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The hyperfine interaction is an important probe for understanding the structure and symmetry of defects in
a semiconductor. Density functional theory has shown that it can provide useful first-principles predictions for
both the hyperfine tensor and the hyperfine constants that arise from it. Recently there has been great interest in
using group-IV impurity-vacancy color centers XV − (where X = Si, Ge, Sn, or Pb and V is a carbon vacancy) for
important applications in quantum computing and quantum information science. In this paper we have calculated
the hyperfine tensors for these XV − color centers using the HSE06 screened Hartree-Fock hybrid exchange-
correlation functional with the inclusion of core electron spin polarization. We have compared our results to
calculations which only use the PBE exchange-correlation functional without the inclusion of core electron spin
polarization and we have found that our results are in very good agreement with available experimental results.
Finally, we have theoretically shown that these XV − color centers exhibit a Jahn-Teller distortion which explains
the observed anisotropic distribution of the hyperfine constants among the neighboring 13C nuclear spins.
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I. INTRODUCTION

The hyperfine interaction is the magnetic interaction be-
tween the magnetic moment of a nucleus and the magnetic
moment of an electron. This interaction is important in a
number of applications including mapping the sky through
the presence of hydrogen molecules [1], studying conduction
electrons through the Knight shift [2], and exploring the elec-
trostatic hyperfine tuning of phosphorus donors in silicon [3].
For the case of the contribution from the state of zero angular
momentum of the electron, the hyperfine interaction has two
major terms: a contribution from the state of zero angular
momentum of the electron which is the so-called (isotropic)
Fermi-contact term and the dominant contribution due to the
(anisotropic) magnetic dipole-dipole interaction. Explicitly, it
has the form [4]

2µ0

3
geµegJµJ ŜJ · Ŝeδ(RJ )

+ 1
4π

µ0geµegJµJ
1
r3

[3(ŜJ · r̂)(Ŝe · r̂) − ŜJ · Ŝe], (1)

where ŜJ is the nuclear spin operator for a nucleus at position
RJ , Ŝe is the electron spin operator for an electron at a distance
r in the direction r̂ relative to the nucleus J , µ0 is the per-
meability of vacuum, µJ is the nuclear magneton of nucleus
J , µe is the Bohr magneton, and gJ and ge are the g factors
corresponding to the nucleus and electron, respectively. Note
that in Eq. (1) we have taken h̄ = 1.
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We can then write the Hamiltonian that captures this inter-
action in terms of the hyperfine tensor A,

H = ŜJ · A · Ŝe. (2)

For numerical convergence we replace δ(r) by δT (r), where
the new delta function δT (r) is localized within the Thomson
radius rT = Ze2/(4πε0mec2). [5] In constructing Eq. (2) from
Eq. (1), we integrate over the electronic wave function, which
introduces the spin density σ (r). Thus, the hyperfine tensor
has the form [5]

A(J )
i j = µ0γeγJ

[
2
3
δi j

∫
δT (r − RJ )σ (r)dr + 1

4π
Wi j (RJ )

]
,

(3)

where the first term in the square brackets is the isotropic
Fermi-contact term originating from electrons in spherically
symmetric orbitals and the second term in the square bracket

Wi j (R) =
∫ [

3(r − R)i(r − R) j

|r − R|5
− δi j

|r − R|3

]
σ (r)dr (4)

is the anisotropic magnetic dipole-dipole contribution. In
Eq. (3) we have defined the gyromagnetic ratio of nucleus J
as γJ = gJµJ/h̄ and the gyromagnetic ratio of the electron e
as γe = geµe/h̄. Following the convention of Gali et al. [6]
we can decompose the hyperfine tensor A(J )

i j into its principal
values Axx, Ayy, and Azz and we refer to these as the hyperfine
constants. The hyperfine interaction causes splittings between
electronic energy levels and between nuclear energy levels.
With the application of an external magnetic field, these en-
ergy levels are split and energy transitions among these states
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can be measured [2,7]. Theory can then be used to relate such
energies to the hyperfine tensor above [7].

