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ABSTRACT: Spin−orbit interaction (SOI) that is gate-tunable over a broad range is
essential to exploiting novel spin phenomena. Achieving this regime has remained elusive
because of the weakness of the underlying relativistic coupling and lack of its tunability in
solids. Here we outline a general strategy that enables exceptionally high tunability of SOI
through creating a which-layer spin−orbit field inhomogeneity in graphene multilayers. An
external transverse electric field is applied to shift carriers between the layers with strong
and weak SOI. Because graphene layers are separated by subnanometer scales,
exceptionally high tunability of SOI can be achieved through a minute carrier
displacement. A detailed analysis of the experimentally relevant case of bilayer graphene
on a semiconducting transition metal dichalchogenide substrate is presented. In this
system, a complete tunability of SOI amounting to its ON/OFF switching can be achieved.
New opportunities for spin control are exemplified with electrically driven spin resonance
and topological phases with different quantized intrinsic valley Hall conductivities.
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Spin−orbit interaction (SOI), tunable on demand over a
wide range of values, can provide access to a wide variety of

interesting spin transport phenomena. One popular strategy of
achieving tunable SOI relies on directly tuning it using an
applied electric field. This approach proved successful in
various instances such as tuning Rashba-type SOI in two-
dimensional semiconducting systems1−4 and Ising-type SOI in
transition metal dichalcogenides (TMDs).5 However, in all
these cases the range of values in which SOI could be tuned has
been relatively small because of the relativistic nature of SOI.
We propose graphene multilayers as a vehicle to achieve an

on-demand SOI that is free from these limitations. The first
step involves engineering an environment with a spatially
inhomogeneous spin−orbit field,6,7 which is, for example, high
on one layer and low on the adjacent layer. In such a system,
through applying transverse electric field, carriers can be shifted
between layers with strong and weak SOI. This renders the SOI
strength felt by these carriers strongly dependent on the which-
layer charge polarization. Some aspects of this scheme resemble
gate-tunable Zeeman coupling demonstrated in ref 8. The
advantage of such an indirect approach to tuning SOI is that it
disassociates the applied electric field from the spin−orbit field.
The atomic scale separation between graphene layers then
ensures an exceptionally high tunability that is achieved through
a minute carrier displacement.
We illustrate this idea in the specific context of bilayer

graphene (BLG) on a TMD substrate such as WS2.
Implementing a strongly tunable SOI in such graphene-based

systems is highly desirable due to the high mobility of carriers
in graphene that is preserved by these atomically flat and
chemically inert substrates.9 In this configuration, the spatially
inhomogeneous spin−orbit field simplifies to an ON/OFF
which-layer field, only the layer adjacent to the TMD acquires
from it an interfacially induced Rashba SOI and Ising SOI. Our
proposal builds on previous work, which established that strong
interfacial SOI in the millielectronvolt range can be induced in
individual graphene layers.10−14 As we will show, the low-
energy carriers experience an effective SOI that has an
enhanced gate-tunability to the extent of complete gate-
tunability, that is, it can be switched on and off by applying a
transverse electric field of moderate strength (∼mV/Å).
Furthermore, the robust high-frequency response of

graphene extending up to ∼100 GHz15 can enable a range of
novel time-dependent spin phenomena. Indeed, because
applying a transverse field in BLG directly alters the wave
functions of its carriers, gate-tunable SOI possesses full
quantum coherence. Quantum-coherent tunability enables
coherent manipulation of carrier spin degrees of freedom,
becoming particularly interesting if the SOI Hamiltonian can be
modulated on the carrier transport time scales. As an
illustration of this new capability, we discuss the electric-dipole
spin resonance (EDSR) that can be driven though an
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application of a transverse alternating current (ac) electric
field.16 Quantum-coherent tunability also enables direct control
of the electron Bloch Hamiltonian and Bloch bands, giving
access to gate-tunable Berry phase and band topology of Bloch
electrons. We illustrate these new opportunities by considering
BLG sandwiched between TMD layers, a system that provides
gate-switching between topologically distinct phases with
different values of the intrinsic valley Hall conductivity.
The essential aspects of the which-layer approach can be

illustrated by a model of a Bernal-stacked BLG in a transverse
electric field, which for the sake of simplicity only accounts for
the low-energy subspace of electronic states. Microscopically,
the interlayer bias potential U introduces an asymmetry
between the A sublattice of layer 1 and B sublattice of layer
2, denoted below as A1 and B2. Crucially, the interlayer bias
breaks the layer-occupation symmetry.17 This behavior is
captured by the two-band (spin-degenerate) Hamiltonian
describing the low-energy subspace
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Here p ⃗ is the momentum measured relative to the K and K′
points of the Brillouin zone, which we will henceforth refer to
as K+ and K− (τz = ±1) respectively, and − U1

