duality transformation and reflections

It might seem that the analysis done so far is very incomplete, since Section 7 only handles
some contributions (cosine terms rather than sine terms, large q rather than any q). The goal of this
section is to vindicate the analysis of Section 7. This is done by invoking a suitably defined duality
transformation and reflection symmetry in order to map the contributions that were ignored in
Section 7 onto to the ones that were analyzed. We will see that the evaluation of matrix elements
carried out in Section 7 gives the correct final answer up to a proportionality constant (factor of
two). At this stage, however, this is far from obvious. Most obviously, the sinmθα terms were
ignored. Even for cosine terms, which we did consider in Section 7, small q processes were not
treated with care, as the expansions in (68) may break down as x → 0. Since the measure dq/q is
scale invariant, these processes have just as large of a phase space as the processes with q on the
order of kF .

To begin cataloging the important processes missed by the expansion in (68) we consider what
happens when particle i′ is switched with particle j′. For s1 = −s2, this exchange takes an almost
head-on process to another almost head-on processes, both of which are integrated over as q varies
from 0 to 2kF . However, for s1 = s2 we always have an exchange process with pi ≈ pj′ and pi′ ≈ pj,
as shown in Figs. 3 and 4. Exchanging i′ and j′, we obtain a forward scattering processes with
pi ≈ pi′ and pj ≈ pj′ . This process is unjustifiably missed in the expansion in δTw/x in (68); Indeed,
the forward scattering process has q ≈ 0, and in particular x ∼ δT . This is where we expect our
expansion to break down, and so it is not unexpected that this process was missed. We also know
the missed forward process must give the same contribution as an exchange process since it differs
only by exchanging identical particles.

In this section we account for these processes. as well as all other relevant ones, by mapping
them onto ones we have considered in Section 7. We also include the sinmθ terms by relating
them to the cosmθ terms that we have already considered. The end result is that the sinmθ terms
with the new processes give the same contribution as the cosmθ terms with the large q collisions.
The small-q processes give negligible contributions to the cosmθ terms, and the same is true for
the contribution of large-q processes to the sinmθ terms. The end result, as we will see, is just an
overall factor of 2.

In our discussion, we will make extensive use of the fact that the tips of the four momentum
vectors involved in a two-body scattering process coincide with four corners of a rectangle, with pi
positioned across the diagonal from pj and pi′ positioned across the diagonal from pj′ . This rectangle
property can be interpreted in terms of a geometric duality transformation.

The rectangular arrangement is a simple consequence of kinematics of two-body collisions
combined with parabolic dispersion ε = p2/2m − εF . In this case the ‘‘dual’’ momentum transfer
defined by exchanging particles i′ and j′,

q̃ = pi − pj′ = pi′ − pj (82)

is always perpendicular to the momentum transfer q = pi − pi′ used above:

q̃ ⊥ q. (83)

Two of the sides of the rectangle are the momentum transfer q and the other two sides are the
‘‘dual’’ momentum transfer q̃. One can see that the momenta form a rectangle by boosting to the
center of mass frame. In this frame, we have a perfect head-on collision, pi = −pj, pi′ = −pj′ , and
therefore the tips of the momenta form a rectangle.

The rectangle property can be seen e.g. in Figs. 4 and 5; however, the rectangles formed by q
and q̃ are not shown in these figures to avoid overcrowding. The rectangle property will be central
to our discussion in the next section; it is exhibited explicitly e.g. in Fig. 6.

Having introduced q̃ we can define a new ‘‘dual’’ coordinate system in which instead of s1 and
s2 the scattering particles configurations are labeled by s̃1 and s̃2. The variables s̃1 and s̃2 did not
appear explicitly in Section 7 because we privileged q over q̃. Nevertheless they are in principle
accounted for in the detailed behavior at q → 0 of (31) (this behavior was ignored earlier when
we performed perturbation theory). We note that the integration measures dνiji′j′ and dµiji′j′ do not
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Fig. 5. Collision processes analyzed in Section 7. In panel (a), the particles collide nearly head-on whereas in panel (b)
the particles nearly exchange momenta. Momenta angles θα are measured with respect to the q axis.