The hyperfine interaction has some important conse-
quences when applied to the case of a paramagnetic defect
in a semiconductor. In particular, these hyperfine constants
can yield important information about which types of atoms
comprise the defect, where the atoms that surround the defect
are located, what the overall symmetry of the defect is, and
upon which atoms the electron spin density σ (r) is primarily
located [8,9]. In addition, first-principles calculations for these
hyperfine constants can be directly compared with experimen-
tal results for defects in semiconductors [8,9]. The spin-based
qubits investigated by Childress et al. (NV −) [10] and Dreher
et al. (P) [3] are paramagnetic defects and are often solid state
single photon emitters (SPEs) consisting of impurity-vacancy
defects and they have been widely studied. As far as practical
applications are concerned, they show promise in quantum
computing and quantum information processing in addition
to the more traditional field of metrology [11].

As we have discussed before, one important example of
a paramagnetic defect in a semiconductor is the negatively
charged NV center in diamond. Previous attempts to calcu-
late the hyperfine tensor for the NV − have used the local
spin density approximation of Ceperley-Alder [12] in den-
sity functional theory (DFT), as parametrized by Perdew and
Zunger [13], with a 512-atom supercell in an all-electron
PAW calculation [6,14], and the Perdew-Burke-Ernzerhof
(PBE) [15] exchange-correlation functional of DFT with a
512-atom supercell in an all-electron calculation [16,17].
Unfortunately, all-electron calculations are extremely com-
putationally demanding particularly for large supercell sizes.
While calculations involving ab initio pseudopotentials are
far less expensive than all-electron calculations, they inher-
ently disregard the contribution of the spin polarization of
core electrons to the isotropic hyperfine constants which are
already included by construction in all-electron calculations.
Yazyev et al. [18] have proposed a scheme to circumvent this
problem by including the contribution of core electron spin
polarization to the hyperfine interaction within pseudopoten-
tial electronic structure methods and this procedure is now
implemented in VASP [19] as of version 5.3.2. The accuracy
of this method has been demonstrated by comparison with
all-electron calculations [18].

Szasz et al. [9] have subsequently used the formalism of
Yazyev et al. [18] with both the PBE and the HSE06 screened
Hartree-Fock hybrid exchange-correlation functional [20,21]
to compute the hyperfine constants for the NV − at the nearest-
neighbor 13C nuclear spins closest to the N atom. They found
good agreement for their HSE06 results with the experiments
of Felton et al. [22] by within at most a few percent. It is
interesting to note that they also found good agreement for
their PBE results without the inclusion of core electron spin
polarization. These authors explained their result as being for-
tuitous as it likely resulted from a cancellation of the error in
underestimating the localization of the defect wave functions
and the error in neglecting core electron spin polarization [9].

While the NV − color center is certainly the most promising
impurity-vacancy color center because it functions at room
temperature, only 4% of its fluorescence is found in the zero-
phonon line (ZPL). Another issue with the NV − is that it

lacks inversion symmetry and thus possesses an electric dipole
moment which makes it quite susceptible to external noise
and local fields. Both of these effects tend to broaden the line
shape of excitation transitions thus causing serious problems
for its viability as a solid state single photon emitter [23]. One
way to avoid the deleterious effects of the lack of inversion
symmetry in NV − is to look at SPEs that possess inversion
symmetry such as group-IV impurity-vacancy centers (XV −)
(where X = Si, Ge, Sn, or Pb and V is a carbon vacancy)
in the diamond structure. These color centers consist of an
interstitial X atom placed in between two adjacent missing
carbon atoms with an extra electron added to form a negative
charge state (cf. Fig. 1). There has been a considerable amount
of both theoretical and experimental work on XV − impurity-
vacancy centers (Si [24], Ge [25], Sn [26], Pb [27] in diamond
and combination studies of several of these centers [24,28])
to produce them experimentally both as isolated species and
in hybrid structures, to measure their optoelectronic and spin
properties, and to enhance their spin coherence times by im-
planting them in cantilevers. Childress et al. [10] have shown
the importance of the hyperfine interaction regarding spin
coherence times of NV − color centers in diamond, suggesting
that a density functional theory (DFT) investigation of the
hyperfine interaction for XV − color centers in diamond could
also lead to useful insights and predictions regarding spin
coherence.

Many authors have performed experimental and theoret-
ical studies of the hyperfine constants for the neutral SiV 0

impurity-vacancy center in diamond which is known to be
paramagnetic. Gali and Maze [30] have computed the hyper-
fine constants of the nearest-neighbor 13C nuclear spins for
SiV 0 at the HSE06 level of theory and found agreement with
the experimental results of Edmonds et al. [31] to within at
most a few percent. Their calculation included the effect of
core electron spin polarization. They also computed the hyper-
fine constants for SiV 0 at the 29Si isotope atom of silicon, but
found their result to be in error with experiment by roughly
20%. We find similar disagreement in our own calculations
for SiV 0 at the 29Si isotope atom of silicon. It is interesting
to note that the method of Yazyev et al. [18] was compared
with all-electron calculations for systems containing H, C, N,
O, and F, but not Si, which may explain the disagreement.
As we restrict ourselves in this work to the investigation of
the hyperfine interaction with only carbon nuclear spins, our
ensuing results should not suffer from the same inaccuracy
when compared with experiment.