2
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potentials on layers 1 and 2. The spectrum of HBLG
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Here ζ = ±1 refers to the conduction or valence band
respectively, and the interlayer bias U incorporates the
capacitance corrections.17 When U ≠ 0, the wave functions
of electronic states are asymmetric in the layer occupancy
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where the minus and plus signs correspond to the layers 1 and
2, respectively. The extent of layer polarization for each of these
states is therefore directly controlled by U. The carriers with
specific layer polarization can be accessed in an energy-resolved
manner through doping.18

Next, we discuss how a layer-dependent SOI is engineered
using a proximal TMD layer, for example, a TMD multilayer
with strong SOI such as WS2 which serves as the substrate for
the BLG. We expect carriers in layer 1 (blue) that is adjacent to
the TMD substrate to acquire an interfacially induced SOI (see
Figure 1). Carriers in nonadjacent layer 2 (red) are coupled to
substrate only indirectly, through interlayer hopping. This
phenomenology of interfacially induced SOI is supported by
recent studies10,14 on monolayer graphene (MLG) on TMD
substrates with strong SOI. A simple model of MLG
experiencing an enhanced SOI due to the TMD substrate can
be described by a low-energy Hamiltonian

δ σ δ δ= Δ + +H H H
2 zMLG Ising R (4)

treated as a perturbation to the MLG Hamiltonian near the K±

points. Here δ τ= λH sz zIsing 2
and δ τ σ σ= −λH s s( )z x y y xR 2

R ,

where we use σi and si to denote the Pauli matrices

corresponding to the A and B sublattices and spin degrees of
freedom, respectively. The term δHIsing has the form of Ising
SOI and originates from the Ising SOI inherently present in the
TMD substrate. The term δHR has the form of Rashba SOI in

graphene. The term σΔ
z2
originates from sublattice asymmetry;

it is comparatively small in practice and can be ignored in most
cases.
The consequence of introducing layer-dependent SOI in

BLG can be illustrated by considering a simple model in which
the interfacial SOI described by δHMLG only affects the carriers
localized in layer 1 and is negligible for carriers localized in layer
2. To see how this modification allows for a switchable SOI,
consider the limit of weak Ising SOI, |U| ≫ |λ|, and with
Δ = λ R = 0. To first order in perturbation theory, we neglect
the influence of δHMLG on the electronic states and find the
spin-split low-energy bands

δε λ τ= ±ζ
ζ

=↑ ↓ g
2s z, , 1

( )
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where the energy shifts of sign plus and minus correspond to
the s = ↑ and s = ↓ states, respectively. The spin splitting in eq 5
is of opposite sign for different valleys, τz = ±1, as required by
time reversal symmetry.
Bands with different spin splitting can be accessed in a dual-

gated system in which there is independent control over
interlayer bias and doping: the induced SOI is turned on by
hole doping and turned off by electron doping. Indeed, at small
dopings, since the Fermi momentum is small there is a
correlation between which band a carrier is from and which
layer of the BLG the carrier predominantly occupies. For
positive interlayer bias U > 0, carriers from the conduction
band are fully localized on layer 2, g1

(+1) ≈ 0, while carriers from
the valence band are fully localized on layer 1, g1

(−1) ≈ 1. It
follows from eq 5 that in this case the Ising SOI is only present
for holes (δε λτ≈ ±− =↑ ↓s z1, ,

1
2

) and is absent for electrons

(δε+1,s ≈ 0), as illustrated in Figure 1; the situation is reversed
when U < 0 so that the Ising SOI is only present for electrons

Figure 1. Low-energy band structure of a biased bilayer graphene
(near K+ point) with interlayer bias U = 10 meV including induced