Fig. 6. Illustration of the labels Q ; s1 , s2; and s̃1 , s̃2 defined in and nearby Eqs. (85), (89), (30), and (90) respectively. We
use rectangles to illustrate the collision as discussed around Eq. (82). The momentum vectors end at the corners of the
rectangles and the horizontal and vertical side lengths correspond to q and q̃ respectively. Panels a and b label head-on
and exchange collisions that were analyzed in previous sections and have large q. Panels c and d have small values of q
and were ignored in the analysis of Section 7, but have large values of Q (the same as a and b) and can thus now be
included.

change under reflections corresponding to reversing signs of s1 or s2, and so they do not change
under reversing signs of the dual quantities s̃1 and s̃2 either.

The name ‘‘duality" is used here because of an interpretation of the rectangular arrangement in
terms of interchanging the particle outgoing states i′ and j′ while leaving i and j intact. Switching i′
and j′ makes no difference from the kinematic constraints point of view; however it is equivalent,
geometrically, to switching the long and short sides of the rectangle. Note that w and w̃ are related
by duality as well. We also note that the form of the matrix element (13) is antisymmetric under
duality, as required by Fermi statistics, and so |V |

2 is invariant.
We note parenthetically that, while the rectangular geometry of collisions with parabolic

dispersion appears to be used in a crucial way here, in fact we have chosen to work with parabolic
dispersion only for convenience. Since all the momenta are only expanded linearly about the Fermi
level, our analysis must be insensitive to the type of dispersion and can only depend on the slope
of the dispersion relation at the Fermi level (i.e. the effective mass m∗ = p/v). We therefore
believe that the Galilean symmetry associated with the parabolic dispersion is not essential for
the conclusions of our analysis.

The geometric observations based on duality make it obvious that the sinmθα terms do not
generate anything different from cosmθα terms. Indeed, if

θ̃α = θα − π/2 (84)

is the angle between pα and q̃, then because m is odd we have sinmθα = (−1)
m−1
2 cosmθ̃α . Thus,

we can just switch i′ and j′ to turn all sinmθα terms to cosmθα terms (the sign in front cancels out
in (65)). Technically, we could also have θ̃α = θα +π/2 if q̃ points in the opposite direction, but this
only results in a different sign canceling. We are therefore justified in only considering the cosmθα

terms and multiplying the integral by 2.
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We have discussed how the analysis in Section 7 misses processes that have small momentum
transfer q, and how some of these processes can be analyzed if we use the dual momentum transfer
q̃ to label collisions instead. We now discuss how all small q processes can be included and why
they do not contribute to the cosmθα terms. In the last section, s1 = s2 led to very thin and long
rectangles where q was large and q̃ was small. These were not an issue since our expansions were
valid as long as q was large. But since we privileged q over q̃, we did not see the collisions where
q was small but q̃ was large, where the dual analogues to s1 and s2, introduced above as s̃1 and s̃2,
are equal. This leads to the notion that we should use a q̃ coordinate system for these collisions
instead. However, the issues are slightly more subtle than this, since there are also collisions where
both q and q̃ are small that are missed in both coordinate systems (where s1 = s2 and s̃1 = s̃2).
These are nearly collinear processes where the entire collision rectangle is inside the Fermi surface
broadening. We will use reflection symmetry and energy conservation to show that these collisions
must have vanishing contribution.

To resolve this issue, in addition to applying the duality we also employ mirror reflections across
q or q̃. In particular, for any collision with both q and q̃ small, we can temporarily reverse the sign of
one of s1, s2, s̃1, s̃2 so that one of q or q̃ becomes large. We can then use the Chebyshev expansions
to compute the angles and then reflect back to the original collision geometry by adding in negative
signs where necessary. This way of treating the collisions allows us to show that none of the missed
collisions types contribute appreciably to the cosmθ terms. The result of Section 7 will therefore
be found to be correct, as it stands, for the cosine terms. As for the sine terms, it will be shown in
Section 10 that their contribution doubles the result for the rates.