Encouraged by the success of Gali and Maze [30] in using
HSE06 to calculate the hyperfine constants at the nearest-
neighbor 13C nuclear spins of SiV 0 using core electron spin
polarization, we report in this paper the hyperfine constants
for the other important group-IV impurity-vacancy centers
(GeV −, SnV −, and PbV −) calculated at the same level of the-
ory. This information is very important because of the recent
attention that these defects have attracted in the field of quan-
tum information science. We have also computed the electron
spin densities for these centers and used this information to
explain the trends we observed for the hyperfine constants
of the nearest-neighbor 13C nuclear spins which surround the
defect. While experimental data for these impurity-vacancy
centers are currently unavailable, we are encouraged that
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FIG. 1. Structure of a group-IV impurity-vacancy color center (XV − where X = Si, Ge, Sn, or Pb and V is a carbon vacancy) from the
perspective along the [111] direction. The X impurity is shown in blue. The nearest-neighbor carbon atoms are numbered and shown in brown
while the dashed circles are carbon vacancies. Bond lengths d1, d2, and d3 using the HSE06 (PBE) functional between carbon atoms and the X
atom are in Å. The undistorted bond lengths (d) from structural relaxations resulting in all nearest-neighbor carbon atoms being located at the
same distance from the X atom are from other theory and are also expressed in Å. aReference [29].

our results serve as a control study since they are also in
good agreement with the calculations of Gali and Maze [30]
for the case of SiV 0 and should be helpful as a guide for
future experimental studies. We have argued that the Jahn-
Teller distortion exhibited at low temperatures by group-IV
impurity-vacancy color centers can be exploited to enhance
the spin coherence time of those color centers. Specifically,
this distortion leads to 13C nuclear spins along a certain axis
coupling more strongly than nuclear spins in other directions
to the electrons associated with the XV − color center through
the hyperfine interaction. This result suggests that several iter-
ations of reheating and cooling samples may allow the system
to find a distortion that gives an optimal coupling between the
13C nuclear spins and the electrons associated with the XV −

color center. We also argue that this anisotropy will lead to a
direction-dependent spin diffusion barrier that should be taken
into account in constructing hybrid systems of color centers.
We first review and discuss our computational methods in
Sec. II. In Sec. III we present our results and discussion and
in Sec. IV we provide the conclusions of our paper.

II. COMPUTATIONAL METHODS

We performed first-principles DFT calculations for
the various defect structures using the VASP code [19].
For the exchange-correlation energy of electrons we used
both the generalized gradient approximation (GGA) as
parametrized by (PBE) [15] and HSE06 with the original pa-
rameters [20,21]. Scalar relativistic effects [15] were included
with a projector augmented wave (PAW) pseudopotential
[19]. For the stoichiometric conventional unit cell the atomic
positions were relaxed until the magnitude of the Hellmann-
Feynman forces was smaller than 10−4 eV Å−1 on each
atom and the lattice parameters were concurrently relaxed.
The wave functions were expanded in a plane wave basis
with a cutoff energy of 500 eV and a Monkhorst-Pack grid
of 8 × 8 × 8 k points was used for integrations in recipro-
cal space for this stoichiometric conventional unit cell. The
relaxed lattice parameters of the stoichiometric conventional
unit cell were then used for all other structures. For the super-
cell spin-polarized calculations, the force criterion was that
the magnitude be less than 0.01 eV Å−1 on each atom with

an energy cutoff of 500 eV. We investigated supercells that
were 2 × 2 × 2, 3 × 3 × 3, and 4 × 4 × 4 multiples of the
conventional unit cell with appropriately scaled k-point grids.
The 4 × 4 × 4 supercells used gamma-point integration. We
have investigated a 2 × 2 × 2 Monkhorst-Pack [32] k-point
grid using both the PBE functional for a 4 × 4 × 4 supercell
containing SiV 0 and the HSE06 functional for a 4 × 4 × 4
supercell containing GeV −. We found that the hyperfine con-
stants change by less than 5% using the PBE functional and
by less than 2% using the HSE06 functional compared to the
values obtained from gamma-point integration.