SOI λ= ζH g szSO
eff 1

2 1
( ) with λ = 2 meV. The color of the lines indicates

the layer occupancy g1,2
(ζ) of their corresponding eigenstates given by eq

3 in the main text. A similar situation occurs near the K− point.
Different sizes of arrows in the insets depict the difference in strength
of the induced SOI experienced by carriers in layer 1 and 2 as a result
of their proximity from the substrate.
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and is absent for holes (see Figure 2a,c). The contrast between
the ON and OFF states fades away quickly as doping increases

because at large momenta the electron wave functions are split
nearly equally between both layers (see Figure 2 right panel).
One interesting consequence of which-layer tunability is that

the spin splitting (eq 5) acquires a dependence on the
interlayer bias U. Crucially, the states in eq 5, while having
opposite spin projections, have identical orbital structure. It is
therefore possible to view the spin splitting in eq 5 as being due
to an effective magnetic field applied transverse to the BLG
plane. Because of the dependence of the layer occupancy on the
interlayer bias U (eq 3), this effective B field is gate-tunable and
therefore defines a new form of spin-electric coupling.
As an illustration of the new capabilities endowed on the

system by such spin-electric coupling, we discuss spin
resonance of an EDSR type driven by a time-dependent gate
voltage U(t). We consider an external static magnetic field of
strength such that the Zeeman energy exceeds the interfacially
induced spin splitting, eq 3, for the sake of simplicity taking the
field to be applied parallel to the BLG plane. The carrier spin
dynamics is then governed by an effective Hamiltonian

λ τ= ϵ + ̃H s t s
1
2

1
2

( )x z zEDSR Z (6)

where the time-dependence λ ̃(t) = λg1
(ζ)(t) originates from gate-

tunable Ising SOI. Here ϵZ = gμBB is the Zeeman energy, μB is
Bohr’s magneton and, without loss of generality we consider
the static magnetic field applied along the x-direction, B⃗ = Bx̂.
To achieve EDSR, the interlayer bias U(t) should not at any

point in time close the gap between the valence and conduction
bands so that the carrier orbital wave functions remain
unchanged. Without loss of generality, we consider the case

for which λ > 0 and U(t) = U0 + U1 cos ωt with U0 > λ and U1
≪ U0. The resulting time-dependent Ising SOI experienced by
the conduction band carriers with momentum p varies with

time as λ ̃ ≃ λt( ) p
m U t4 ( )

4

2 2 . This time-dependent Ising SOI will

thus act as an oscillating field which induces transitions between
the Zeeman states s = | ←⟩ and s = | →⟩. Consequently, EDSR
is achieved by matching the frequency of the time-dependent
Ising SOI to the Zeeman energy, ℏω = ϵZ. Note that while the
Ising SOI has opposite signs at the K± valleys, both SOI
couplings cause the spin projection on the x-axis to evolve with
the same time dependence. In the absence of intervalley
coupling, the effects of EDSR originating from both valleys add
up constructively, resulting in doubling of the spin polarization
signal.
While the simple analysis of interfacially induced SOI

presented above qualitatively captures the essential physics, it
is instructive to develop a more precise and complete
description of the system near the K± points. That can be
done by directly adding δHMLG, eq 4, to the layer-1 subspace of
the BLG tight-binding Hamiltonian

δ= ⊗ +H H H1 s
eff BLG

( )
1 MLG 1 (7)

Here =i 1,2 is the operator that projects onto the layer-i

subspace and 1 s( ) is the 2 × 2 identity matrix of the spin degrees
of freedom. The Hamiltonian HBLG describes Bernal-stacked
BLG in which two MLG layers are stacked such that the B
sublattice in one layer (B1) is vertically aligned with the A
sublattice on the other (A2). As is well-known, the strongest
interlayer coupling γ1 in this stacking configuration occurs
between the B1 and A2 sites. As a result the low-energy states
near the K± points are strongly localized over the A1 and B2
sublattices, as described by the low-energy Hamiltonian
considered above, eq 1. The Hamiltonian Heff can be
numerically solved to obtain the band structure. The four
low-energy bands obtained in this way are shown in Figure 2
for three different values of interlayer bias U corresponding to
three different phases discussed below.
To gain insight in the different regimes accessible though

varying U, we derive the low-energy Hamiltonian in the A1/B2
subspace perturbatively in

γ
1

1
(see Supporting Information).

Since [Heff, sz] = 0 at p = 0, the quantity sz is a good quantum
number and can be used to label states and associated bands.
To order

γ
1

1
2 , the energy levels at p = 0 are
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Here, the sign in front of the U/2 term matches the value of ζ =
±1 introduced in eq 2. In eq 8b, the plus and minus sign
corresponds to the s = |↑⟩ and s = |↓⟩ states, respectively. This
result extends eq 5 by including the effects of sublattice
asymmetry Δ and the leading correction at order

γ
1

1
2 given by

δλ*. We see that the effect of Δ is to uniformly shift both E−1,s
bands and renormalize the bias U. The quantity δλ* produces a