We now describe the procedure outlined in the above paragraph in more detail and show why
the missed collisions have vanishing contributions to the cosmθα terms. Any missed collision in the
previous section’s perturbation theory can be obtained by reflecting one of the pairs pi, pj′ or pj, pi′

across the line defined by q̃ such that after the reflection s̃1 = −s̃2. After reflection, the collision will
then have pi and pi′ on different sides of the q̃ axis. It will then have q ∼ kF unless θα ≈ π/2. In the
former case we can apply the previous sections perturbation theory. In the latter case, momentum
conservation along the q axis shows that

∑′

α
cosmθα ≈ ±m(θ̃i − θ̃j + θ̃i′ − θ̃j′ ) ≈ 0, and so we

can assume the former case and apply perturbation theory on the reflected collision to measure the
angles. Such a reflection reverses the sign of cosmθα if α is one of the two particles with reflected
momenta. However, both of the possible sign reversals lead to the combination ±(ui +uj −ui′ −uj′ )
appearing in (69) and (70) and hence the contribution vanishes by energy conservation. Any of the
missed collisions therefore do not appreciably contribute to the cosmθα terms, justifying (up to a
factor of two) the result found from a less complete discussion in Section 7.

We note that the matrix element |V |
2 depends on s1, s2, s̃1, s̃2 as a (symmetric) function of q and

q̃, see (13). The matrix element that contributes at leading order is again |V∗|
2 since for s̃1 = s̃2 the

cosmθα terms vanish by energy conservation.
While the above analysis, based on duality and reflections, does fully account for the q ≈ 0

collisions by mapping them onto what we have already done for collisions away from q ≈ 0, for
completeness we also provide a full derivation that incorporates these ideas from the start. This
approach, which will be discussed in detail in the next section, is based on the following idea. To
account for the q ≈ 0 collisions in the above paragraphs, we effectively used a different labeling of
collisions that will be made explicit now and in the next section. Instead of labeling collisions with
their (small) momentum transfer q and computing angles in these coordinates, we instead reversed
signs of s̃1 and s̃2 to obtain a different collision with a large momentum transfer, which we will
now denote as Q such that

Q = max
s̃1,s̃2

q. (85)

For example, in Fig. 6 panels c and d would be mapped onto panels a and b, respectively. The
collisions in all the panels are therefore labeled by Q , and angles are initially measured using the
collisions with momentum transfer Q (a and b). The labels s̃1 and s̃2 then specify how to recover
the angles of the original collision by reflecting from the collision with momentum transfer Q . In
particular, for s̃1 = −s̃2 we have q = Q and the analysis is unchanged. For s̃1 = s̃2 (panels c or d), we
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label the collision with Q which is order kF , unlike q which is small, and use the angles measured
from the collision with momentum transfer Q (panels a or b) together with reflections to obtain
the angles for the collision of interest.

10. Full calculation

We now present a full version of the calculation, where the ideas in the previous section are
merged with the calculation details rather than used to repair them afterwards. As in Section 9, we
use duality and reflections to parameterize collisions in such a way that expansion of Chebyshev
polynomials does not break down. To do this, we will need to work towards a representation where
all the reflections s1, s2, s̃1, s̃2 are manifest. We work with the collision integral where the unsplit
energy delta function is reinstated but the momenta pi′ and pj′ have been integrated over by splitting
the momentum delta function. For clarity, here we will work with dimensionful energies, opting to
reinstate the power counting once we have arrived at a form of the integral where we can apply
perturbation theory. We have

Lη′η =
−m∗β

32π3h̄

∫
dεidεjdθidθjfifj(1 − fi′ )(1 − fj′ )