For calculations of hyperfine constants, all carbon atoms
in the supercell were taken to be 13C. We have verified that
performing the calculation with 13C or 12C does not affect
the converged spin density. Thus, performing the calculation
with all carbon atoms as 13C will produce results for hyperfine
constants at the relevant carbon atoms that are equivalent to
performing calculations with only 1% of the carbon as 13C,
as dictated by their natural abundance. This result can be
rationalized by the fact that hyperfine constants on the order
of hundreds of MHz correspond to energies on the order of
10−6 eV and therefore negligibly affect the convergence of
electronic spin densities.

Core electron spin polarization was not included for the
anisotropic part of the hyperfine tensor as the method of
Yazyev et al. [18] implemented in VASP only includes core
electron contributions to the Fermi contact term. We argue that
the contribution of core electrons should not be significant in
the anisotropic magnetic dipole-dipole part of the tensor as
follows. The core electrons of the carbon atoms at which we
evaluate the hyperfine tensor are in orbitals with s character
and therefore, unlike their Fermi contact term contribution,
their magnetic dipole-dipole contribution integrates to zero
to a good approximation when evaluated relative to a given
carbon atom’s nucleus. For the magnetic dipole-dipole con-
tribution from the core electrons of neighboring atoms, we
note that the spin density from core electrons should only be
appreciable in a region of radius a0, where a0 is the Bohr
radius (given that the nuclear charges Z in our systems are
greater than 1, such a condition can be tightened). Assuming
that the spin density does not decay within that region, we
see that compared to the Fermi contact term contribution the
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TABLE I. The hyperfine constants (Axx , Ayy, and Azz) in MHz
for the nearest-neighbor 13C1 nuclear spin of SiV 0 are tabulated as a
function of 1/N and 1/L (in Å−1), where N is the number of atoms
in the supercell (N = 64, 216, and 512) and L is the linear supercell
dimension. We use the numeration scheme defined in Fig. 1 for the
13C1 nuclear spin. Note that Axx and Ayy are only approximately equal
for small supercell sizes, due to finite size effects, which becomes
more exact for larger supercell sizes. Our calculations utilize the
HSE06 functional and include the contribution of core states (A1c). In
addition to 13C1, we have discovered the same convergence behavior
for all of the other five 13C nuclear spins surrounding SiV 0 as defined
in Fig. 1.

Axx Ayy Azz 1/N 1/L

20 19 55 0.016 0.141
26 26 64 0.005 0.094
28 28 67 0.002 0.071

magnetic dipole-dipole contribution is reduced by a factor
of at least l3/a3

0, where l is the distance between the 13C
nuclear spin at which the hyperfine tensor is being evaluated
and the neighboring atom. Such an expression is obtained by
taking the ratio of 2

3σ (R) and 2
4π

σ (R)/l3, where the latter is
multiplied by the volume of a ball of radius a0 and where the
factor of 2 in the latter comes from maximizing the dipole
field. The variable R is the location of the neighboring atom’s
nucleus. Evaluating the suppression factor using parameter
values appropriate to this work shows that the contribution of
core electrons is indeed negligible. Considering all systems,
the resulting changes in the hyperfine constants are less than
4% for the HSE06 functional and less than 6% for the PBE
functional, which becomes less than 0.1% for both functionals
using a suppression factor Z3l3/a3

0 with Z ! 6.

III. RESULTS AND DISCUSSION

For the structural features of diamond, we found lattice
constants for the conventional unit cell of aPBE = 3.572 Å
and aHSE06 = 3.539 Å using the PBE and HSE06 function-
als, respectively, the latter being in good agreement with a
previous theoretical HSE06 calculation of a = 3.545 Å [23].
We also computed an energy band gap of 5.40 eV that is
also in good agreement with previous experimental [33] and
theoretical [9] results. The general structure of XV − is shown
in Fig. 1 along with a numeration scheme for the identification
of the nearest-neighbor carbon atoms. Bond lengths for the
XV − color centers are also provided in Fig. 1.