Figure 2. Four lowest energy bands (left panel) and corresponding
layer polarization (right panel) obtained from eq 7. Upon increasing
U, the system first transitions from an insulating phase (a) to a
semimetallic phase (b) and then to a different insulating phase (c) that
has the order of the bands inverted compared to (a); labels correspond
to the phase labels in Figure 3. Values used are (a) U = −2 meV, (b) U
= 2 meV, (c) U = 5 meV with other parameters fixed as Δ = 3 meV, λ
= 4 meV, and λR = 2 meV.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.7b03604
Nano Lett. 2017, 17, 7003−7008

7005

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.7b03604/suppl_file/nl7b03604_si_001.pdf
http://dx.doi.org/10.1021/acs.nanolett.7b03604


similar effect and can also generate a spin splitting between the
E−1,s bands. However, so long as the values λ and λR are
comparable, the quantity δλ*, which is suppressed by a large
factor

γ
1

1
2 compared to λ, only matters as a constant energy shift

to the E−1,s bands but not a source of spin splitting.
In this case, upon tuning interlayer bias U, the E+1,s bands

(red) shift across the E−1,s bands (blue) so that the system
undergoes transitions from an insulator to a semimetal and
then again to an insulator state. The corresponding phase
diagram is shown in Figure 3. At large U (Figure 2a,c), the

system is insulating at charge neutrality and allows for gate-
switching of Ising SOI as discussed above. The sign of U
determines which charge carriers, electrons or holes, experience
the effective Ising SOI. At not-too-large U values such that Δ −
λ ≲ 2U ≲ Δ + λ, the system is semimetallic at charge neutrality.
As shown in Figure 2b, in this case the E+1,s bands lie between
the E−1,s bands so that the Ising SOI gap is partitioned between
the electrons and holes: λ ≃ ΔEe + ΔEh. This partitioning can
be tuned from 0% to 100% by varying U, and thus in this
regime both the electron and hole spin splittings are gate-
tunable, albeit in a correlated fashion.
As λ decreases to zero, its effects at p = 0 eventually become

subleading compared to that of δλ* when

λ γ λ≫
UR 1

At λ = 0, we find from eq 8b that

δλ τ| ≃ − + Δ + * ∓− =E
U
2 2

(1 )s p z1, 0

The term δλ*(1 ∓ τz) introduces a spin splitting which varies
linearly with U. In practice, which contribution dominates
depends on the actual values of λ and λR; so far, experiments in
BLG-on-WS2 indicate that δλ* is indeed dominant with λR ∼
10 meV.11

The
γ
1

1
2 suppression in δλ* is a consequence of the specific

form of δHR ∝ τzσxsy − σysx. It couples the A1/B2 polarized
low-energy states to the high-energy states which are strongly
A2−B1 mixed by the interlayer coupling γ1. At p = 0, the wave
functions of the low-energy states remain layer-polarized such
that the SOI is completely tunable. However, because δHR
introduces a substantial interlayer mixing in the low-energy
subspace that increases with p, the which-layer tunability of the
SOI becomes increasingly suppressed away from the valleys as
is evident in Figure 1.

An even more interesting behavior is found when BLG is
encapsulated between two TMD layers. In this case, carriers in
each of the two graphene layers experience an interfacially
induced SOI from the TMD layers above and below,
respectively. The low-energy effective Hamiltonian near the
K± points now reads

∑ δ= ⊗ +
=

H H H1 s

i
i ieff BLG

( )

1,2
MLG,i

(9)

in which a layer index i is introduced to allow for distinct
phenomenological parameters for the different layers, Δi, λi, λR,i.
A consequence of adding δHMLG,2 is to open up a gap at p =

0 between the E+1,s bands. It follows that for arbitrary values of
Δi, λi, λR,i, the system at charge neutrality has up to five different
insulating phases with phase transitions occurring at values of U
for which the band gap at p = 0 closes. While the overall Chern
number for any of these bands is guaranteed to vanish because
of time reversal symmetry, the valley Chern number is
unconstrained and can take nonzero values. In fact, the valley
Chern numbers for some of the bands changes across a phase
transition, such that these insulating phases are topologically
distinct. This suggests that the intrinsic valley Hall conductivity
at charge neutrality, σxy

VH(0), is a suitable quantity to distinguish
these phases.
To compute σxy

VH(0), we first obtain the Berry curvature of
each energy band near either valley, Ω±

(n)(p ⃗). Here we
introduced a generalized index n that labels bands, including
both the four low-energy bands (previously labeled by {ζ,s}) as
well as the other four high-energy bands that we have excluded
from our discussion thus far. Because the Berry curvature is
strongly peaked at the valleys, the corresponding valley Chern
number N±