∫
qdqδ

(∑′

α

εα

)
|V |

2
∑′

α

η′
α

∑′

α

ηα, (86)

where rotation symmetry was used to integrate over θq to cancel the 1/2π in the inner product.
Instead of splitting the energy delta function with ω and integrating over it with angles, we instead
integrate over it with q. In order to ensure the delta function always has a solution, we allow for
negative values of q and divide by 2. Using the expressions for the energies εi′ = εi+viq cos θi+

q2
2m∗

and εj′ = εj − vjq cos θj +
q2
2m∗

, we obtain the simple result

1
2

∫
∞

−∞

qdqδ(εi + εj − εi′ − εj′ ) = m∗. (87)

Plugging this into the above we have

Lη′η =
−m2

∗
β

32π3h̄

∫
dεidεjdθidθjfifj(1 − fi′ )(1 − fj′ )|V |

2
∑′

α

η′
α

∑′

α

ηα. (88)

This is our starting point for a change of variables to an expression similar to (64), though with s̃1
and s̃2 included and no breakdown of perturbation theory. In particular, if we use the expressions
(31) to define a change of variables from θi and θj to q and ω, we obtain (64) with the collisions
that have, for example, θi ∈ (π/2, 3π/2) non-analyzable in perturbation theory because they have
small q. We instead come up with a change of variables with an analogue to q, denoted as Q , such
that Q is large for these collisions too. In particular, we use the following augmentation of (64):

|cos θi| =
Q
2pi

+
ω

viQ
,

|cos θj| =
Q
2pj

−
ω

vjQ
.

(89)

Note that we can now have θi ∈ (π/2, 3π/2) without Q small since the absolute value sign enables
both signs of cos θi. Hence, we have the additional labels

s̃1 = sgn(cos θi) = sgn(cos θj′ ),
s̃2 = sgn(cos θj) = sgn(cos θi′ ).

(90)

The use of these labels and the definition of Q are shown geometrically in Fig. 4. One can think of
Q as the largest value of q that one can obtain by reversing signs of s̃1 and s̃2. For s̃1 = −s̃2, we
have Q = q. For s̃1 = s̃2, however, q becomes very small but Q remains the same. Summing over
s̃1 and s̃2 is then required.

The absolute values in (89) give four times the phase space as the previous expressions (64) and
this overcounting needs to be adjusted for. One factor of two can be explained by the fact that now
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Fig. 7. Illustration of the condition X > 1/
√
2 and how it maps to X < 1/

√
2 under duality q ↔ q̃. The black rectangles

represent different collision types. The rectangles labeled a, b, c, and d match the corresponding collision types in Fig. 6.

q is no longer in fixed direction, since reversing the sign of both s̃1 and s̃2 changes q as q → −q.
We therefore need to divide by 2 to correct for this overcounting.

The other factor of two arises because small q processes are now described both by X = Q/2kF ∼

δT and X ∼ 1 ≫ δT . The latter case is what is referred to in (85), and the former case corresponds
to Q = mins̃1,s̃2 q. Both cases are a priori included in the change of variables (89). We can discard
the former case by only considering X ≫ δT , which both enables perturbation theory because now
X is always large and takes care of the overcounting problem. (We remind the reader that the goal
of this procedure is to parameterize every collision so that perturbation theory done by expanding
Chebyshev polynomials can be applied without breaking.)

One may verify explicitly that the entire integration range
∮
dθi
∮
dθj is covered for X ≫ δT .

Indeed, for s1 and s̃1 equal to 1, θi ranges from 0 to π/2 as in (64). Then, reversing signs of s1 and
s̃1 gives the other three quadrants. The possible values of θj are similarly obtained by reversing
signs of s2 and s̃2, where we note that some combinations such as θj = π/2 and θi = 0 are not
attainable since they require ω ∼ εF and that collisions with s̃1 = s̃2 were previously hidden as
small q processes. This is not an overcounting provided we only consider X ≫ δT .

A clean way to see that all possible θj consistent with θi are realized for X ≫ δT is by noting
that for s̃1 = −s̃2 we have a good understanding of all possible collisions via (64). Indeed, for these
collisions either x or x̃ = q̃/2kF is much greater than δT , and so the perturbation theory in (67)
can be used after a potential application of duality. But sign reversals of s̃1 and s̃2 are bijective
transformations that preserve the phase space measure, and hence all other processes are mapped
one-to-one onto these. We can therefore include all allowed processes by summing over s̃1 and s̃2
while only considering X ≫ δT .