To determine the appropriate supercell required to obtain
well-converged results, we computed the hyperfine constants
for one of the nearest-neighbor carbon nuclear spins (13C1)
surrounding the SiV 0 color center as a function of super-
cell size. We provide these results along with 1/N , where N
is the number of atoms in a particular supercell, and 1/L,
where L is the linear supercell dimension (cf. Table I) with
L = V 1/3 and V is the volume of the supercell. For the 13C
nuclear spins that are nearest neighbor to the color center, the
dominant contribution to the hyperfine constants will be the
Fermi contact term. As shown in Eq. (3), this contribution is
computed by integrating over the Thomson radius, which is

independent of the size of the supercell. Thus, as the bulk of
the supercell is not considered in the calculation, it is more
appropriate to show convergence using the scaling for the
convergence of the spin density rather than using the inverse
number of atoms in or the inverse volume of the supercell,
since by construction the Fermi contact term cannot converge
faster than the spin density. Lany and Zunger have proposed
a scheme for correcting the energy of a charged defect in
a supercell, which shows that the convergence of the spin
density will scale as 1/L [34]. Furthermore, Deák et al. [23]
have found that the Lany and Zunger scheme is appropriate
for point defects in diamond. Therefore, we have considered
the inverse linear supercell dimension in assessing the level
of convergence of the results (including the inverse number of
atoms for comparison) and find that for a 512-atom supercell
the results are well converged.

Our test studies used the HSE06 functional and included
the contribution of the core polarization A1c which is the one-
center core contribution to the Fermi contact term [9,18,30].
We found that a supercell containing 512 atoms was sufficient
enough to produce converged results that were in very good
agreement with previous experimental [31] and theoretical
[30] results as illustrated in Table II. The hyperfine constants
were calculated for all six of the nearest-neighbor 13C nuclear
spins of SiV 0 and they are all in excellent agreement with
previous theoretical [30] and experimental results [31] (cf.
Table II). For the SiV 0 color center we found that the hyperfine
constants are evenly distributed among the nearest-neighbor
13C nuclear spins surrounding the Si atom. Furthermore, we
see from Fig. 2 that the spin density is also evenly distributed
among these nearest-neighbor carbon atoms. The calculation
of these hyperfine constants in a previous study [30] has con-
firmed that the KUL1 center in diamond [31] is actually SiV 0.
A detailed knowledge of such hyperfine constants can also
reveal how strongly the electronic spin density will interact
with neighboring 13C nuclear spins.

The situation for the SiV − color center is very similar to the
previously discussed SiV 0 case where the hyperfine constants
are evenly distributed among the nearest-neighbor 13C nuclear
spins surrounding the Si atom, as shown in Table II. The
electron spin density is also uniformly distributed among the
neighboring 13C nuclear spins in a similar manner seen for
SiV 0 as shown in Fig. 2. We should note, however, that we
discovered that the use of a more stringent force threshold of
10−4 eV/Å for convergence of the spin-polarized calculation
for the SiV − results in the appearance of some anisotropy
in the calculated values of the hyperfine constants. Previous
investigators have studied SiV 0 and SiV − defects modeled in
a hydrogen-terminated carbon cluster C128[SiV ]H98 with the
SiV defect at its center using the ORCA software package in
the DFT formalism [35]. They found no significant distortion
for the SiV 0 with a corresponding isotropic distribution of
hyperfine constant strengths at the nearest-neighbor 13C nu-
clear spins and a distortion for the SiV − with a corresponding
anisotropic distribution of hyperfine constant strengths at the
nearest-neighbor 13C nuclear spins. For the specific system
involving SiV −, they computed the hyperfine constants Axx ≈
Ayy ≈ 105 MHz and Azz ≈ 175 MHz for the more distant
pair of nearest-neighbor 13C nuclear spins and Axx ≈ Ayy ≈
21 MHz and Azz ≈ 37 MHz for the closer nearest-neighbor
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TABLE II. Hyperfine constants (Axx , Ayy, and Azz) in MHz evaluated at the six nearest-neighbor carbon nuclei surrounding the SiV 0 and
SiV − impurity-vacancy color centers using the numeration scheme defined in Fig. 1. These results use a supercell of 512 atoms with the HSE06
(PBE) functional both with and without the contribution of core states (A1c). Our results are compared with the theoretical results of Ref. [30]
and the experimental results of Ref. [31]. The theoretical results of Ref. [30] were also performed with the HSE06 functional including the
contribution of core states, but our calculations used a cutoff of 500 eV in the plane-wave expansion for the wave function for constant volume
relaxations while Ref. [30] used 370 eV.