(n) can be obtained by numerically integrating Ω±
(n)(p ⃗)

over an individual valley.19 The intrinsic valley Hall
conductivity at charge neutrality is then obtained from adding
up the contr ibut ions from al l the fi l led bands,

σ = ∑ − = ∑+ − +N N N(0) ( ) 2xy n
n n e

h n
n e

h
VH ( ) ( ) ( )2 2

. Here we used

the relation N+
(n) = −N−

(n), valid because of time reversal
symmetry.
A detailed characterization of the various phases for arbitrary

values of Δi, λi, λR,i lies outside the scope of this work. Here we
highlight a generic aspect which can be illustrated by
considering the simplest case of Δ1 = Δ2 = 0 (this choice of
values is consistent with ab initio studies10), |λi| = λ, and |λR,i| =
λR. In this case, the system hosts two topologically distinct
phases at charge neutrality: the ordinary valley Hall phase, in

which σ = − U(0) 4 sgn( )xy
e
h

VH 2

, and the anomalous valley Hall

phase, in which σ ≠ − U(0) 4 sgn( )xy
e
h

VH 2

. We will denote these

phases as VH0 and VH1 respectively.
A simple way to understand the VH0−VH1 phase transition

is as follows. The well-studied case of dual-gated BLG in the

absence of SOI, which has σ = − U(0) 4sgn( ) e
hxy

VH 2

,20−25 is in

fact a specific example of the VH0 phase for which λ = λR = 0.
The system remains in the same topological phase VH0 in the
presence of relatively weak SOI, that is, when λ ≲ |U|, since the
SOI-induced splitting of the low-energy bands is insufficient to
cause the band gap to close at either valley. In agreement with
the above picture, independent of the relative signs of λi and

λR,i, we find that σ = − U(0) 4 sgn( )xy
e
h

VH0 2

.

Figure 3. Phase diagram of the BLG-on-TMD system described by eq
7 at charge neutrality when λ ≳ λR. Phases (a−c) have band structures
with corresponding labels in Figure 2.
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Upon tuning down the interlayer-bias U such that |U| ≲ λ,
the SOI starts to dominate and band inversion occurs between
the low-energy bands at both valleys. The system undergoes a
topological phase transition into the VH1 phase through the
closing and reopening of the band gap analogous to phase
transitions in Chern and topological insulators. We therefore
expect the valley Chern numbers of the low-energy bands to
change across the VH0-VH1 phase transition such that

σ σ≠ = M(0) (0) 2xy xy
e
h

VH0 VH1 2

, where possible values of M

equal 0, ± 1, ± 3, ...; the results from our preliminary studies
are consistent with this expectation. Unlike σxy

VH0(0), the value
of σxy

VH1(0) depends on the relative signs of λi and λR,i. This
dependence is, however, not yet well understood. This interplay
between the induced SOI and the interlayer bias resembles the
behavior for the quantum spin Hall effect in graphene26 and the
electrically tunable topological insulator.27

In fact, this sharp change in σxy
VH(0) is independent of the

specifics of the induced SOI and occurs in the generic case
when |λ1| ≠ |λ2| and |λR,1| ≠ |λR,2| as well despite there
potentially being a more elaborate phase characterization
scheme. This change in σxy

VH(0) no longer happens at |U| ≃ λ

but at a different critical value λ λ≲ | | + | |U ( )c
1
2 1 2 . As the

experimental study of valley-based transport is still in its
infancy, these predictions therefore serve as robust exper-
imental signatures that could be used to advance our
understanding of the valley Hall effect. We find ourselves
with a system whose topological nature is not completely
determined by the material itself but can instead be gate-
controlled in situ.
In summary, graphene-based heterostructures with on-

demand SOI grant access to tunable topological properties.
In particular, gate-controlled intrinsic valley Hall conductivity
can be achieved in these systems through combining interlayer
coupling, gating, and various types of interfacially induced SOI.
Further, the robust broad-band response of graphene15 turns
graphene-on-TMD heterostructures into a unique platform to
realize and explore novel time-dependent spin phenomena such
as the electrically driven spin resonance. It can also help to
extend the optoelectronics and valleytronics phenomena of
current interest28−32 into the time domain.
At the time of submitting our manuscript for publication we

became aware of ref 33 that analyzes phenomena closely related
to some of those described above. The approach in ref 33 relies
on ab initio techniques, whereas we develop an approach
relying on the low-energy effective Hamiltonian of the system,
which provides a direct physical insight into the complexity and
richness of our system and pinpoints the key ingredients of the
BLG-on-TMD system required for accessing SOI with
enhanced gate-tunability.
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