For convenience, we choose X = Q/2kF > 1/
√
2. Geometrically, this corresponds to fixing the

domain of allowed θi and θj to within π/4 of 0 or π , as depicted in Fig. 7. We can do this consistently
since for almost all processes if one of the momenta is in this region the others are automatically.
The exceptions are the rectangles where all momenta lie within kFT/TF of the boundary, but these
have a small phase space and can safely be ignored. Since X ↦→

√
1 − X2 under duality (taking

θ ↦→ θ − π/2 in (89)), we are free to make such a restriction provided we multiply with an overall
factor of 2 that cancels out with the overcounting for ±q.

It is possible to work out the Jacobian for the transformation in (89),

J =
∂(θi, θj)
∂(Q , w)

, (91)

but it is easier to drop the absolute values and demand consistency with (64). Indeed, the
differentiations in Eq. (91) are unchanged under dropping absolute values and the above paragraphs
show that the global factors due to potential overcounting are unchanged as well, provided we sum
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over s̃1, s̃2 and put the appropriate bounds on the X integration. In either case, and with the same
approximations as in (72), we obtain∮

dθi

∮
dθj =

T
2m∗v2

∑
s1,s2,s̃1,s̃2

∫
∞

−∞

dw
∫ 1− a2

2

1/
√
2

dX
X(1 − X2)

. (92)

We now need to expand
∑′

α
cosmθα and

∑′

α
sinmθα . The first expression is the same as

before if s̃1 = −s̃2, but otherwise cosmθj and cosmθi′ pick up a relative sign compared to cosmθi and
cosmθj′ and we obtain the combination ±(ui+uj−ui′ −uj′ ) which vanishes by energy conservation.
Therefore, for the cosmθα terms we reobtain (69) and (70) but with a lower X limit of 1/

√
2 and

an upper θ limit of π/4 instead of 0 and π/2 respectively.
It is straightforward to perform a similar computation with Chebyshev polynomials of the second

kind for the sinmθα terms, but these are less convenient because of the sin θα prefactors and it is
simpler and more illuminating to make use of duality. In particular, taking the dual of the results
from the previous paragraph, we obtain that the sine terms (a) vanish for s1 = s2; (b) yield a result
proportional to w instead of w̃; and (c) are the same otherwise except with θ ↦→ θ − π/2. The
distinction between w and w̃ is not important since their integrals against the Fermi functions are
the same, and so we just replace w with w̃ to match the cosine terms.

Putting everything together and rescaling energy variables with temperature, we obtain

Lη′η =
−m∗T 2

32π3h̄v2

∫
dµiji′j′w̃

2
∑

s1,s2,s̃1,s̃2

Jηη′ (93)

where, for θ = arccos X ,

Juu =

∫ π/4

a

dθ
cos θ sin θ

|V |
2 (cos2 mθδs̃1,−s̃2 + sin2 mθδs1,−s2

)
,

J1u = −δTm
∫ π/4

a

dθ
cos θ sin θ

|V |
2(cot θδs̃1,−s̃2 + tan θδs1,−s2 ) sinmθ cosmθ,

J11 = δ2Tm
2
∫ π/4

a

dθ
cos θ sin θ

|V |
2 (cot2 θ sin2 mθδs̃1,−s̃2 + tan2 θ cos2 mθδs1,−s2

)
.

(94)

As in the previous evaluation, we can compute the leading order dependence onm and log a−1 of the
above. The terms δs̃1,−s̃2 and δs1, −s2 mean that in the limit of interest θ → 0 the only collisions that
matter again look like the soft head-on collision depicted in Fig. 2b. The corresponding interaction
matrix element value is therefore |V∗|

2, giving the collision operator matrix elements.∑
s1,s2,s̃1,s̃2

Juu = 8|V∗|
2 log

1
a

+ · · · ,

∑
s1,s2,s̃1,s̃2

J1u = −8|V∗|
2δTm2 log

1
ma

+ · · · ,

∑
s1,s2,s̃1,s̃2

J11 = 8|V∗|
2δ2Tm

4 log
1
ma

+ · · · .