Color center Isotope HSE06 (PBE) without A1c HSE06 (PBE) with A1c Other theory Experiment

Axx Ayy Azz Axx Ayy Azz Axx Ayy Azz Axx Ayy Azz

SiV 0 13C1, 13C2, 13C3 42 (32) 42 (32) 81 (65) 28 (20) 28 (20) 67 (53) 28a 28a 68a 30.2b 30.2b 66.2b

13C4, 13C5, 13C6

SiV − 13C1, 13C2 49 (39) 49 (39) 89 (75) 34 (26) 34 (26) 75 (62)
13C3, 13C4 49 (39) 49 (39) 90 (75) 35 (26) 35 (26) 76 (62)
13C5, 13C6 49 (39) 49 (39) 90 (75) 35 (26) 34 (26) 75 (62)

aFrom Ref. [30].
bFrom Ref. [31].

13C nuclear spins, while for the system involving the SiV 0

they found the hyperfine constants Axx ≈ Ayy ≈ 44.5 MHz
and Azz ≈ 77.5 MHz for the nearest-neighbor 13C nuclear
spins [35].

Given the agreement of our test studies for SiV 0 with
both experiment and theory, we computed the hyperfine con-
stants at the nearest-neighbor 13C nuclear spins of the XV −

impurity-vacancy centers, where X = Ge, Sn, or Pb and V
is a carbon vacancy, this time using both the HSE06 and

PBE functionals including the contribution of core polariza-
tion (A1c) [9,18,30]. The hyperfine constants calculated at the
nearest-neighbor 13C nuclear spins are listed in Table III. For
the GeV − we note a significant change in the behavior of
the hyperfine constants when compared to those of SiV 0 and
SiV −. For example, as shown in Table III, the hyperfine con-
stant strengths become anisotropically distributed, especially
when evaluated at the 13C nuclear spins which are nearest
neighbors to the defect center. The electron spin density plots

FIG. 2. HSE06 spin densities for (a) SiV 0, (b) SiV −, (c) GeV −, (d) SnV −, and (e) PbV − with the [111] direction indicated. The electron
spin density is shown in yellow at an isovalue level of 0.01 e/Å3 and the carbon vacancies are shown as dashed circles. The nearest-neighbor
carbon atoms are illustrated in brown.
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TABLE III. Hyperfine constants (Axx , Ayy, and Azz) in MHZ evaluated at the six nearest-neighbor carbon nuclei surrounding the GeV −,
SnV −, and PbV − impurity-vacancy color centers using the numeration scheme defined in Fig. 1. These results use a supercell of 512 atoms
with the HSE06 (PBE) functional both with and without the contribution of core states (A1c) and a cutoff of 500 eV in the plane-wave expansion
for the wave function for constant volume relaxations.

Color center Isotope HSE06 (PBE) without A1c HSE06 (PBE) with A1c

Axx Ayy Azz Axx Ayy Azz

GeV − 13C1, 13C2 114 (43) 113 (42) 209 (83) 79 (28) 78 (28) 174 (68)
13C3, 13C4 22 (42) 21 (42) 42 (83) 14 (28) 14 (28) 35 (68)
13C5, 13C6 22 (42) 21 (42) 42 (83) 14 (28) 14 (28) 35 (68)

SnV − 13C1, 13C2 96 (34) 96 (34) 195 (77) 59 (19) 59 (19) 158 (61)
13C3, 13C4 18 (35) 18 (35) 41 (77) 10 (19) 10 (19) 33 (62)
13C5, 13C6 18 (35) 18 (35) 41 (77) 10 (19) 10 (19) 33 (62)

PbV − 13C1, 13C2 98 (32) 97 (32) 203 (77) 58 (15) 58 (15) 163 (60)
13C3, 13C4 16 (32) 16 (32) 38 (77) 8 (15) 8 (15) 30 (60)
13C5, 13C6 16 (32) 16 (32) 38 (77) 8 (15) 8 (15) 30 (60)

corroborate this anisotropy (cf. Fig. 2) where there are larger
lobes of spin density near carbon nuclei 13C1 and 13C2 in con-
trast to the smaller lobes near 13C3, 13C4, 13C5, and 13C6. This
trend is also seen for the SnV − and PbV − color centers where
the hyperfine constants at the nearest-neighbor 13C nuclear
spins surrounding the defect center are shown in Table III.
The anisotropic distributions of the electronic spin densities
for the SnV − and PbV − centers are very similar to that seen
for GeV − as shown in Fig. 2. Our calculations for GeV −,
SnV −, and PbV − all reveal that, because of the anisotropic
distribution in both the hyperfine constants and the electronic
spin density, certain 13C nuclear spins, namely 13C1 and 13C2,
should interact more strongly with the electronic spin density
than other 13C nuclear spins, specifically 13C3, 13C4, 13C5, and
13C6.

One could ask, what is the physical mechanism for this
observed anisotropy in the hyperfine constants of GeV −,
SnV −, and PbV −? In our calculations we found that the in-
teratomic bond lengths among nearest-neighbor atoms and
surrounding atoms beyond the defect were distorted from
their equilibrium positions after relaxation due to the cre-
ation of the defect in the crystal (cf. Fig. 1). We recognize
that distortions exist beyond the nearest neighbor, but have
chosen not to plot or discuss them here in our paper for
the sake of clarity. These observed distortions can also be
interpreted as a result of the Jahn-Teller effect as previously
discussed [29]. We note that while SiV − does not show a
significant amount of bond distortion, it does have the largest
Jahn-Teller barrier in the ground state as noted in a previous
work [29]. This is likely due to smaller gradients along the
adiabatic potential energy surface for which a force threshold
of 0.01 eV/Å is insufficient to explore. These distortions
occur when defect structures are allowed to relax with spin
polarization where the degeneracy of the 2Eg ground state is
broken due to the E × e dynamic Jahn-Teller effect [29]. Such
a distortion elongates certain bonds when compared to oth-
ers leading to anisotropy in the distribution of bond lengths.
As suggested in the work of Gali et al. [6], the hyperfine
constants are sensitive to the distance between 13C nuclear
spins and the defect center. Our calculations show that this
sensitivity is so high that even minute distortions are sufficient

to lead to hyperfine constants evaluated at nearest-neighbor
13C nuclear spins that differ from each other by an order of
magnitude.

For the heavier X atoms, a heuristic justification for the
distortion of the bond lengths follows from the observation
that the D3d symmetry of the XV − defects can be viewed
as a weakly broken octahedral symmetry, in which case the
orbitals involved in the bonding should be the dxy, dxz, and
dyz orbitals. Each X atom has five valence electrons with the
associated additional negative charge and each of the effective
dxy, dxz, or dyz orbitals can hold at most two electrons. We use
the term “effective” here to indicate that such orbitals may not
exactly describe the system, but can serve as an approximation
to allow us to elucidate its behavior. Two of these orbitals
will hold two electrons and the remaining orbital will hold
only one electron leading to an uneven distribution of charge
among the bonds. We expect based on this distribution to
see two shorter pairs of bonds and one longer bond pair, as
confirmed by Fig. 1. We note that the precision to which we
have reported the bond lengths in Fig. 1 masks a distortion
above numerical error that was also present for PbV −. The
orbitals that hold two electrons will not contribute to the
spin density, while the orbital with one electron will, thus we
expect localization of the spin density on the longer bond as
confirmed in Fig. 2. In principle, the hyperfine constants com-
puted using the PBE or HSE06 functionals should be similar
as they depend on the spin density, which should not differ
significantly between the two functionals when calculated
for a given geometry [36]. However, bond lengths computed
using the PBE functional are included for comparison in
Fig. 1 and show that the PBE functional does not capture the
distortion captured by the HSE06 functional upon structural
relaxation. We include spin densities computed using the PBE
functional in Fig. 3. The PBE functional also does not capture
the spin density distribution motivated by our physical picture
resulting in roughly equal hyperfine tensors when evaluated at
each of the 13C nuclear spins that are nearest neighbor to the
XV − impurity-vacancy color center as shown in Table III. The
sensitivity of the HSE06 hyperfine constants to the distance
between the X atom and the carbon atom at which they are
evaluated has been shown in Table III for the GeV −, SnV −,
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FIG. 3. PBE spin densities for (a) SiV 0, (b) SiV −, (c) GeV −, (d) SnV −, and (e) PbV − with the [111] direction indicated. The electron spin
density is shown in yellow at an isovalue level of 0.01 e/Å3 and the carbon vacancies are shown as dashed circles. The nearest-neighbor carbon
atoms are illustrated in brown.

and PbV − color centers. A similar difference is only observed
for the SiV − color center using the HSE06 functional when
the force threshold is such that a distortion begins to emerge,
leading to the notion that the difference is due to a Jahn-Teller
distortion. We note here that a Jahn-Teller distortion has also
been calculated for the neutral group-IV color centers [37],
but our calculations have not verified this.