(95)

Puting everything together, we obtain the same result as in (80) except with an extra factor of
two, as was anticipated, and argued, in the previous section. Restoring dimensionful units, therefore
arrive at the final result:

γm =
2πm2

∗
|V∗|

2kB
15h̄5

T 4

T 3
F
m4 logm. (96)

We have therefore repaired our calculation described in Section 7 by fixing all logical leaps.
Accounting for the contribution of the sine terms merely generates an additional factor of two in
the final prefactor, without affecting the dependences on temperature and m found in Section 7.
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11. Conclusions

The long-lived collective excitations emerging out of momentum-conserving collisions in 2D
Fermi gases is a surprising manifestation of fermion exclusion. These excitations are of interest from
a theory standpoint because they alter, in a fairly dramatic way, the traditional energy phase-space
analysis of quasiparticle lifetimes. The excitation lifetimes that exceed the standard Fermi-liquid
timescale by large factors of (TF/T )2 ≫ 1 suggest a variety of interesting implications that will be
a subject of future work.

Besides exceptionally long lifetimes, the long-lived excitations have several other surprising
properties. One is the distinct angular structure of an odd-parity modulation of the Fermi surface
which protects these excitations from the dominant mechanism for angular relaxation in two
dimensions: head-on collisions. Odd-parity excitations can only be relaxed through many small-
angle collisions, and we find that this leads to relatively slow diffusion across the Fermi surface.
Furthermore, this diffusion is not reduced to a simple Brownian random walk. Instead, it is domi-
nated by correlated angular displacements of colliding particles, a process that leads to anomalous
diffusion, or superdiffusion, described by a square of the Laplacian of the angular variable.

This physics defines a new transport regime that has a number of interesting experimental
manifestations, of which we mention just a few. One has to do with a beam of ‘‘test particles’’
injected into a two-dimensional Fermi gas. The dynamics of the beam will depend on collisional
relaxation of its direction of motion. In particular, head-on collisions will quickly give rise to a
retroreflected hole beam that is observable by magnetically steering it into a nearby probe [32].
At longer times, the forward electron beam and the backwards hole beam will slowly spread out
through the anomalous diffusion we detailed above.

Another striking manifestation is that the existence of exceptionally long-lived modes alters the
conventional ballistic-to-hydrodynamic crossover in 2D. In particular, the long-lived modes govern
an intermediate transport regime in which even-parity excitations have time to relax, but many
odd-parity excitations do not. This intermediate transport regime features non-local and scale-
dependent conductivity and viscosity with nontrivial fractional power laws [16]. These fractional
power laws are sensitive to the anomalous diffusion of the odd-parity excitations.

Looking ahead, the odd-parity modes can be expected to lead to interesting nonlinear effects
in electron hydrodynamics. Indeed, the slow decay rates which make these modes long-lived will
enhance the effects of nonlinearity. The reason for such enhancement is very general: because a
long-lived mode, once activated, will be coupled to other modes during its lifetime, the net effect
of nonlinearity will become stronger for longer lived modes. This opens up an exciting possibility to
explore novel nonlinear effects and unconventional angular turbulence in driven electron systems.

We finally note that the picture discussed above has a considerable degree of universality.
Namely, its validity is not limited to circular Fermi surface shape and parabolic band dispersion used
in our analysis. Weak modulations of the Fermi surface, so long as they respect inversion symmetry
p → −p, can be shown to preserve the unique role of head-on collisions and anomalously slow
relaxation rates for the odd-parity harmonics. Parabolic band dispersion, likewise, is inessential
at T ≪ TF , since near the Fermi level, where all the action is happening, a nonparabolic band
can always be approximated by a parabola with curvature set by the effective mass. Disorder and
Umklapp scattering, on the other hand, can present a limitation, however these effects are weak in
modern 2D materials such as graphene and GaAs-based electron systems, where the new physics
due to long-lived odd-parity modes can be realized and explored.

We acknowledge support from the MIT Undergraduate Research Opportunities Program (PL and
HG) and, in part, the Prof. Amar G. Bose Research Fellowship at MIT (LL). Part of this work was
performed at the Aspen Center for Physics, which is supported by National Science Foundation grant
PHY-1607611.

Appendix. Some useful Fermi integrals

Here we consider integrals of the type

⟨P(uα)⟩ ≡

∫
dµji′j′P(uα), (A.1)
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over the measure

dµji′j′ =
dujdui′duj′

fi(1 − fi)
δ(ui + uj − ui′ − uj′ ) fifj(1 − fi′ )(1 − fj′ ), (A.2)

where P(uα) is a general polynomial in uj, ui′ and uj′ and f (u) = 1/(eu + 1). The above integrals are
used in Sections 6 and 7.

To obtain ⟨P(uα)⟩, we consider the generating functional

J[βa] ≡
⟨
exp(iβjuj − iβi′ui′ − iβj′uj′ )

⟩
. (A.3)

where βa, a = j, i′, j′ are auxiliary parameters.
To evaluate J[βa] we proceed in three steps. First, we make a simple variable change

ui′ → −ui′ , uj′ → −uj′ (A.4)

and use the property of Fermi functions f (−u) = 1− f (u) to transform the measure to a symmetric
form (the sum goes over a = j, j′, i′)

J =

∫
ei
∑

a βaua dujdui′duj′

1 − fi
δ(ui + uj + ui′ + uj′ )fjfi′ fj′ . (A.5)

Next, using the identity δ(x) =
∫

∞

−∞

dα
2π e−iαx with x = ui + uj + ui′ + uj′ , we rewrite this expression

as

J =

∫
∞

−∞

dα
2π

e−iαui

1 − fi

∏
a=j,i′,j′

∫
∞

−∞

duei(βa−α)uf (u). (A.6)

This, combined with the known Fourier transform∫
∞

−∞

due−i(α+iδ)uf (u) =
π i

sinh[(α + iδ)π ]
,

with an infinitesimal imaginary part added to assure convergence, yields

J =

∫
∞

−∞

dα
2π

e−iαui

1 − fi

∏
a=j,i′,j′

π i
sinh[π (α − βa + iδ)]

. (A.7)

This procedure reduces the original three-dimensional integral to a one dimensional integral.
The integral over α can be computed by noting that under a shift α → α − i the integrand picks

up a factor −e−ui , so the integral can be computed using a rectangular contour C encircling the strip
−1 < Imα < 0, with the sides on the lines Imα = 0 and Imα = −1. The contributions from
Imα = 0 and Imα = 1 together cancel the 1 − fi factor. Within the contour, the integrand has
three poles at α = βa − iδ, a = j, i′, j′; evaluating residues at the poles, we have

J =
−π2e−iβjui

sinh[π (βj − βi′ )] sinh[π (βj − βj′ )]

+
−π2e−iβi′ui

sinh[π (βi′ − βj)] sinh[π (βi′ − βj′ )]

+
−π2e−iβj′ui

sinh[π (βj′ − βi′ )] sinh[π (βj′ − βj)]
.

(A.8)

Differentiating J with respect to βa’s, we can obtain various integrals used in Sections 6 and 7:∫
dµji′j′ =

π2
+ u2

i

2
, (A.9)∫

dµji′j′uj = −ui
π2

+ u2
i

6
, (A.10)
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dµji′j′ (ui − uj)2 =

(
π2

+ u2
i

2

)2

, (A.11)

and ∫
dµiji′j′ (ui − uj)2 =

∫
duifi(1 − fi)

(
π2

+ u2
i

2

)2

=
8π4

15
. (A.12)

This provides a derivation of the results used in Eqs. (53) and (79).
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