Finally, we would like to comment on the anisotropy ob-
served for our calculated HSE06 hyperfine constants and their
implications. First, the strengths of the hyperfine constants are
anisotropically distributed among the neighboring 13C nuclear
spins as the hyperfine interaction depends upon the spin den-
sity which is clearly anisotropic as shown in Fig. 2, due to
a Jahn-Teller distortion. Next, we note that for any particular
XV − center in a diamond host, its electron spin is entangled
with all of the 13C nuclear spins that are present throughout
the host material [10]. Furthermore, it is important to make a
distinction between the various types of 13C nuclear spins that
surround a particular XV − center. It has been suggested that
there is a barrier which we will describe by some distance
ro where for 13C nuclear spins located at distances r > ro,
spin decoherence of the XV − center is produced because of
entanglement, while for 13C nuclear spins located at distances
r < ro spin coherence of the XV − center is actually enhanced
[38]. These two regions are separated by a barrier to spin
diffusion as originally suggested by Bloembergen [39]. One
interesting application of this spin diffusion barrier might be
considered when we try to create a network of XV − centers

in diamond experimentally. If one wishes to construct, as
an illustration, a one-dimensional chain of XV −centers with
minimal spin decoherence among them in a network, then it
is best to experimentally construct them so that the separation
distance between a cluster of nearby color centers in diamond
is no more than the parameter ro, which describes the diffu-
sion barrier for the particular system, and the distance to all
other color centers is much greater than ro. In this manner,
color centers would mutually entangle and lock on to the
longest spin coherence time of color centers in the cluster. For
example, hybrid structures of NV − and XV − could lead to
enhanced spin coherence of the XV − if the XV − is entangled
with the NV −. In addition, our calculations show that this
parameter ro will be anisotropic when measured from an XV −

center experiencing a Jahn-Teller distortion. Of course, in this
discussion we make no effort to actually compute what the
parameter ro is for a particular XV − color center, but simply
state that it exists and that both it and its angular dependence
should be considered if one wishes to mitigate spin decoher-
ence when fabricating a particular system in the laboratory.

This discussion supplements the argument that enhanced
spin coherence could be obtained by lowering the temperature
to suppress the fast scattering of electrons between sublevels
of the ground state, mediated by phonons [29]. In addition
to suppressing the phonon density of states by lowering the
temperature, our earlier work argues that decreasing the con-
centration of defects in the material can also suppress the
phonon density of states [11].
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In summary, our computational results show that by using
HSE06 for the exchange-correlation functional in DFT along
with the inclusion of core polarization, the computed values of
the hyperfine constants for the case of the GeV −, SnV −, and
PbV − color centers should be in much better agreement with
experiment than by solely using the PBE exchange-correlation
functional. We predict that the net effect of the increase in the
hyperfine constants due to the increased localization of the de-
fect wave functions from the use of the HSE06 functional and
the decrease in the hyperfine constants due to the inclusion
of core electron spin polarization will yield computational
results that will be in better agreement with experiment as
previously shown for the cases of SiV 0, SiV −, and NV −.

IV. CONCLUSIONS

Group-IV impurity-vacancy color centers in diamond (XV ,
where X = Si, Ge, Sn, and Pb and V is a carbon vacancy) are
surrounded by 13C nuclear spins in diamond which possess a
nonzero spin which can limit the spin coherence properties of
these XV color centers. We have explored the dependence of
the hyperfine constants on the location of 13C nuclear spins
that are nearest neighbors to group-IV color centers. As has
been seen for the case of SiV 0, we have shown that the use
of the hybrid functional HSE06 for exchange and correlation
over the use of the PBE functional provides a far more accu-
rate means of computing the hyperfine constants and we have
extended these calculations to GeV −, SnV −, and PbV −. It is
the hope that our results will serve as a useful benchmark in
both seeing how to improve DFT studies for these impurity-

vacancy systems and will provide further guidance for future
experimental research on these systems.

We find that the distribution of the hyperfine constants
is anisotropic when the color centers exhibit a Jahn-Teller
distortion. We propose this effect can be exploited to mitigate
spin decoherence of the color centers by repeating cooling
procedures such that the color center is cycled between the
three energetically equivalent distortions, ultimately finding
one that favors enhanced spin coherence. We additionally ar-
gue that consideration of a direction-dependent spin diffusion
barrier must be made in constructing hybrid systems of color
centers.
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